
ISSN 0967�0912, Steel in Translation, 2015, Vol. 45, No. 1, pp. 54–62. © Allerton Press, Inc., 2015.
Original Russian Text © E.E. Merker, E.A. Chermenev, 2015, published in “Stal’,” 2015, No. 1, pp. 23–31.

54

The electrosmelting of pellets in an arc furnace
with tubular (hollow) electrodes is promising [1–3].
For reduced iron�ore pellets, the electrosmelting
characteristics will depend on the heat generation and
heat transfer in the high�temperature furnace arc and
on the heating and melting of the pellets within the
slag–metal melt under the action of the arc [1].

When the pellets are supplied to the region affected
by the arc through the tubular electrodes, their heating
and melting will be more rapid, thanks to the addi�
tional heating on passing through the arc and the high�
temperature melt in the zone around the arc, as fol�
lows from experimental data regarding the melting of
reduced iron�ore pellets in a 150�t arc furnace [1, 2].
This process is more efficient than other electrosmelt�
ing technologies [1, 4].

As for steel scrap, the interaction of the pellets with
the liquid metal is a complex heat� and mass�transfer
process and is nonsteady, in general [4]. The heating
and melting of the pellets within the slag–metal melt
when they are introduced in the bath by different
methods must be analyzed in more detail. A mathe�
matical model for the heating and melting of pellets in
the arc–slag–metal system may be derived on the basis
of data regarding their electrosmelting in arc furnaces
[5], the interaction of a solid with ferrocarbon melt
[4], the formation of a coating on the pellet surface on
entering the bath [6], and the intensification of pellet
melting in slag–metal melt close to the arc [1, 5].

In the analysis of pellet melting, we must consider
a heat�conduction problem with a moving boundary.
Numerical methods of solving such significantly non�
linear problems are relatively well�developed. Versions
of the finite�difference method are mainly employed
[4, 7]. In formulating a mathematical model, we adopt
a number of assumptions and constraints [1, 6, 8]. We
must take into account that the phase transformations

that accompany the cooling and heating processes
associated with pellet melting give rise to a nonlinear
heat�conduction problem [7].

Consider the internal heat transfer when pellets are
supplied to the bath of the arc furnace through tubular
electrodes [1]. In that case, the pellets initially
undergo intense irradiation when they pass close to the
electric arc; the melting point of the metal is higher
than that of the pellets. The melting process includes
the following stages.

(1) Surface heating of the falling pellet to the melt�
ing point as a result of irradiation by the arc.

(2) Melting of the pellet in the arc close to the elec�
trode as it falls. The pellet melt accumulates at the sur�
face of the solid residue, is heated above the melting
point, and transfers heat from the surface irradiated by
the arc.

(3) Melting of the pellet in the liquid metal close to
the electrodes. (The formation of a metal crust is pos�
sible).

In this case, the temperature field in the first stage
(heating) corresponds to a one�dimensional heat�
conduction equation in spherical coordinates

 when 0 < r < rpe, (1)

where λ is the thermal conductivity, W/m °C; c is the
specific heat, J/kg °C; ρ is the density of the elemen�
tary layer, kg/m3; rpe is the initial pellet radius, m.

The initial condition is the initial temperature dis�
tribution over the pellet cross section. Initially, the
body is uniformly heated

t(r, 0) = t0 when 0 ≤ r ≤ rpe, (2)

where t0 is the initial pellet temperature, °C.
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For all three stages, the boundary condition at the
center (when r = 0) is a consequence of the tempera�
ture field’s symmetry

(3)

We may identify two boundary conditions at the
surface (when r = rpe). First, the surface is heated to
the phase�transition temperature at the end of the
stage

(4)

where tme is the pellet’s melting point, °C. The second
corresponds to the thermal balance at the pellet surface

(5)

where qrad is the radiant heat flux from the arc to the
pellet surface.

Since the melt formed in the second stage remains
at the pellet surface and, by assumption, its density
remains unchanged, the temperature field satisfies
Eq. (1) but for the pellet in the region 0 < r < rsur(τ) and
for the melt in the region rsur(t) < r < rpe. Here rsur(t) is
the surface radius of the pellet’s solid core, character�
izing the motion of the solid–liquid boundary; it must
be determined in solving the problem. We have two
boundaries: the moving boundary between the pellet’s
solid core and the melt; and the constant boundary at
the irradiated melt surface. The initial conditions here
are the temperature distribution over the pellet cross
section at the end of the first stage; and the pellet
radius.

