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Abstract—Quasi-likelihood and maximum likelihood algorithms of duration estimation for

ultra-wideband quasi-radio signal of arbitrary shape with unknown amplitude and initial phase,

influenced by additive Gaussian white noise, are synthesized. It was considered that conditions of

relatively narrow band of received signal are not satisfied and its duration can constitute only several

periods or a fraction of period of harmonic oscillation. It is shown that the structure of the algorithm for

duration estimation of ultra-wideband quasi-radio signal is significantly different from the structure of

duration estimation algorithm for narrowband radio signal. Relative bias and variance are determined as

the statistical characteristics of synthesized duration estimates. The influence of unknown amplitude and

initial phase on the accuracy of duration estimation is investigated. Quantitative limits for relation of

signal bandwidth to its center frequency are formulated, such that the classical solution of the problem of

duration estimation for narrowband radio signal possesses the required accuracy.
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Ultra-wideband (UWB) signals finds ever broader applications in many practical cases of modern

radioelectronics, which are evidenced by large number of publications, including considerable number of

monographs [1–6]. Implementation of UWB signal into telecommunication systems allows increasing the

information transfer rate due to large spectral width. Application of UWB signals in measurement systems,

radars and positioning devices unveils the possibilities of enhancement of measurement accuracy and

resolution.

The problems of processing of UWB signals with unknown time of arrival are studied in detail in modern

literature [1]. This is related to the necessity of signal delay measurement in radars and also to the active

utilization of temporal-impulse modulation in the UWB systems. At the same time, there are plenty of

applications that require processing of UWB signals with unknown duration. In this case duration can serve

both as an informative signal parameter and as a non-informative parameter, which is undefined at the

receiving side due to specifics of UWB signal propagation.

The meaning of UWB signals is wide and includes large number of various mathematical models [1–6].

Obtaining of constructive results from processing algorithms of UWB signals of any type poses significant

difficulties. Therefore among UWB signals we separate a sub-type of such signals that have structure similar

to narrowband signals, but the narrowband conditions are not satisfied. Such signals are termed as UWB

quasi-radio signals (QRS) [1]. This paper investigates algorithms for duration estimation of UWB QRS.

Such narrowing of the type of signals under consideration allows more in-depth and informative results of

synthesis and analysis of the duration estimation algorithms.

The problem of signal duration estimation in the noise background for different signal types has been

considered multiple times [7–13], but for UWB signals this problem remains mainly unsolved. Algorithms

for duration estimation of video impulses of rectangular [7], arbitrary shape [8] and signals of arbitrary shape

and unknown amplitude [9] have been investigated previously. It has been shown that accuracy of maximum

likelihood (ML) duration estimation asymptotically does not depend on signal shape in case of large signal

to noise ratio (SNR), but is determined only by the magnitude of back front of the signal. In addition,

synthesis and analysis of the duration estimation algorithms for narrowband radio impulse with an arbitrary

envelope shape having unknown initial phase [10] and simultaneously unknown amplitude and initial phase

[11] have been performed. The accuracy of ML estimation of radio signal duration is asymptotically defined
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by the magnitude of the envelope back front in the case of large SNR values. However the known results for

problems of duration estimation of narrowband radio signal cannot be applied to the UWB QRS. The

algorithms for duration estimation of UWB QRS are presented below.

Signal under consideration can be written in the form:

s t a af t I t t( , , , ) ( ) ( / )cos( )� � � � �� � , (1)
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0 0 1
is an indicator of unit duration, f t( ) is a continuous modulation function, a,� ,

� , � are amplitude, initial phase, frequency and duration respectively.

If the bandwidth 
�and frequency�of signal (1) satisfy the following condition:


� ��� , (2)

then signal (1) is considered as narrowband radio signal [12, 13]. If condition (2) is not satisfied than

equation (1) describes UWB QRS [14]. Quantities a,� ,�are the parameters of a harmonic oscillation used

for formation of the signal (1). Nevertheless, further in the text a, � ,�will be referred as amplitude, initial

phase and frequency of UWB QRS (1), according to [14]. Signal bandwidth 
�can be made approximately

equal to frequency � by appropriate selection of modulation function f t( ) [14]. In a similar manner,

variation of modulation function f t( ) can describe both UWB QRS with large relative bandwidth and a

narrowband radio signals that satisfy condition (2) by means of equation (1).

