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Abstract—Conditions are considered under which studentization does not change the limiting
distribution of the normalized intermediate order statistics. A similar problem is considered by
Berman as applied to a limiting distribution of extreme order statistics.
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INTRODUCTION

Let independent and identically distributed random variables X1, ...,Xn have a common distribution

function (DF) F (x) = P{X � x} and distribution density f(x) = F ′(x). We denote by X
(n)
k the

kth order statistic in variational series X
(n)
1 � ... � X

(n)
n constructed using the variables X1, ...,Xn,

X̄ =
n∑

i=1
Xi/n, and S2 =

n∑

i=1
(Xi − X̄)2/n. For some cn > 0 and dn. Below, we study the asymptotic

distribution (as n → ∞) of the quantity

((X
(n)
k − X̄)/S − dn)/cn, (1)

where

k = k(n) → ∞, λk,n = k/n → 0, n → ∞. (2)

In [1], a similar problem was considered as applied to a limiting distribution of extremal order
statistics.

1. MAIN RESULT

Theorem. Let

EX1 = 0, EX2
1 = 1, 0 < EX4

1 < ∞. (3)

If, for some cn > 0 and dn, the quantity

(X
(n)
k − dn)/cn (4)

has a limiting DF H(x) as n → ∞ and the limit relation

dn/(cn
√
n) → 0 (5)

holds, quantity (1) has the same limiting DF H(x).
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Proof. We write (1) in the form
(
X

(n)
k

S
− dn

)
1

cn
− X̄

cnS
.

It follows from conditions (3) that, as n → ∞,

S
P−→ 1,

1

S
=

1

1− (1− S)
= 1 + (1− S) + op(1− S),

expression (1) is equivalent to the expression

X
(n)
k − dn

cn
+

X
(n)
k

cn
(1− S)(1 + op(1)) −

X̄

cnS
. (6)

Let us show that quantity (6) has the same limit as quantity (4). It follows from conditions (3) that
quantities

√
nX̄ and

√
n(1− S) as n → ∞ are asymptotically normal.

We consider the expression

X
(n)
k

cn
√
n
=

X
(n)
k − dn

cn
√
n

+
dn

cn
√
n
. (7)

Since both terms on the right-hand side of relation (7) converge in probability to zero as n → ∞ by the
hypotheses of the theorem, we have

X
(n)
k

cn
√
n

P−→ 0. (8)

It thus follows that the second term in expression (6) converges to zero in probability as n → ∞. Let us
show that as n → ∞,

1/(cn
√
n) → 0. (9)

Let us consider two cases.
1. Dstribution F is unbound from the left; i.e., F (x) > 0 for all x. As n → ∞, we then have

X
(n)
k

P−→ −∞, and condition (8) implies condition (9).

2. There exists a finite number x0, such that dn → x0 and X
(n)
k

P−→ x0 as n → ∞, and the condition
EX1 = 0 implies that x0 < 0. Again, condition (9) follows from condition (8); consequently, as n → ∞,
the third term in expression (6) converges in probability to zero. The theorem is proved.

2. APPLICATIONS

Suppose that condition (2) holds. A necessary and sufficient condition for asymptotic normality as

n → ∞ of statistics Tn = (X
(n)
k − dn)/cn for some cn > 0 and dn is that the following relation is satisfied

for any x [2, 3]:

lim
n→∞

(F (cnx+ dn)− λk,n)
√
k/λk,n = x. (10)

For absolutely continuous distributions, quantities cn and dn are determined using relations

F (dn) = λk,n, cn =
√
k/(nf(dn)).

In [4, 5], it was shown that under condition (2) and as n → ∞, probable limiting distributions of statistics
Tn are normal and lognormal distributions. The joint asymptotic distribution of intermediate order
statistics was studied in [6, 7].

We assume below that zF = inf{x : F (x) > 0}, k = [nα], 0 < α < 1, and [x] denotes the integral
part of number x, and we consider typical classes of distributions widely used in statistical applications.