The first boundary condition is that the phase tran�
sitions at the moving boundary occur at specific tem�
peratures, in accordance with Eq. (4). The second
condition is the heat balance at the moving boundary

(6)

where vme is the bulk rate of melting, m3/s; L is the
melt’s latent heat of phase transformation (melting),
J/kg. The boundary condition at the melt surface
(at r = rpe) is analogous to Eq. (5).

In the third stage, in contrast to the second, the
temperature field, which satisfies Eq. (1), is only con�
sidered within the solid residue: 0 < r < rsur(τ). There
are two initial conditions: the temperature distribution
over the pellet cross section; and the radius of the solid
residue. The second boundary condition is the heat
balance at the pellet–melt boundary

(7)

where q0 = α(tmelt – tsur) is the heat flux from the melt
to the pellet surface, W/m2; α is the convective heat�
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transfer coefficient, W/m2 °C: tmelt is the melt temper�
ature, °C; tsur is the surface temperature, °C.

To solve the problem, we use a grid with a variable
number of points. We assume that the boundary moves
over one coordinate increment within a single time
increment. In other words, the number of increments
with respect to the coordinate nk changes by one: on
solidification, nk + 1 = nk + 1; on melting, nk + 1 = nk – 1.

In the derivation of the difference equation for the
second stage, corresponding to Eq. (6), we assume
that, in one time step, the boundary moves by one
coordinate step. In this case, however, when the num�
ber of increments with respect to the coordinate
decreases by one for the pellet, the number of corre�
sponding increments for the melt increases by one.
Thus, the total number of increments remains
unchanged. In this approach, the time step is
unknown and must be calculated. Therefore, we use
unconditional stable implicit difference schemes in
that case. To simulate pellet melting, we use an
implicit four�point difference scheme, which is less
complex than a six�point scheme [7]. In constructing
the difference scheme, we use the balance method.
The starting point is conservation of energy and the
heat transfer corresponding to the discrete tempera�
ture field.

Consider an elementary layer ri – 1/2 < r < ri + 1/2
(thickness Δr), corresponding to some point i (shaded
in Fig. 1a). We write the corresponding heat�balance
equation on transition from time k to time k + 1

(8)

where qi – 1/2, qi + 1/2 are the heat fluxes entering ele�
mentary layer i from the adjacent points on the left and
right, respectively, W. In addition

are the areas of the left and right surfaces of elementary
layer i, respectively, m2, while

are the volumes of the left and right sections of ele�

mentary layer i, respectively, m3;    and 

  are thermophysical properties of the left (–)
and right (+) sections of elementary layer i; ri is the
radius of elementary layer i, m; Δr is the coordinate

(radius) increment, m;  is the temperature of elemen�
tary layer i at time k, °C; Δτ is the time increment, s.
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The right side of Eq. (8) expresses the quantity of
heat obtained by elementary layer (point) i in time
interval Δτ. The left side expresses the change in
enthalpy of the elementary layer i with change in its

temperature from  to . To obtain a closed system
of difference equations in terms of the grid tempera�
ture values, we relate the heat�flux density to the tem�
perature at particular grid points. This calls for a dis�
crete analog of the Fourier law. We use an implicit
four�point difference scheme; therefore, we adopt the
temperature at the subsequent time k + 1

(9)

If we substitute Eq. (9) into Eq. (8), we obtain the
discrete analog of Eq. (1)

ti
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qi 1/2– λi
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+ ti 1+

k 1+ ti
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(10)

The difference equations for the left boundary
point (i = 1) corresponding to the boundary condition
at the center of the pellet in Eq. (3) may be obtained by
writing the heat balance for an elementary sphere of
radius Δr/2 (Fig. 1b)

(11)
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Fig. 1. Formulating the thermal balance: (a) elementary layer i of pellet; (b) center of pellet; (c) pellet surface; (d) at the moving
phase boundary of a pellet melting in the arc; (e, f) external layer in melting and solidification, respectively.



STEEL IN TRANSLATION  Vol. 45  No. 1  2015

ENERGY�EFFICIENT MELTING OF REDUCED IRON�ORE PELLETS 57

For the right boundary condition (i = nk + 1), we
write a difference equation corresponding to Eq. (4) at
the pellet’s phase boundary

(12)

In the first stage, the difference equation for the right
boundary point (i = n + 1) corresponding to Eq. (5) may
be obtained if we write the thermal balance for an ele�
mentary surface layer of thickness Δr/2 (Fig. 1c)

(13)

In the second stage, the heat flux from the melt is
greater than the flux from the phase boundary to the cen�
ter of the pellet. To obtain the difference analog of Eq. (6),
we write the thermal balance for the new boundary point,
corresponding to elementary layer nk + 1 + 1 (Fig. 1d)

(14)

The last term corresponds to the heat flux con�
sumed in heating the elementary layer nk + 1 + 1
(shaded area in Fig. 1d) to the melting point. The third
term corresponds to melting of the elementary layer to
the right of the new boundary point.