It should be noted that (1) applies also to special cases of signal models [7–11]. If in (1) we assume that

��0,� �0, f t( ) �1, than the model of quasi-determined rectangular video impulse as investigated in (7) is

obtained. For ��0, � �0 we get a video impulse of arbitrary shape f t( ) with known [8] or unknown [9]

amplitude. The model of narrowband radio signal studied in [10, 11] is also described by (1) if condition (2)

is satisfied. However, relative narrowband condition in the form of (2) is only of qualitative nature.

Synthesis and analysis results of processing algorithms of UWB QRS allow defining quantitative

characteristics of relative narrowband meaning. As such, model of UWB QRS in the form of (1) is a

generalization and development of signal models [7–11].

Assume that additive mix of signal (1) and Gaussian white noise n t( ) with spectral density N 0 is

observed during time interval t T� [ , ]0 :

� � �( ) ( , , , ) ( )t s t a n t� �0 0 0 , (3)

where � 0, a0,� 0 are the actual values of unknown parameters. We assume that signal duration can be any

value from the a priori interval � � [ , ]T T1 2 . Having an observed realization (3) it is necessary to form an

estimate of useful signal duration (1), assuming that unknown amplitude and initial phase are

non-informative parameters, which do not need an estimate.

Method of maximum likelihood (ML) [7, 12, 13] is used for the purpose of synthesis of estimation

algorithm. According to this method duration estimate coincides with the position of absolute maximum of

logarithm of likelihood relation functional (LRF). However, for unknown amplitude and initial phase, LRF

logarithm depends on three unknown parameters

L a
a

N
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20
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f t t t( )cos( )� �� d . (4)

Therefore, a priory parametric uncertainty takes place for amplitude and initial phase. Two ways of

overcoming this uncertainty is considered according to [11]: application of quasi-likelihood (QL) estimate

algorithm, where certain expected values of a
*

and �
*

are used in (4) instead of unknown amplitude and

initial phase respectively; and application of ML algorithm, where unknown amplitude and initial phase in

(4) are replaced by their ML estimates.

Firstly, QL algorithm for duration estimation is considered. Receiver forms logarithm of LRF (4) for

expected values of amplitude and initial phase and all possible duration values in the interval � � [ , ]T T1 2 :
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� �q qL�argsup ( ),

L L aq( ) ( , , )
* *

� � �� (5)

and defines QL duration estimate as a position of absolute maximum of deciding statistics (5). Expressions

(4), (5) determine the structure of receiving device. Fig. 1 shows the block diagram of QL duration

measurement, where “I” is integrator device operating in the interval [ , ]0 � , � � [ , ]0 2T , “M” is a finder of

absolute maximum position of input signal at the time interval [ , ]T T1 2 .

The analysis of the QL algorithm for duration estimation is given below. For this the logarithm of LRF

(5) is rewritten in the following form:
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According to (6) the random process Lq( )� is Gaussian. Therefore, it suffices to determine mathematical

expectation and correlation function to fully statistically describe such process. By means of averaging,

mathematical expectation can be found:

�S L a a Qq q( ) ( ) (min( , )) cos( )
* *

� � � � � �� � � � � �0 0 0
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Fig. 1.
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as well as correlation function:

K L L L Lq q q q q( , ) [ ( ) ( ) ][ ( ) ( ) ]� � � � � �1 2 1 1 2 2� � � � � � � � �
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[ (min( , )) (min( , ))cos( ) (min(

2

1 2 1 2 2� � � � � �1 2 2, ))sin( )]
*

� � . (8)

Further we assume that the output SNR relation of the received signal is sufficiently high. As known from

[7, 12, 13], if SNR is increased, the QL duration estimation (5) converges to the position of mathematical

expectation maximum:

� �s qS�argsup ( ).

