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Abstract–-The Edgeworth–Pareto principle is extended to the class of multicriteria choice problems, in
which the preference relation of the decision maker is described by a type-2 fuzzy binary relation. The nec-
essary condition for its fulfillment is the adoption of two assumptions: the Pareto axiom and axiom of exclu-
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INTRODUCTION

Since the time of the economists Francis Edge-
worth (1845–1926) and Wilfredo Pareto (1848–1923)
it has been believed that the “best” solutions (variants)
of multicriteria problems should be sought within the
Pareto set, whose elements (Pareto-optimal solutions)
are characterized by the fact that it is impossible to
improve on any of the available criteria without dete-
riorating the values for at least one other criterion. In
other words, until the beginning of the 21st century,
researchers, without proper justification, adhered to
the point of view that the “best” solutions to multicri-
teria problems are contained in the Pareto set. This
principle of choice [1] was called the “naive” Edge-
worth–Pareto principle by analogy with “naive” set
theory, which does not rely on axioms; therefore, the
boundaries of the reasonable application of this theory
are not quite clear. Over time, such methods for solv-
ing multicriteria problems began to appear, which
allowed the existence of the “best” solutions (so-
called satisfactory solutions) outside the Pareto set. In
this regard, an urgent need arose for a logical substan-
tiation of the Edgeworth–Pareto principle; in [1] an
axiomatic version of this principle for numerical crite-
ria was proposed, which required expanding the set of
basic objects of a multicriteria problem (a vector crite-
rion and the set on which it is specified) by adding the
binary preference relation of the decision maker (DM)
and the introduction of the concept of a set of selected
variants (vectors), which is the solution to this prob-
lem. It turned out that the application of the Edge-
worth–Pareto principle will be justified if the decision
maker accepts certain axioms of “reasonable” choice.

If at least one of these axioms is rejected the “best”
solution does not have to be Pareto optimal.

Subsequently, the class of multicriteria choice
problems for which the application of the Edgeworth–
Pareto principle is justified gradually expanded. It
became clear that the multicriteria choice problem,
which includes as the main objects a vector numerical
criterion, a set of feasible variants, and an asymmetric
binary preference relation of the decision maker, has
features similar to the so-called general choice prob-
lems [2]. The Edgeworth–Pareto principle was sub-
stantiated in terms of the choice function [3, 4]. The
universality of the Edgeworth–Pareto principle also
manifested itself in the fact that it turned out to be pos-
sible to use it not only in problems of multicriteria
choice with numerical criteria taking values in quanti-
tative scales of ratios, differences, and intervals, but
also when the values of the criteria are measured only in
ordinal scales or when there are no criteria at all, and
instead of them only a set of some “individual” binary
preferences is given. In this regard, the term “generalized
Edgeworth–Pareto principle” appeared [4].

In [5], the development of this principle was traced
from the moment of its substantiation in 2002 up to
2006. It was found that the requirement of transitivity
of the preference relation, which guides the decision
maker in the selection process, is not mandatory when
using the Edgeworth–Pareto principle. Thus, the
number of axioms that justify the application of this
principle was reduced to two. This is the Pareto axiom,
according to which “the larger the values of the criteria
are, the better it is for the decision maker,” as well as
the axiom of excluding dominated variants, which
states that the variant that is less preferable in compar-
299



300 BASKOV, NOGHIN
ison with some other should not become “best” within
the original set variants. Both of these axioms are quite
capable of being called “reasonable,” since they not
only do not contradict, but fully correspond to the
common sense of the “reasonable” behavior of the
decision maker in the process of choice. This can
explain the fact that until now the overwhelming num-
ber of researchers in solving multicriteria problems are
guided by this principle.

Further, the class of multicriteria choice problems
for which the Edgeworth–Pareto principle is valid was
expanded by including fuzzy multicriteria choice
problems containing a set of irreflexive, transitive and
weakly connected binary relations on the correspond-
ing sets (instead of criteria), a fuzzy set of initial vari-
ants, and the fuzzy (type-1) asymmetric binary prefer-
ence relation of the decision maker [6–8].

