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Abstract—The problem of constructing an estimate of a signal function from noisy observations,
assuming that this function is uniformly Lipschitz regular, is considered. The thresholding of
empirical wavelet coefficients is used to reduce the noise. As a rule, it is assumed that the noise
distribution is Gaussian and the optimal parameters of thresholding are known for various classes of
signal functions. In this paper a model of additive noise whose distribution belongs to a fairly wide
class, is considered. The mean-square risk estimate of thresholding is analyzed. It is shown that
under certain conditions, this estimate is strongly consistent and asymptotically normal.
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1. INTRODUCTION

Many algorithms of signal and image processing are based on possibility of a sparse representation
of the useful signal function in a certain basis. For a fairly wide class of functions, such sparseness is
ensured by using wavelet bases [1]. This enables us to effectively separate noise from the useful signal
and remove it using simple thresholding procedures [2–5]. A classical observation model assumes the
presence of white Gaussian noise. The properties of estimates obtained by thresholding have been well
studied, and we know the order of the mean-square risk of such procedures is found to be close to
optimal [1]. Some results also testify to the asymptotic behavior of a mean-square estimate constructed
from noisy observations of a signal function [6]. The strong consistency and the asymptotic normality of
this estimate were demonstrated in [7, 8].

A wider class of possible noise distributions, especially ones with heavier tails than a Gaussian
distribution, was considered in [9]. The parameters of so-called universal thresholding were calculated
for this class, and it was shown the order of the mean-square risk was close to minimal with an
accuracy up to the logarithm of the number of observations in a certain power, which depends on the
distribution parameters. In this work, we prove the strong inconsistency and asymptotic normality of the
mean-square risk estimate of universal thresholding in a model with a non-Gaussian noise distribution,
assuming the signal function belongs to the Lipschitz class with a certain index.

2. THRESHOLDING IN A DATA MODEL WITH ADDITIVE NOISE

Let signal function f be defined on a certain interval [a, b] and uniformly Lipschitz regular with an
exponent γ > 0. In practice, f is given in discrete samples. We assume that the number of these samples
is 2J for a certain J > 0. After the discrete wavelet transform of the signal, set of wavelet coefficients
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{μj,k}j=0,...,J−1,k=0,...,2j−1 is obtained, for which index j is called the scale, and index k is called the shift.
When meeting certain conditions on the wavelet function [1], coefficients μj,k obey the inequality

|μj,k| � Cf2
J/2

2j(γ+1/2)
. (1)

Since there is usually noise in actual observations, empirical wavelet coefficients take the form

Yj,k = μj,k +Wj,k, j = 0, . . . , J − 1, k = 0, . . . , 2j − 1,

where μj,k are the discrete wavelet coefficients of a pure signal, and Wj,k represent the noise coefficients,
for which it is assumed that they are independent and have a distribution with symmetric differentiable
density h(x). In this work, it is assumed that sup

x∈R
|h′(x)| < A with a certain constant A > 0, and that

h(x) � xαe−θxβ
as x → ∞, α ∈ R, θ > 0, β > 0.

We denote a variance of Wj,k by σ2. The class of such distributions is fairly wide. Distributions from this
class can have lighter and heavier tails than the Gaussian distribution.

One popular way of removing noise is thresholding of the empirical wavelet coefficients. This involves
setting to zero the coefficients whose absolute values do not exceed a given threshold. Estimate Ŷj,k is
calculated using threshold function ρT (Yj,k) with threshold T . Most common are the function of hard

thresholding ρ
(h)
T (x) = x1(|x| > T ) and soft thresholding ρ

(s)
T (x) = sign(x)(|x| − T )+. We define the

mean-square risk of the estimate obtained by thresholding as

R(f, T ) =

J−1∑

j=0

2f−1∑

k=0

E(Ŷj,k − μj,k)
2. (2)

The way of choosing the threshold is one of the main problems when thresholding. So-called universal

threshold TU =
(
θ−1 ln 2J

)1/β is considered in this work. In a certain sense, this threshold is maximal
among reasonable thresholds, and the mean-square risk at this threshold is close to the minimum one
with an accuracy up to the logarithmic factor of the number of observations in a power that depends on
the distribution parameters [9].

3. MEAN-SQUARE RISK ESTIMATE

Unknown values of pure coefficients μj,k are presented in expression (2), so we cannot calculate risk
value R(f, T ) in practice. However, it can be estimated directly from the observed data. If |Yj,k| > T in
the term, the contribution of this term into risk is σ2, in the case of hard and σ2 + T 2, in the case of soft
thresholding, and if |Xi| � T , the contribution is μ2

j,k in both cases. Since EY 2
j,k = σ2 + μ2

j,k, the value
of μ2

j,k must be estimated using difference Y 2
j,k − σ2. As an estimate of the mean-square risk, we can use

the quantity

R̂(f, T ) =

J−1∑

j=0

2f−1∑

k=0

F [Yj,k, T ], (3)

where F [Yj,k, T ] = (Y 2
j,k − σ2)1(|Yj,k| � T ) + σ21(|Yj,k| > T ) in the case of hard thresholding and

F [Yj,k, T ] = (Y 2
j,k − σ2)1(|Yj,k| � T ) + (σ2 + T 2)1(|Yj,k| > T ) in the case of soft thresholding.