Class B1 :

F (x) ∼ a|x|γ exp(−b|x|Δ), f(x) ∼ abΔ|x|γ+Δ−1exp(−b|x|Δ) for x → −∞, a, b,Δ > 0,
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dn = −
(
(1− α) ln n

b

)1/Δ(

1 +
γ ln lnn+ ln c

Δ2(1− α) ln n

)

, c =

(
1− α

b

)γ

aΔ,

cn =

(
(1− α) ln n

b

)(1−Δ)/Δ 1

Δbnα/2
.

Class B2 :

F (x) ∼ a|x|−Δ, f(x) ∼ aΔ|x|−Δ−1 for x → −∞, a,Δ > 0,

dn = −a1/Δn(1−α)/Δ, cn = a1/Δ/(Δn−(1−α)/Δ+α/2).

Class B3 :

F (x) ∼ a(x− zF )
Δ, f(x) ∼ aΔ(x− zF )

Δ−1 for x → zF , −∞ < zF < ∞, a,Δ > 0,

dn = zF + (an1−α)−1/Δ, cn = 1/(Δa1/Δn(1−α)/Δ+α/2).

It is easy to show that relation (10) holds for all three classes B1, B2, and B3, and the limiting
distribution of the statistics Tn as n → ∞ is the standard normal distribution. For classes B1 and
B2, condition (5) is satisfied,while for class B3 condition (5) is satisfied under the constraint Δ > 2.
Conditions (3) require additional constraints on the parameters for all three classes. For class B3, it
follows from (3) that zF < 0.

Examples of the distributions from class B1 that satisfy the hypotheses of the theorem are the
standard normal distribution and the Laplace distribution with density f(x) = exp(−

√
2|x|)/

√
2,

|x| < ∞.

3. EXAMPLE OF THE DISTRUBUTION FROM CLASS B2 SATISFYING
THE HYPOTHESES OF THE THEOREM

Let us consider a distribution with density f(x) = b1/(x
6 + b62),|x| < ∞. Positive numbers b1 and b2

are determined later by using condition (3). We have

F (x) ∼ b1
5|x|5 , f(x) ∼ b1

x6
as x → −∞,

1 = b1

∞∫

−∞

u2du

u6 + b62
=

b1
3b32

∞∫

−∞

dt

t2 + 1
=

b1π

3b32
;

hence, b32 = b1π/3. Further,

1 = b1

∞∫

−∞

du

u6 + (b1π/3)2
= b1(b1π/3)

−5/3

∞∫

−∞

dt

t6 + 1
.

Since
∞∫

0

dt

t6 + 1
=

π

3
(see [8, p. 165 of Russian translation]),

it follows that b1 = 6
√
2/π and b62 = 8. We have

dn = −
(
b1
5

)1/5

n(1−α)/5, cn =

(
b1
5

)1/5 1

5
n(1−α)/5−α/2,

dn
cn
√
n
= −5n−(1−α)/2 → 0 as n → ∞.

The conditions of the theorem are met.
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4. AN EXAMPLE OF THE DISTRUBUTION FROM CLASS B3 SATISFYING
THE HYPOTHESES OF THE THEOREM

Let F (x) = a(x− zF )
Δ, f(x) = Δa(x− zF )

Δ−1, x ∈ (zF , b), and a,Δ > 0. In light of condition
F (b) = 1 and relations (3), we obtain

zF = −
√

Δ(Δ+ 2), b =
√

Δ(Δ+ 2), a = ΔΔ/2/((Δ + 2)Δ/2(Δ + 1)Δ).

Under constraint Δ > 2, the conditions of the theorem hold.

5. EXAMPLE OF A DISTRUBUTION FROM CLASS B3 NOT SATISFYING
THE HYPOTHESES OF THE THEOREM

Let F (x) = 1− exp(−(x+ 1)), f(x) = exp(−(x+ 1)), x > −1. We assume that conditions (3)
holds,

cn =
1

n1−α/2
, dn = −1 +

1

n1−α
,

dn
cn
√
n
∼ −n(1−α)/2 → −∞,

and condition (5) is not satisfied. We have

(X
(n)
[nα] − dn)/cn

d−→ N (0, 1) as n → ∞,

but since X
(n)
[nα]

P−→ −1,
√
nX̄ and

√
n(1− S) are asymptotically normal,

1

cn
√
n
→ ∞ as n → ∞,

the second and third terms in representation (6) grow infinitely in absolute magnitude.
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