In 2015, the development of the Edgeworth–
Pareto principle was continued [9] in the direction of
its extension to the so-called k-effective points, which
at k = 1 coincide with effective (i.e., Pareto-optimal)
points, and at the other extreme value k = m, with
weakly effective (Slater optimal) points. Thus, in
essence, a number of principles were formulated and
axiomatically substantiated, from the Edgeworth–
Pareto principle to the Slater principle. In addition, in
[9], these principles were extended to the class of
problems with a fuzzy type-1 decision maker’s prefer-
ence relation, when the values of the fuzzy relation
membership function are ordinary (crisp) numbers.

It is known [10] that along with the usual fuzzy sets,
which are called type-1 fuzzy sets, there are type-2
fuzzy sets; the values of their membership functions
are fuzzy values, i.e., numerical functions specified on
the same segment [0,1] as their values. According to
the statement from [11], type-2 fuzzy sets allow the use
of linguistic estimates of the values of the membership
function, thereby contributing to the successful pre-
sentation of fuzzy knowledge. Fuzzy relations of type-
2 were also introduced; with their use it is possible to
successfully simulate vague ideas about the unknown
preference relation of the decision maker. A type-2
fuzzy relation is considered as one of the ways to
increase the fuzziness of a binary relation, and,
according to [12], “increased fuzziness in the descrip-
tion means an increased ability to cope with inaccurate
information in a logically correct form.”

The aim of this work is to formulate and substanti-
ate the Edgeworth–Pareto principle for multicriteria
choice problems with a type-2 fuzzy preference rela-
tion. In the case where a type-2 fuzzy relation degen-
erates into a type-1 fuzzy relation, the results obtained
here coincide with those established earlier. For con-
venience of perceiving these results and fixing the ter-
minology, the main material of this article is preceded
by brief information from the theory of fuzzy sets.
A fuzzy set of nondominated variants is then intro-
duced, with its use the Edgeworth–Pareto principle is
established.
SCIENTIFIC AND TECHNICAL IN
1. NECESSARY INFORMATION FROM THE 
THEORY OF FUZZY SETS

Let  be some nonempty (universal) set. Fuzzy set
(type-1)  in  is given by the membership function

. For each element  the number
 is interpreted as the degree of member-

ship of an element  to the set . Often, when it is said
that a certain fuzzy set is given, only its membership
function is mentioned, since this set is uniquely deter-
mined by it. Two fuzzy sets are equal to each other if
they have the same membership functions. A support
of a fuzzy set consists of those elements of the set 
whose membership degree is positive. A fuzzy set is
called normal if the exact upper bound of its member-
ship function is equal to one, otherwise it is called sub-
normal. By fuzzy value we usually understand a fuzzy
set defined on a set (subset) of real numbers  ,
and a fuzzy number is a normal convex fuzzy value. A
convex fuzzy value, by definition, has a convex mem-
bership function , i.e., 

 for all  and all 
such that 

The inclusion relation, as well as the operations of
union, intersection, and complement of type-1 fuzzy
sets  and  in terms of their membership functions
are defined as follows:

Triangular, interval, and trapezoidal fuzzy num-
bers have become widespread; their names are associ-
ated with the shape of the graph of their membership
function. Thus, a triangular fuzzy number has a mem-
bership function

and is characterized by three parameters: interval 
represents the support of this number and  is respon-
sible for the maximum point of the membership func-
tion. Therefore, triangular fuzzy numbers are often
denoted by a triple of numbers  An interval
fuzzy number is defined by a pair of numbers :

A trapezoidal fuzzy number is a generalization of
triangular and interval fuzzy numbers:
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Such a fuzzy value is given by four numbers
 All of the listed fuzzy numbers are normal

and convex.

If  and  are fuzzy quantities with membership
functions  and , respectively, then their minimum
and maximum in terms of membership functions are
determined by the formulas:

for all , where  and  are symbols of the
minimum and maximum operations, respectively.

For the convenience of further presentation, we
introduce the fuzzy quantity  on the set ,
which is equivalent to the ordinary number ,
whose membership function is determined by the
equality:

Obviously, if , then 

, i.e., the minimum and maximum
operations on fuzzy numbers are consistent with simi-
lar operations on ordinary numbers.

The fuzzy binary relation (type-1) is defined on set
 using the membership function .