If the maximum position � s of mathematical expectation S q( )� coincides with the actual value of

duration � �s � 0, than QL estimate (5) is consistent [12]. Formulation of consistency conditions in a general

form poses difficulty. However, in a particular case of f t( ) �1it can be easily shown that QL estimate (5) is

consistent if the following two conditions are satisfied:
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The combinations of expected and actual values of amplitude and initial phase are limited to only those

which have the position of mathematical expectation maximum (7) coinciding with actual value of unknown

duration, that is � �s � 0 and QL estimate (5) is consistent. The deciding statistics (6) in the vicinity of actual

duration value � 0 is investigated below. Asymptotical expressions for mathematical expectation can be

obtained by decomposing (7), (8) into Taylor series in � in the vicinity of � 0:

S q( ) ( )
, ,

, ,
� � � �

� � �

� � �
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�

� 	




�

�

0

1 0

2 0

(9)

and similarly for correlation function:

K q( , ) min( , )� �  � � � � �1 2 2 1 0 2 02� � � � , (10)

where
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LRF logarithm (6) is approximated by Gaussian random process with mathematical expectation (9) and

correlation function (10) in all a priory interval of possible duration values. Using expressions (9), (10) and

Doob theorem [16] it is possible to show that deciding statistics (6) is asymptotically a Gaussian Markov

process with the following coefficients of drift and diffusion [16]:
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Probability density of maximum position (5) of random process Lq( )� is determined below. According to

notations [7, 15]
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—two-dimensional distribution function of maximum of random process Lq( )� . Then the probability

density of random quantity � q (5) is governed by [7, 15]:
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Consequently, function (11) has to be found for the calculation of probability density (12).

For this additional random process is introduced
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which, according to (9), (10), is a Gaussian Markov process with drift and diffusion coefficients as follows:
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Using Z( )� , expression (11) can rewritten as:

F u v T P Z T T2 1 20( , , ) { ( ) , [ , ]}� 	 �� � . (14)
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Functions (11), (14) constitute the probability of random Markov process Z( )� not reaching the limits

x �0 and x � + in the interval � � [ , ]T T1 2 . The required probability (14) can be expressed using probability

densityW x( , )� of random process Z( )� instances, which did not reach the x �0, x � + limits [16]:

F u v T W x T x2 2

0

( , , ) ( , )�

+

�
d . (15)

FunctionW x( , )� is a solution of Fokker–Planck–Kolmogorov equation [16]
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for the initial condition of

W x W x T W u x T
T L( , ) ( , ) ( , )�

��

� � �

1
1 1

and the following boundary conditions:

W x W x( , ) ( , )� � � + �0 0� � ,

where W x TL ( , )1 and W x T( , )1 are probability density of random variables L Tq( )1 and Z T u L Tq( ) ( )1 1� � ,

respectively.

Applying method of reflections with sign change [7, 16] enables finding solution (16) with coefficients

(13) separately for intervals � �� [ , ]T1 0 and � �� ( , ]0 2T . Feeding these solutions into (15), then (15) into

(12), expressions for probability density of random variable (5) can be obtained:
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Asymptotical behavior of probability density (17) is analyzed below. For this purpose the following

random variable is considered instead of estimate � q:

3

� � � �

� � � �

q

q q

q q

d

d

�

� �

� 	




�

-

�
-

1

2

0 0

2

2

0 0

( ), ,

( ), ,

which has the probability function of the form:
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Note that quantities z1 and z2 are proportional to SNR at the output of the receiver

z a f T Ni
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0 2 0~ ( ) /� . For z i 5 +, i � 1, 2, second and third arguments of function (18) tend to infinity,

and the function itself take the form of [15]:
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/ d is a probability integral.

Using probability density (19) asymptotical expressions for bias and variance of QL estimate of duration

� q of UWB QRS can be obtained:
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 a a a�
*

/ 0, 

�
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*

0 are quantities that characterize deviations of expected amplitude and initial

phase of UWB QRS with respect to their actual values,

z a T Nr

2

0

2

2 0� / (23)

is SNR at the output of ML receiver for rectangular-shaped signal with amplitude a0 and duration T2,

6 �� /� 0 2/ ( ) is a quantity that characterize how narrowband UWB QRS is, which is equal to the number of

periods of harmonic oscillation in (1) that can be fitted in the time interval equal to signal duration � 0.

