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Abstract—Lower and upper estimates are obtained for deviations of the limit of a selected mean from
estimated mathematical expectations when rounded data are processed. Different cases of error dis-
tribution are considered: normal, Simpson (triangle), and Laplace (double exponential)distributions.
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1. INTRODUCTION

Interest in the problem of processing rounded data [1–4] has recently grown for several reasons,
including the rapid growth of computer technologies that normally produce large volumes of data. As
was shown in [5], the measuring error can be used in the statistical processing of rounded data to
reduce the effect of the rounding error. In many cases, it is worth artificially increasing the measuring
error in order to improve the precision of the final results. In this work, we obtain the upper and lower
boundaries of precision for estimating the mathematical expectation of an observable random quantity
if the distribution of the measuring error satisfies one of three types of distribution, with distribution
density f(x) and characteristic function ϕ(t):

1) a normal distribution with f(x) =
1√
2πσ

e−
1

2σ2 (x−μ)2 and ϕ(t) = eiμt−
σ2t2

2 ;

2) a Laplace distribution with f(x) =
1√
2σ

e−
√
2
σ |x−μ| and ϕ(t) =

2eiμt

σ2t2 + 2
;

3) a Simpson distribution with f(x) =
1√
6σ

− 1

6σ2
|x− μ| and ϕ(t) =

2 sin2
(√

3
2σt

)

3σ2t2
eiμt.

In all three cases, μ is the mathematical expectation and σ2 is the dispersion.

Below, we assume (without loss of generality) that the discretization step is 1. We introduce
the following notation: The integral and fractional part of real number x is denoted by [x] and {x},
respectively. We denote the rounded value by x∗ up to the closest integer. Thus, x∗ = [x] if {x} < 1/2,
and x∗ = [x] + 1 if {x} � 1/2. Note that x∗ = [x+ 1/2]. The almost certain limit of a sequence of
random quantities X1,X2, . . . is denoted by lim

n→∞
(a. c.)Xn.

To find the upper and lower estimates, we use the following:
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Lemma. Let Y be an absolutely continuous random quantity with distribution density f(y)
and characteristic function ϕ(t). If ϕ(t) is absolutely integrable, we then have the equality

E {Y } =

1∫

0

y

∞∑
n=−∞

f(y + n)dy =
1

2
−

∞∑
n=1

Imϕ(2πn)

πn
.

Proof. Using the Poisson summation formula (see, e.g., [6])
∞∑

n=−∞
f(y + n) =

∞∑
n=−∞

ϕ(2πn)e−iy2πn,

we obtain the required equality

E {Y } =
∞∑

n=−∞
ϕ(2πn)

1∫

0

ye−iy2πndy =
1

2
−

∑
n �=0

ϕ(2πn)
i

2πn
=

1

2
−

∞∑
n=1

Imϕ(2πn)

πn
.

2. UPPER ESTIMATES

Let X1,X2, . . . be a sequence of independent equally distributed random quantities with unknown
mathematical expectation μ, and ε1, ε2, . . . be a sequence with one of the distributions described
above with mathematical expectation 0 and dispersion σ2. Consider the sequence of rounded data
(X1 + ε1)

∗, (X1 + ε2)
∗, . . . . We write

Δ(μ, σ) =

∣∣∣∣∣ limn→∞
(a. c.)

1

n

n∑
i=1

(Xi + εi)
∗ − μ

∣∣∣∣∣ .

Theorem 1. For any μ, depending on the distribution of εn, n = 1, 2, . . . , one of the following
inequalities holds:

1) Δ(μ, σ) <
1

π

(
1 +

1

4π2σ2

)
e−2π2σ2

with the normal distribution;

2) Δ(μ, σ) <
1

π (2π2σ2 + 1)
+

1

4π3σ2
with the Laplace distribution;

3) Δ(μ, σ) �
∣∣sin (√6πσ

)∣∣
36πσ2

with the Simpson distribution.