The number  is interpreted as the degree
of confidence that the element  is in this relation with
the element .

A fuzzy relation with membership function  is
called:

• irreflexive, if  for all ;
• transitive, if  for

all ;
• asymmetrical, if    for all

.
Any irreflexive and transitive fuzzy binary relation

is asymmetric. Additional information from the theory
of fuzzy sets and relations (type-1) can be found, for
example, in [13, 14].

A fuzzy set of the second order (type-2 fuzzy set) X is
determined by the membership function  of two
variables  and  taking values in the
unit segment . This function for each element 
and every number , which is called the pri-

mary degree of membership, gives the so-called sec-
ondary degree of membership, i.e., the number

 expresses the degree of confidence
that the degree of membership of the element x to the
set X is equal to . The nonempty set  can be both
finite and infinite, in particular, it is possible that

. Because  at every fixed  specifies
some numerical function of  with values in a unit
segment , a type-2 fuzzy set can be considered as
a mapping of each element  to some function
(fuzzy number) defined on  with values in a unit seg-
ment. Recall that a type-1 fuzzy set is characterized by
mapping of each element x∈ A to some number from
a unit segment that expresses the degree of member-
ship of this element to the given fuzzy set. Thus, in the
transition from a type-1 fuzzy set to a type-2 fuzzy set,
it becomes possible to describe the degree of member-
ship of each element more f lexibly not with a number,
but by using a function. This provides ample opportu-
nity to take the nature and degree of fuzziness into
account when operating with fuzzy data in solving a
variety of applied problems.

Let there be two type-2 fuzzy sets X and Y in A with
membership functions  and , respectively.
The operations of union and intersection of these sets,
taking the principle of expansion of L. Zadeh into
account, are defined in terms of membership func-
tions as follows [15]:

for all  and , where the symbols  and 
denote the so-called join and meet operations, applied
respectively, to the membership functions of type-2
fuzzy sets.
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Further, the inclusion relation for these sets is
introduced by the formula:

(1)

In the event that for any  membership func-
tions  and  are normal and convex on a
convex (or finite) set , on the right side of the above
equivalence, the conjunctive conjunction “and” can
be replaced by “or.”

Following [15], for the membership functions of
type-2 fuzzy sets, we indicate the method of their par-
tial ordering based on the membership functions:

(2)

From (1) and (2) it follows that:

We note that in the case where the membership func-
tions  and  are normal and convex, one of the two
equalities involved in the right-hand side of the last
equivalence can be omitted.

The membership function  of a complement
 of a type-2 fuzzy set  with membership function
 is defined as follows: 

 for all , .
The operations of union, intersection, and comple-

ment introduced by the above method over type-2
fuzzy sets possess the properties of commutativity,
associativity, idempotency, de Morgan’s rules and the
law of involution, but do not obey the laws of distribu-
tivity, identity, and complementarity [15].

A type-2 fuzzy relation on the set  is determined by
the membership function  with three arguments

 and . For each fixed pair of ele-
ments  and a number  the value

 indicates the secondary degree of
confidence with which elements  and  are in this
relation with a primary degree of certainty .
Thus, using a type-2 fuzzy relation, each pair of ele-
ments  is associated with a certain fuzzy value,
which, in particular, may turn out to be a fuzzy num-
ber if it possesses the properties of normality and con-
vexity.

The type-2 fuzzy relation on the set  with mem-
bership function  is called [16]:

• irreflexive, if  for all ,
;

• asymmetrical if for all ,  inequality
 entails equality ;
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• transitive, if  is
fulfilled for all , .

Note that in the definition of a type-2 fuzzy transi-
tive relation, the minimum operation  has the same
meaning as before, namely:

As indicated above, in the case of type-1 fuzzy rela-
tions, the simultaneous fulfillment of the properties of
irreflexivity and transitivity leads to the asymmetricity
of this relation. A similar situation takes place for type-
2 fuzzy relations.

Lemma 1. Any irreflexive and transitive binary type-
2 fuzzy relation for which the values of the membership
function are normal fuzzy values is asymmetric.

The proof of this and all subsequent statements is
given in the Appendix.