To obtain the difference analog of Eq. (7) for the
third stage, we write the thermal balance for the new
boundary point corresponding to elementary layer
nk + 1 + 1. In melting of the layer (nk + 1 = nk – 1), the
external heat flux is greater than the heat flux from the
phase boundary (Fig. 1e)

(15)

The last term corresponds to the heat flux con�
sumed in heating the elementary layer nk + 1 + 1
(shaded area in Fig. 1e) to the melting point. The third
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term corresponds to melting of the elementary layer to
the right of the new boundary point.

In solidification of the elementary layer (nk + 1 =
nk + 1), the external heat flux is less than the heat flux
from the phase boundary (Fig. 1f)

(16)

We may write Eqs. (10)–(16) in more compact
form by introducing the thermal diffusivity a = λ/cρ;
the dimensionless temperature θ = (t – t0)/(tme – t0);

the coordinate x = r/rpe; the Fourier time Fo = aτ/
the Kirpichev number Ki = rpeq0/λ(tme – t0); the Kos�
ovich number Ko = ρ'L/cρ(tme – t0); and the dimen�
sionless variables
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For the third stage when the layer is melting

(22)

For the third stage when the layer is solidifying

(23)

Let

We may now write Eqs. (17), (18), and (20)–(23) in
the form
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For the second stage

(27)

For the third stage when the layer is melting

(28)

For the third stage when the layer is solidifying

(29)

Since the dependence of the current temperatures
on their preceding values is determined implicitly by
difference equations, calculation of the temperature
field entails combined solution of these equations. The
systems of linear algebraic equations obtained from
the difference schemes are most effectively solved by
fitting [7]. Specifically, the solution of Eqs. (19) and
(24)–(29) is written in the form

(30)

where αi and βi are auxiliary constants.

We find the fitting factors αi and βi corresponding
to the left boundary point by solution of Eq. (25), writ�
ten in the form in Eq. (30). Since Kλ, 1 = Kcρ, 1 = 1, we
find that
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To determine the other constants αi and βi, we con�
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The dimensionless time step ΔFo is not known ini�
tially and must be determined from the boundary con�
ditions in Eqs. (19) and (26) for the first stage;
Eqs. (19), (26), and (27) for the second stage; and
Eqs. (19), (28), and (29) for the third. If we replace

 by  +  in Eqs. (26)–(29) and

take account of Eq. (19), we obtain nonlinear equa�
tions, since ΔFo itself depends on  and .

These equations are solved by iteration, in the follow�
ing form.
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For the first stage

(33)

For the second stage

(34)

For the third stage when the layer is melting

(35)

For the third stage when the layer is solidifying

(36)

When solidification of the next layer is impossible
since the internal and external heat fluxes are equal,
we obtain the following result from Eq. (29), taking

into account that  = θme

(37)

Here ΔFo and ΔFo' are the previous and subsequent
approximations of the dimensionless time.

In each step of the iteration, by substituting the
approximate value of ΔFo into Eqs. (33)–(37), we
find  and . The iteration ends when

|1 ⎯ ΔFo/ΔFo'| < Δ, where Δ is a specified value estab�
lishing the relative error of the time step.

To determine ΔFo from Eq. (34) in the second

stage, we need to know , which is the tempera�

ture of the right boundary. To that end, we use
Eqs. (30) and (32) and the temperature at the surface
of the pellet’s molten component. This temperature

may be obtained from Eq. (26) if we replace  by

 + 

(38)

This mathematical model provides the basis for an
algorithm and software that may be used in calculating
the melting of a pellet close to the electrode, with
allowance for heating by the arc.

When pellets are supplied to the furnace bath
through a tubular electrode, they are first subjected to
the thermal radiation from the arc and then melt in the
metallic bath. Therefore, we use the following data in
the calculation.

ΔFo ' θme θnk 1+
k–( )Kvnk 1+[=

– Klnk 1+ αnk
θme βnk

θme–+( )ΔFo ]/Krad.

ΔFo ' αnk 1+
θme βnk 1+

θme–+( )Klnk
ΔFo[–=

+ KoKVl θme θnk

k–( )KVh– ]/ θnk 1+ 2+
k 1+ θme–( )Krnk

[ ].