Proof. Let ψ(t) and ϕ(t) be the characteristic functions of random quantities X1,X2, . . . and
ε1, ε2, . . . , respectively. Since

Δ(μ, σ) =

∣∣∣∣E
[
Xi + εi +

1

2

]
− μ

∣∣∣∣ =
∣∣∣∣
1

2
−E

{
Xi + εi +

1

2

}∣∣∣∣ ,

according to the Lemma we have

Δ(μ, σ) =

∞∑
n=1

Im
(
ϕ(2πn)ψ(2πn)eiπn

)
πn

=

∞∑
n=1

(−1)n Im (ψ(2πn))ϕ(2πn)

πn
.

This implies

Δ(μ, σ) �
∞∑
n=1

ϕ(2πn)

πn
.

Let us consider each type of distribution of the random quantities εn, n = 1, 2, . . . , separately.
1. For the normal distribution, we obtain:

∞∑
n=1

ϕ(2πn)

πn
=

∞∑
n=1

e−2π2σ2n2

πn
<

1

π

⎛
⎝e−2π2σ2

+

∞∫

1

e−2π2σ2x2

x
dx

⎞
⎠ <

4π2σ2 + 1

4π3σ2
e−2π2σ2

.
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2. For the Laplace distribution, we obtain:

∞∑
n=1

ϕ(2πn)

πn
=

∞∑
n=1

1

πn

1

2π2σ2n2 + 1
<

1

π (2π2σ2 + 1)
+

1

π

∞∫

1

dx

x (2π2σ2x2 + 1)

=
1

π (2π2σ2 + 1)
+

1

2π
ln

(
1 +

1

2π2σ2

)
<

1

π (2π2σ2 + 1)
+

1

4π3σ2
.

3. For the Simpson distribution, we obtain:
∞∑
n=1

ϕ(2πn)

πn
=

∞∑
n=1

sin2
(√

6πσn
)

6π3σ2n3
.

Since | sin(nα)| � n sinα, we have

Δ(μ, σ) �
∣∣sin (√6πσ

)∣∣
6π3σ2

∞∑
n=1

1

n2
=

∣∣sin (√6πσ
)∣∣

36πσ2
.

The theorem is proved.

3. LOWER ESTIMATES
When finding upper estimates for the deviation of the limit of a selected average from the estimated

mathematical expectation in the previous section, we considered only the additional random measuring
error given by the sequence ε1, ε2, . . . . To find nontrivial lower estimates, we must consider all random
measuring errors. We therefore do not not distinguish initial random errors X1,X2, . . . and additional
errors ε1, ε2, . . . in observations.

Let X1,X2, . . . be a sequence of independent equally distributed random quantities having one of
the three distributions described above, with mathematical expectation μ and dispersion σ2. We then
consider the sequence of rounded values X∗

1 ,X
∗
1 , . . . . We are interested in the lower boundaries for the

deviation of limit of selected average of rounded observations
1

n

n∑
i=1

X∗
i from μ for the worst value of μ

and the dependence of these boundaries on σ. We write

Δ(σ) = sup
μ

Δ(μ, σ) = sup
μ

∣∣∣∣∣ limn→∞
(a. c.)

1

n

n∑
i=1

X∗
i − μ

∣∣∣∣∣ .

Theorem 2. Depending on the distribution of X1,X2, . . . , one of the following inequalities
holds:

1) Δ(σ) >
e−2π2σ2

π
− e−18π2σ2

3π

(
1 +

1

6π2σ2

)
in the case of the normal distribution;

2) Δ(σ) >
1

π (2π2σ2 + 1)
− 1

16π3σ2
in the case of the Laplace distribution;

3) Δ(σ) �
∣∣sin (√6πσ

)∣∣
6π3σ2

(∣∣sin (√6πσ
)∣∣− 0.4

)
in teh case of the Simpson distribution.