2. A FUZZY SET
OF NONDOMINATED VARIANTS

We introduce a crisp set  of feasible variants of an
arbitrary nature. From this set, the decision maker
should make the best choice. We will assume that on
the set  some asymmetric binary preference relation
is given , which should help this decision maker to
make the best choice. When this relation is crisp, the
record  means that variant  is preferred over

 (  dominates ), i.e., when choosing from these
two variants, the decision maker will choose the first
one and will not choose the second variant. In this
case, deleting all dominated variants from  leads to
the set of nondominated variants . If a  is
a type-1 fuzzy relation, then the dominance of one
variant  over another  is carried out with a degree of
confidence , and the degree of non-
dominance of  can be expressed as a number

. The set defined by the formula

is called a fuzzy set of nondominated variants [13]; it
plays an important role in the issues of multi-criteria
choice in the presence of fuzzy information.

In choice problems, the decision-maker’s prefer-
ence relation, as a rule, is not completely known.
Moreover, information about it is often fragmentary
and vague (fuzzy). If the preference relation is a type-
1 fuzzy relation, then the fuzziness is expressed by
assigning to each pair of possible variants a certain
number within the segment . Moreover, the larger
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this number is, the higher the degree of confidence in
the dominance of one variant over the other is. How-
ever, the ambiguity of the decision maker’s preference
relationship may turn out to be so significant that one
number for its expression will not be enough. Similar
situations arise when, instead of a number, the degree
of dominance is itself a fuzzy value of some type, in
particular, a linguistic variable. In this case, it is neces-
sary to consider the decision-maker’s preference rela-
tion as a type-2 fuzzy relation with all the ensuing con-
sequences.

Let  be a membership function of an asym-
metric type-2 fuzzy preference relation of a decision
maker. The number  expresses a
secondary degree of confidence that the variant 
dominates  with primary confidence . Then, the
number  is an indicator of a sec-
ondary degree of confidence that  is not dominated
by variant . Thus, we arrive at the following formula
for determining the membership function 
of the fuzzy set of nondominated variants  in
the case of a type-2 fuzzy preference relation  with
the membership function :

Here, under the sign of the exact lower bound a mem-
bership function  of some fuzzy value
occurs rather than a number; therefore, the concept of
the exact lower bound should be clarified. In this case,
one should take the fact that the set  can contain not
only a finite, but also an infinite number of elements
into account.

It is proposed to use the following definition of an
exact lower bound for an arbitrary family

 of fuzzy values defined on
the set , namely:

It is easy to understand that in this way the introduced
operation of the exact lower bound in the case of a
finite number of fuzzy quantities coincides with the
operation of the minimum  over the fuzzy values
described above.

Similarly, one can introduce the definition of an
exact upper bound of arbitrary family 

 of fuzzy values by equality:
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The following properties (de Morgan rules) of the
introduced operations are valid:

(3)

The proof of equalities (3) is given in the Appendix.
Assumption. We will assume that all fuzzy values that

are the values of the membership functions of fuzzy sets
and relations that participate further are normal and
convex, and in the case of an infinite set , are also upper
semicontinuous.

Recall that the fuzzy quantity  is called upper
semicontinuous if for any number  the set of
the form  is closed.

Taking the indicated properties of the operations of
the exact lower and exact upper bounds in the new
notation into account, the membership function of a
type-2 fuzzy set of nondominated variants can be rep-
resented as follows:

In the case where the fuzzy preference relation is a
type-1 fuzzy relation, the fuzzy set of nondominated
variants introduced above coincides with that intro-
duced in [13].

2. FUZZY CHOICE AXIOMS. THE 
EDGEWORTH–PARETO PRINCIPLE

Recall that the symbol  denotes an abstract set of
feasible variants. We will assume that this set is crisp.
In the general case, the best choice is a whole set,
which will be denoted  below and will be called
the set of selected variants . The solution to
the choice problem consists in finding this set. On the
set  an asymmetrical binary preference relation 
of the DM with a membership function  is defined.
It may turn out to be crisp or type-1 as well as type-2
fuzzy relation; information about it is fragmentary and
vague. It is obvious that the type of the fuzzy set of
selected variants coincides with the type of the prefer-
ence relation, so that in the case of a type-1 (type-2)
fuzzy relation, the set  is also a fuzzy set of the
same type.