Risk estimate (3) enables us to obtain a representation of the error with which a signal function is
estimated using only the observed data. If distribution Wj,k is Gaussian, in the case of soft thresholding
R̂(f, T ) is an unbiased estimate of R(f, T ). Under certain additional conditions, it is also strongly
consistent and asymptotically normal [7, 8]. Similar properties for the more general noise model
considered in this work will be proved.
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Theorem 1. Let signal function f be defined on interval [a, b] and uniformly Lipschitz regular
with an exponent γ > 1/2. Then with hard and soft thresholdings

P

(
R̂(f, TU )−R(f, TU)√

ϑ22J
< x

)
→ Φ(x) as x → ∞, (4)

where ϑ2 is the variance of W 2
j,k, and Φ(x) is the distribution function of the standard normal law.

Proof. Let us prove the theorem statement for hard thresholding. (The proof is similar for soft
thresholding.) We have

R̂(f, TU )−R(f, TU) = R̂(f, TU )−ER̂(f, TU ) +ER̂(f, TU )−R(f, TU ).

We estimate quantity ER̂(f, TU )−R(f, TU ). We consider the part of this sum (denoted by S1) at which
terms the inequality |μj,k| < cTU may not be fulfilled when c is a positive constant that will be chosen
later on. Summation over j in S1 is performed up to j1 ≈ J/(2γ + 1)− log2(cTU )/(2γ + 1) + log2Cf in
virtue of the inequality (1). In addition, |EF [Yj,k, T ]−E(Ŷj,k − μj,k)

2| � CsT
2
U is fulfilled for a certain

constant Cs > 0 (See [9]). There is thus a constant C1 > 0 that

|S1| � C1T
2
U2

J
2γ+1 .

We now consider the remainder of the sum where |μj,k| < cTU . We denote it by S2. For terms of this
sum, we find

EF [Yj,k, T ]−E(Ŷj,k − μj,k)
2 = 2E1(|Yj,k| > T )[σ2 + μj,kYj,k − Y 2

j,k]. (5)

Taking into account the form of (5) and repeating the arguments of [9], we obtain the estimate

|EF [Yj,k, T ]−E(Ŷj,k − μj,k)
2| � C2T

3+α−β
U 2−J(1−c)β ,

where C2 is a certain positive constant. Therefore,

|S2| � C2T
3+α−β
U 2J(1−(1−c)β ).

Choosing 0 < c < 1− ( 2γ
2γ+1 )

1/β , we find here exists such a constant C > 0 that

|ER̂(f, TU )−R(f, TU )| � CT 2
U2

J
2γ+1 .

Consequently,

ER̂(f, TU )−R(f, TU )√
ϑ22J

→ 0 as J → ∞. (6)

We now consider difference R̂(f, TU )−ER̂(f, TU ). Let p be such that (2γ + 1)−1 < p < 1/2. We
write

R̂(f, TU )−ER̂(f, TU ) =

[pJ ]∑

j=0

2f−1∑

k=0

(F [Yj,k, TU ]−EF [Yj,k, TU ])

+

J−1∑

j=[pJ ]+1

2f−1∑

k=0

(F [Yj,k, TU ]−EF [Yj,k, TU ]). (7)

Since

|F [Yj,k, TU ]−EF [Yj,k, TU ]| � CFT
2
U a. e., (8)

where CF is a certain positive constant, then
∑[pJ ]

j=0

∑2j−1
k=0 (F [Yj,k, TU ]−EF [Yj,k, TU ])√

ϑ22J
→ 0 a. e. as J → ∞.
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By virtue of (1), μjk → 0 as J → ∞ for all terms in the second sum of (7).
Repeating arguments from [7], it can be shown that

lim
J→∞

D
∑J−1

j=[pJ ]+1

∑2j−1
k=0 (F [Yj,k, TU ]−EF [Yj,k, TU ])√

ϑ22J
= 1.

Finally, the Lindeberg condition is fulfilled: for any ε > 0 as J → ∞

1

ϑ22J

J−1∑

j=[pJ ]+1

2j−1∑

k=0

E
[(
F [Yj,k, TU ]−EF [Yj,k, TU ]

)2
1
(
|F [Yj,k, TU ]

−EF [Yj,k, TU ]| > εϑ22J
)]

→ 0, (9)

since starting from a certain J , all indicators in (9) vanish. Hence, statement (4) holds true. The theorem
is proved.

We now prove the strong consistency of estimate (3).
Теорема 2. Let f ∈ L2(R). Then with hard and soft thresholdings for any λ > 1/2

R̂(f, TU )−R(f, TU )

2λJ
→ 0 a. e. as J → ∞. (10)

Proof. Using the Hoeffding inequality in light of (8) and the form of TU , we find that for any δ > 0
there is such a constant Cδ > 0 that

pJ = P

(
|R̂(f, TU )−ER̂(f, TU )|

2λJ
> δ

)
� exp

{
−Cδ

22λJ−J

J4/β

}
.

Hence,
∑∞

J=1 pJ < ∞. By virtue of the Borel–Cantelli lemma and (6), (10) is fulfilled. The theorem is
proved.
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