If amplitude and initial phase of UWB QRS are known a priory, then a a
*
� 0,� �

*
� 0, and QL duration

estimate (5) coincides with ML estimate:

� �qm L�argsup 0( ), L L a0 0 0( ) ( , , )� � �� . (24)

By substituting 
 a �1, 

�
�0 into (20)–(22) asymptotical expressions for bias and variance of ML

estimate of duration � qm (24) of UWB QRS can be obtained:

b qm( | )� � 0 0� , (25)
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Note that similar to [8], asymptotical variance value of duration estimate is not dependent on signal

shape, but is defined only by the magnitude of signal back front a f0 0 0 0( )cos( )� �� �� . Equations (25),

(26) can be derived directly from [8] by replacing signal shape f t( ) with f t t( )cos( )� �� 0 . If harmonic

filling of the impulse is absent (��0, � 0 0� ), then equation (26) coincides with the variance of duration

estimate of quasi-determined signal with shape f t( ) [8]:

V
T

z f
qm

r

0 0
2

2

4 4

0

13

2

( | )

( )

� �

�

� .

Duration estimation of UWB QRS with rectangular modulation function f t( ) �1is considered below as

an example. Fig. 2 shows dependences of normalized conditional variance v V Tqm� ( | ) /� � 0 2

2
of ML

duration estimate of UWB QRS with rectangular modulation function and of narrowband radio signal with

rectangular envelope on SNR z r (23) for initial phase � 0 0� and different values of parameter 6.

Dependences of normalized conditional variance for signal without harmonic filling (6 �0) and for

narrowband radio signal (6		1) [10] are marked by solid and dashed lines respectively. Dotted and

dashed-dotted lines denote dependences of normalized conditional variance of ML duration estimate of

UWB QRS for different parameters of 6 �0.6 and 6 �2.8, respectively, calculated using (26). Actual signal

duration value is chosen in the middle of a priory interval � 0 1 2 2� �( ) /T T .

As seen from Fig. 2, asymptotical variance values of ML duration estimate of UWB QRS are larger than

duration estimate variance of signal without harmonic filling for any SNR values. Indeed, if the harmonic

filling is present and simultaneously signal is not narrowband, it can lead only to decreasing of the jump

magnitude of its back front, and, accordingly, to rising of the estimate variance.

Consequently, utilization of UWB QRS with actual duration providing the largest magnitude of back

front, i.e. cos( )2 10/6 �� � 7 is viable in practical applications. This allows estimating of duration at

receiving side with minimal uncertainty.

The following penalty coefficient is introduced for comparison of duration estimation accuracy by QL

method (5) and by ML method (24):

8 � � � ��V Vq qm( | ) / ( | )0 0 .

This penalty characterizes the influence of a priory unknown amplitude and initial phase on the accuracy

of duration estimate.

Fig. 3 depicts the dependence of penalty 8 in accuracy of QL duration estimate of UWB QRS with

rectangular modulation function on the deviations of amplitude
 a for 6 �1and different deviations of initial

phase. Solid curve correspond to

�
�0, dashed is for


�
/� 7 / 8and dashed-dotted represent


�
/� 7 / 6.

Fig. 4 depicts the dependence of penalty 8 in accuracy of QL duration estimate of UWB QRS with

rectangular modulation function on the deviations of initial phase 

�

for 6 �1 and different deviations of

amplitude. Solid curve corresponds to 
 a �1, dashed is for 
 a � 0.7 (expected amplitude is lower than its

actual value), dashed-dotted line is for 
 a � 1.2 (expected amplitude is larger than its actual value). For

calsulation of curves in Figs. 3, 4 it was assumed that initial phase of received signal� 0 0� and z r �5, and

the actual value of signal duration is � 0 1 2� �( ) /T T 2.
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As seen from Fig. 2, asymptotical variance values of ML duration estimate of UWB QRS are larger than

duration estimate variance of signal without harmonic filling for any SNR values, but can appear both lower

and higher than duration estimate variance of narrowband radio signal, depending on the magnitude of

parameter 6. Figs. 3, 4 show evidence that a priory unknown amplitude or phase of the signal can result in

considerable degradation of duration estimation accuracy.