We will be interested in the case of a type-2 fuzzy
preference relation, since simpler cases were men-
tioned in the Introduction. Let us denote by 
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304 BASKOV, NOGHIN
the membership function of an unknown type-2 fuzzy
set of selected variants, and the membership function
of a type-2 fuzzy preference relation, which is adhered
by the decision maker in the selection process, as

. We recall that the function  is not
known in advance; it is to be found in the choice pro-
cess. Let us formulate the following assumption.

Axiom 1 (exclusion of dominated variants). For all
 and any  the inclusion is fulfilled:

(4)

This inclusion means that the degree of membership
to the unknown set of selected variants “does not
exceed” the degree of membership with which the
variant  is not dominated by variant . In the case of
a crisp preference relation, Axiom 1 takes the form of
the axiom of exclusion of dominated variants, accord-
ing to which a variant not chosen in a pair should not
be selected from the entire set  [17].

Let us add to our model one more main object (i.e.,
in addition to  and ), the numerical vector crite-
rion defined on the set .
For this case, the Pareto axiom is formulated as fol-
lows.

Pareto axiom. For any  from inequalities
 it follows

that .
This axiom fixes the decision maker’s interest in

maximizing each of the given numerical criteria.
We introduce the Pareto set

and after  we denote its membership func-

tion, which takes the value  at Pareto optimal points

 and  at all other points of the set .
The Edgeworth–Pareto principle. Under the

assumption that Axiom 1 and the Pareto Axiom hold for
any type-2 fuzzy set of selected variants , the inclu-
sion

(5)

holds, which in terms of membership functions takes
the form

(6)

for all .
Comment. In the case of a finite set  the condition

of upper semicontinuity of the membership function
in the formulation of the Edgeworth–Pareto princi-
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ple, which is present in it due to the earlier assump-
tion, is redundant.

The principle formulated here in the particular case
of crisp preference relations coincides with the one
that was established earlier. The examples given in [17]
show that if at least one of the two axioms involved in
it is removed from the conditions guaranteeing the ful-
fillment of the Edgeworth–Pareto principle, then we
can give examples showing that in this case this princi-
ple may be violated. It is easy to understand that due to
the indicated direct connection between the fuzzy and
crisp cases, the same examples retain their meaning in
the case of the type-2 fuzzy preference relation con-
sidered here.

The Pareto axiom in the formulation of the Edge-
worth–Pareto principle can be replaced by a weaker
condition, but this requires the transitivity of the pref-
erence relation.

Let us move on to a corresponding consideration.

For this purpose, on the set  we intro-
duce the binary preference relation induced by the
relation  according to the following rule:

 for all 
, where  and  is the set

of equivalence classes generated by the equivalence
relation  on the set .

Obviously, the relationships  and  have the
same properties, in particular, both are asymmetric.

Axiom 2 (existence of a transitive extension). There

is a transitive relation  in space that is an extension
of the relationship  from  to the specified space.

We note that Axiom 2, due to the direct connection
of relations  and  requires, in particular, the tran-
sitivity of the preference relation . The second
requirement in this axiom is the existence of the rela-
tion , the narrowing of which to  coincides with .
Let us denote the membership function of the relation

 through .
Axiom 3 (consistency of criteria with a preference

relation). Each criterion , , is consistent
with the preference relation  in the sense that for all
pairs of vectors  and

 where , the equal-

ity  is true for all .
It is easy to understand that the Pareto Axiom leads

to the fulfillment of Axiom 3, but not vice versa. The
opposite will take place if we restrict ourselves to the
class of transitive relations. Namely, the following
result is true.
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Lemma 2. The fulfillment of Axioms 2 and 3 implies
the validity of the Pareto Axiom.

The following statement follows directly from the
Edgeworth–Pareto principle and Lemma 2.

Corollary 1 (The Edgeworth–Pareto principle for
transitive relations). If Axioms 1–3 are fulfilled then for
any type-2 fuzzy set of selected variants  with mem-
bership function  the following relations hold:
(5) and (6).