ΔFo ' αnk 1+
θme βnk 1+

θme–+( )Klnk
ΔFo[–=

+ KoKVl θme θnk

k–( )KVh– ]/ Kixnk

2( ).

ΔFo '
Kixnk 2+

2 ΔFo KoKVs+

αnk 1+
θme βnk 1+

θme–+( )Klnk 2+

�����������������������������������������������������������– 0.= =

θnk 1+
k

ΔFo '

=  Klnk 1+ αnk
θme βnk

θme–+( )ΔFo[ ]/ Kixnk 1+
2( ).–

αnk 1+
βnk 1+

θnk 1+ 2+
k 1+

θnk

k 1+

αnk
θnk 1+

k 1+ βnk

θnk 1+
k 1+ θnk 1+

k Klnk 1+ βnk
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1 Klnk 1+ 1 αnk
–( )ΔFo/Kvnk 1++
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(1) For the pellets: radius rpe = 0.005 m; thermal
conductivity λpe = 1.4 W/m K; specific heat cpe =
878 J/kg K; density ρpe = 3000 kg/m3; initial tempera�
ture t0pe = 25°C; melting point tme.pe = 1450°C; latent
heat of phase transformation (melting) Lpe =
272200 J/kg.

(2) For the molten pellet: thermal conductivity
λm.pe = 15 W/m K; specific heat cm.pe = 878 J/kg K;
density ρm.pe = 3000 kg/m3.

(3) For the metallic crust, thermal conductivity
λcr = 30 W/m K; specific heat ccr = 687 J/kg K; density
ρcr = 7250 kg/m3; melting point tme.cr = 1450°C; latent
heat of phase transformation (melting) Lcr =
277000 J/kg.

(4) For the metallic melt: temperature tmelt =
2735°C; convective heat�transfer coefficient αmelt =
1000 W/m2 K.

(5) For the arc: power 30 MW.
In calculating the dimensionless characteristics,

the data for the pellet (cpe, ρpe, λpe) are adopted as the
initial thermophysical properties. The program for
calculating the pellet melting close to the electrode is
based on the proposed difference equations. From the
system of implicit difference equations, the time step
ΔFo and corresponding fitting factors αi and βi are first
determined by iteration with direct fitting. Then,
knowing the surface temperature on the basis of the
boundary conditions, the required temperature distri�
bution is determined by inverse fitting. Next, this cal�
culation is repeated for the next time step, with a new
number of coordinate increments. In the calculation
of melting in the arc, determination of the time step is
preceded by calculation of the temperature distribu�
tion in the melt that forms. The calculation ends when
the number of coordinate steps reaches zero.

The algorithm employed in the program is shown
in Fig. 2. The program consists of modules specifying
the initial data from the preliminary calculations and
three basic components corresponding to the number
of periods of pellet melting.

(1) Surface heating of the pellet to the melting
point as a result of the thermal radiation from the arc
as it descends. The initial conditions employed here
are the pellet radius, its initial temperature, and the
condition of uniform heating.

(2) Pellet melting near the electrode as it descends
in the arc. The initial dimensionless�temperature dis�
tribution over the pellet cross section θ(i, k) and the
time step k are taken from the calculation for the pre�
ceding stage. The external heat flux from the arc is
greater than the flux from the phase boundary. As a
result, the pellet begins to melt, and a liquid layer
forms at its surface. Thus, for the solid residue, the
change in the number of coordinate increments is
Δn = –1; the total number of increments for the pellet
and melt remains unchanged. After the calculation for
each time step, the condition for the end of melting in
the arc is verified: τ > τde, where τde is the time for the
pellet’s descent in the arc. If this is not the case,
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n = n + Δn; k = k + 1

τ > τde

distribution in melt

Calculation of time step ΔFo
and corresponding fitting factors

αi and βi

Calculation of temperature
distribution θ(i, k + 1)

Yes No

melting in liquid metal

Δn = 1 Δn = –1

Yes No
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Fig. 2. Block diagram of the algorithm for calculating the melting of a pellet close to the electrode.
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the program proceeds to the analogous calculation for
the next time step.

(3) Melting of the pellet in the bath close to the
electrode. (The formation of a metal crust is possible.)
The initial dimensionless�temperature distribution
over the pellet cross section θ(i, k), the time step k, and
the number of coordinate steps for the pellet are taken
from the calculation for the preceding stage. Since the
initial heating of the pellet is not sufficient, the exter�
nal heat flux qext may be less than the internal heat flux
qint from the phase boundary. As a result, solidification
of a metal layer at its surface is possible. In that case,
the calculation for this stage begins with the condition
Δn = 1. Otherwise, melting occurs (Δn = –1).