To improve the accuracy of duration estimation, ML algorithm based on a search of position of LRF

logarithm absolute maximum can be applied:

� �m L�arg ( )sup ,

L L a L a

a a

( ) ( , , ) ( , )

,

� � � �

�

� �sup sup ,

L a L a( , ) ( , , )� � �

�

� sup , (27)

Here, instead of unknown amplitude and initial phase in (4) their respective ML estimates am and � m are

used. This is equivalent to maximizing LRF logarithm (4) by unknown parameters a and� . By performing

analytical maximization of LRF logarithm (4), the following expression can be obtained:

L
Q P X Q P Y X Yñ ñ

( )
( ( ) ( )) ( ) ( ( ) ( )) ( ) ( ) ( )

�

� � � � � � � �

�

� � � �
2 2

2 P

Q P P

s

c s

( )

( ( ) ( ) ( ))

�

� � �2
2 2 2

� �

. (28)

Equation (28) determines the structure of the receiving device. Receiver has to form a random process

(28) for all possible values of duration and identify the ML duration estimate as a position of its absolute

maximum. Fig. 5 presents the block schematics of ML duration measuring device, where “I” is integrator

over time interval [ , ]0 � , � � [ , ]0 2T , “M” is a finder of absolute maximum position of input signal at the time

interval [ , ]T T1 2 .

For narrowband radio signal in (29) it is possible to neglect the integrals of functions oscillating with

double frequency, as P Qs ( ) ( )� ��� , P Qc( ) ( )� ��� , and set Ps ( )� 90, Pc( )� 90. In the case the expression for

LRF is simplified and takes the form of:

L X Y Q( ) ( ( ) ( )) / ( ( ))� � � �� �
2 2

2 , (29)

which agrees with [10, 12]. It follows from comparison of equations (28) and (29) that the structure of ML

algorithm for duration estimation of UWB QRS appears to be significantly more complex than the structure

of ML algorithm for duration estimation of narrowband signal.

For the purpose of analysis of ML algorithm for duration estimation (27) we examine in more detail the

LRF logarithm (4). It represents a random field, that is differentiable by a and� , and non-differentiable by

variable�. Consequently, amplitude and initial phase are regular parameters of the signal (1), and duration is

a disruptive parameter [7]. Therefore, regularity conditions are partially violated.
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Fig. 5.
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According to [17], the accuracy of ML estimate of disruptive parameter (duration) asymptotically (as

SNR increases) is not dependent on the presence of arbitrary number of unknown regular parameters

(amplitude and initial phase). This means that drift and variance of ML duration estimate (27)

asymptotically, as SNR increases, coincide with drift (25) and variance (26) of ML duration estimation of

UWB QRS with a priory known amplitude and initial phase.

Consequently, in case of a priory known amplitude and initial phase the accuracy of ML duration

estimate of UWB QRS coincides with accuracy of duration estimate of quasi-determined signal considering

its harmonic filling [8]. To overcome possible a priory unknown amplitude and initial phase of UWB QRS it

is feasible to use a fairly easy-to-implement QL estimation algorithm (5). However the difference of

expected values of amplitude and initial phase from their actual values can result in a considerable reduction

of duration estimation accuracy. Overcoming a priory unknown amplitude and initial phase without

accuracy loss (for high SNR) is achievable by application of more complex ML estimation algorithm (27).

As a result, new structure of ML algorithm for duration estimation of UWB QRS, which substantially

differs from the known structure of ML algorithm for duration estimation of narrowband radio signal, is

found. Formulae for statistical characteristics of duration estimate are derived. Duration estimation variance

of UWB QRS, in contrast to variance of duration estimate of narrowband radio signal, depends on the initial

phase of the carrier � 0 and on the magnitude of parameter � representing how relatively narrowband the

signal is. The structure of ML algorithm for duration estimation of UWB QRS appears to be considerably

more complex in case if condition of relatively narrowband signal is not satisfied.

Obtained results for specified signal type allow defining quantitative limits for the ratio of signal

bandwidth to its center frequency. These limits imply that classical solution of parameter estimation of

narrowband radio signal possesses the required accuracy. The results also allow defining the effect of a

priory unknown amplitude and initial phase of UWB QRS on its duration estimation accuracy. In addition

obtained results enable us to justify the selection of duration estimation algorithm depending on available a

priory information and requirements for estimation accuracy and the level of its technical implementation

complexity.
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