As established above for a type-2 fuzzy preference
relation and a crisp set  the Edgeworth–Pareto prin-
ciple can be adapted to justify it in the class of multi-
criteria choice problems with a type-2 fuzzy set of fea-
sible variants  in the set  with membership func-
tion . To do this, it is necessary to agree on what
is meant by the set of selected variants. By analogy
with the case of a type-1 fuzzy set of feasible variants
considered in [17], we will assume that the type-2
fuzzy set of selected variants  with membership
function  by definition is the intersection

 where  is a type-2 fuzzy set of
feasible variants with a membership function 
found under the assumption that the set of feasible
variants is crisp. Then, the main relations (5-˗6) of the
Edgeworth–Pareto principle take the form:

It should not be forgotten that all fuzzy values that par-
ticipate in the membership functions of fuzzy sets and
relations are assumed to be normal and convex, and, in
the case of an infinite set , also upper semicontinu-
ous.

CONCLUSIONS
The Edgeworth–Pareto principle, according to

which the “best” solutions to a multicriteria choice
problem must be Pareto-optimal, is extended to the
class of problems, when the decision maker’s prefer-
ence relation is a type-2 fuzzy binary relation. The
concept of a fuzzy set of nondominated variants for a
type-2 fuzzy relation is introduced. It has been estab-
lished that the application of this principle is correct if
the decision maker accepts two axioms of a “reason-
able” choice: exclusion and Pareto. In this case, the
transitivity of the preference relation is not assumed.
Rejection of at least one of the above axioms can lead
to the fact that the “best” choice may be outside the
Pareto set. It has been shown that the Edgeworth–
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Pareto principle remains valid under a certain weaken-
ing of the Pareto axiom; however, in this case, transi-
tivity of the preference relation is necessary. In addi-
tion, this principle is extended to the class of multicri-
teria choice problems with a type-2 fuzzy set of
feasible variants.

APPENDIX

Proof of Lemma 1. Let us denote by  the
membership function of a type-2 fuzzy binary relation
defined on the set . According to the condition for all

 the fuzzy value  given on , is
normal.

First, let us establish that for all  and 
from equality  it follows
that  or . If for all

 and   or for all
,  , then, due to the

normality of the participating membership functions,
the statement that is being proved is obvious. Other-
wise, there are elements  and numbers

 for which  and
. In this case, we have

which is incompatible with the initial condition
 for all .

Let us proceed directly to the proof of the lemma.
Let a type-2 fuzzy binary relation on the set  with
membership function  be irreflexive and transitive.
Due to the irreflexivity of this relationship, for any

 and  we have . On the
basis of transitivity for all  and  the rela-
tion 
using the normality of all fuzzy values that participate
in the last relation, we obtain 

. Therefore, based on what was
proved above, for any  and  the equality

 follows from the fulfillment of
.

The asymmetricity of the relationship  is estab-
lished.

Proof of equalities (3). Let us establish the validity
of the first of equalities (3) (the second is verified in a
similar way). We have:
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Proof of the Edgeworth–Pareto principle. Choosing an
arbitrary set , first we will prove the inclusion

. In accordance with Axiom 1, rela-
tion (4) holds. Applying the infimum operation  to
both sides of it, taking into account the de Morgan
rule and upper semicontinuity of the participating
fuzzy values, we obtain

i.e., inclusion .
Taking the transitivity of the relation  into

account it remains to verify the validity of the inclu-
sion . Recall that the sets in both
parts of this inclusion are type-2 fuzzy; therefore, to
verify it, one should establish, for example, the equal-
ity . The Pareto set is crisp,

so for all   or

. Consider the first case, i.e.,

. Here, , which means
that there is such a variant , that

. Hence, in
accordance with the Pareto axiom, we obtain

. Therefore 
and the equality 

 becomes apparent since  is the “small-
est” of all fuzzy numbers.

In the second case, i.e., when ,
equality  also holds

because  is the “largest” of all fuzzy numbers.
Proof of Lemma 2. Let us arbitrarily choose the

variants that satisfy the inequalities
. It is neces-

sary to show that . We denote
 and introduce vectors

 where  is a unit

vector of space  and . Obviously,

. Using the consistency and transitivity of

the relationship  on the whole space , we have

for all . Hence, , which
is equivalent to the required equation

, as .
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