If Δn = 1 initially, equations for calculating the
solidification are selected (the left branch in Fig. 2).
Since the pellet is gradually heated and the heat flux
from the phase boundary declines, the time required
for solidification of the last layer of melt is infinite.
(Solidification of the last layer is impossible.) Thus, in
calculating the next time step, when it exceeds the
specified maximum time step (ΔFo > ΔFomax), the
program switches to calculation of the time step corre�
sponding to equalization of the internal and external
heat fluxes when Δn = 0 (the central branch in Fig. 2).
Since the flux from the phase boundary is less than the
external heat flux, melting begins, and the change in
the number of coordinate steps changes sign: Δn = –
Δn' = –1. (Here Δn' is the change in the time step for
calculation of the equalization of the heat flux.) Given
that Δn = –1, the equation for the calculation of melt�
ing may be selected (the right branch in Fig. 2). After
calculating each time step, the condition correspond�
ing to the end of melting is verified: n = 0. If it is not
satisfied, the program switches to the calculation for
the next time step.

This algorithm is incorporated in Matlab software.
The model is tested by comparing the calculation
results for the crust thickness on tin samples immersed
in hot melt [8, 9] with experimental data from [6]. For
pellets supplied through a tubular electrode to the melt
close to the arc, the melting time is a quarter of that for
pellets melting in the slag (that is, with no influence of
the arc), according to the data in [8, 9]. When the pel�
let is supplied to the slag, the crust formed extends over
25% of its radius, while the period in which the crust

exists is 35% of the melting time. For pellets supplied
through a tubular electrode, the crust is less than a
third as much, and the period in which the crust exists
is no more than 20% of the melting time; with a large
heat�transfer coefficient, no crust is formed at all.

The pellet temperature was studied dynamically in
the course of heating and melting in [8]. It was found
that, when the pellet melts within the slag, it is uni�
formly heated at the end of crust formation. By con�
trast, for pellets supplied through a tubular electrode,
there is a temperature gradient over its cross section. In
Fig. 3, we show the melting time of the pellet in these
two cases, as a function of its size and the heat�transfer

25

20

15

10

5

0 108642

(b)

9
8
7
6
5

100

80

60

40

20

(a)

9
8
7
6
5

0

τme, s

rpe, mm

α, kW/m2 °C

τme, s

rpe, mm

Fig. 3. Dependence of the melting time on the pellet size
and the heat�transfer coefficient when the pellet is sup�
plied to the slag (a) and in the vicinity of the electrode (b).

Constants in the dependence of the pellet’s melting time on the heat�transfer coefficient, with pellet supply to the slag (A)
and to the metal in the vicinity of the electrode (B)

rpe

A B

a b a b

9 85.176 –0.8 23.097 –0.861
8 74.118 –0.801 19.999 –0.854
7 63.379 –0.801 16.977 –0.846
6 53.03 –0.804 14.047 –0.838
5 43.073 –0.809 11.174 –0.827

a = 10.53rpe – 9.951; b = 0.0021rpe – 0.8177                a = 2.98rpe – 3.8; b = –0.0084rpe – 0.7864
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coefficient, with the corresponding melt temperatures.
Each curve in Fig. 3 may be described by a power law

(39)

where a and b are constants, whose values are pre�
sented in the table. These constants depend linearly on
the pellet radius. Substituting the values of a and b into
Eq. (39), we obtain equations for the melting time of a
pellet in slag and in the vicinity of the electrode.

CONCLUSIONS

Our results provide a better understanding of the
heating and melting of the pellets, with allowance for
the radiant action of the electrical arc, the formation
of a solid crust, and the conditions of pellet delivery. A
mathematical model of melting when the pellet is sup�
plied in the vicinity of the electrode permits prediction
of the melting time.

Simulation indicates that the melting of pellets
close to the electrodes offers certain benefits. Thus,
the melting time is about a quarter of that for melting
within the slag; the crust thickness is less than a third
as much; and the period in which the crust exists is no
more than 20% of the melting time. With a large heat�
transfer coefficient, no crust is formed at all. When the
pellet is supplied to the slag, the crust formed extends
over 25% of its radius, while the period in which the
crust exists is 35% of the melting time.

If the pellet temperature is studied dynamically in
the course of heating and melting, we find that, when
the pellet melts within the slag, it is uniformly heated
at the end of crust formation. By contrast, for pellets
supplied through a tubular electrode, there is a tem�
perature gradient over its cross section.

We have obtained equations for the melting time of
a pellet in slag and in the vicinity of the electrode, with
the corresponding melt temperatures.
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