Proof. Note that according to the strengthened law of large numbers, we have

Δ(σ) = sup
μ

|EX∗
i − μ| = sup

μ

∣∣∣∣E
[
Xi +

1

2

]
− μ

∣∣∣∣ =

= sup
μ

∣∣∣∣
1

2
−E

{
Xi +

1

2

}∣∣∣∣ = sup
μ

∣∣∣∣
1

2
−E {Xi}

∣∣∣∣ .

According to the Lemma, we have

E{Xi} =
1

2
−

∞∑
k=1

Imϕ(2πk)

πk
.
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Let us consider each type of distribution X1,X2, . . . separately.
1. With a normal distribution, we obtain

E{Xi} =
1

2
− 1

π

∞∑
k=1

1

k
e−2π2σ2k2 sin(μ2πk)

and therefore

sup
μ

∣∣∣∣
1

2
−E{Xi}

∣∣∣∣ =
1

π
sup
μ

∞∑
k=1

1

k
e−2π2σ2k2 sin(μ2πk).

We obviously have the inequality

sup
μ

∞∑
k=1

1

k
e−2π2σ2k2 sin(μ2πk) � e−2π2σ2 −

∞∑
k=3

1

k
e−2π2σ2k2 .

Let us find an upper estimate for the sum in the right hand side of the latter inequality. We have

∞∑
k=3

1

k
e−2π2σ2k2 <

1

3
e−18π2σ2

+

∞∫

3

1

x
e−2π2σ2x2

dx.

In addition, we obtain
∞∫

3

1

x
e−2π2σ2x2

dx <
1

3

∞∫

3

e−6π2σ2xdx =
1

18π2σ2
e−18π2σ2

.

This implies
∞∑
k=3

1

k
e−2π2σ2k2 <

1

3
e−18π2σ2

(
1 +

1

6π2σ2

)

and therefore

sup
μ

∣∣∣∣
1

2
−E{Xi}

∣∣∣∣ >
1

π

(
e−2π2σ2 − 1

3
e−18π2σ2

(
1 +

1

6π2σ2

))
.

2. With the Laplace distribution, we obtain

sup
μ

∣∣∣∣
1

2
−E{Xi}

∣∣∣∣ =
1

π
sup
μ

∞∑
k=1

1

k

sin(μ2πk)

1 + 2π2σ2k2
.

We therefore have

sup
μ

∣∣∣∣
1

2
−E{Xi}

∣∣∣∣ >
1

π

1

1 + 2π2σ2
− 1

π

∞∑
k=3

1

k

1

1 + 2π2σ2k2

>
1

π

1

1 + 2π2σ2
−

∞∫

2

dx

x(1 + 2π2σ2x2)
>

1

π

1

1 + 2π2σ2
− 1

16π3σ2
.

3. With the Simpson distribution, we obtain

sup
μ

∣∣∣∣
1

2
−E{Xi}

∣∣∣∣ �
sin2(

√
6σπ)

6π3σ2
−

∞∑
k=3

sin2(
√
6σπk)

6π3σ2k3

� sin2(
√
6σπ)

6π3σ2
−

∣∣sin (√6πσ
)∣∣

6π3σ2

(
π2

6
− 5

4

)
�

∣∣sin (√6πσ
)∣∣

6π3σ2

(∣∣∣sin
(√

6πσ
)∣∣∣− 0.4

)
.

The theorem is proved.

MOSCOW UNIVERSITY COMPUTATIONAL MATHEMATICS AND CYBERNETICS Vol. 41 No. 2 2017



80 V. G. USHAKOV, N. G. USHAKOV

Comparison of upper and lower estimates shows that they have equal orders of decline as σ → ∞.
Estimates become useless for very small values of σ,: lower estimates become negative, and upper
estimates become very large. However, this reflects the problem: If the measuring error is tens of times
smaller than the rounding error (the discretization step), it has virtually no effect on the precision of the
final result.
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