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Abstract—This article considers the concept of a linear separation direct algorithm introduced by
V.A. Bondarenko in 1983. The concept of a direct algorithm is defined using the solution graph of a
combinatorial optimization problem. The vertices of this graph are all feasible solutions of the prob-
lem. Two solutions are called adjacent if there are input data for which these and only these solutions
are optimal. A key feature of direct algorithms is that their complexity is bounded from below by the
clique number of the solution graph. In 2015–2018, there were five articles published, the main results
of which are estimates of the clique numbers of polyhedron graphs associated with various combina-
torial optimization problems. The thesis that the class of direct algorithms is broad and includes many
classical combinatorial algorithms, including the branch-and-bound algorithm for the traveling sales-
man problem proposed by J.D.C. Little, K.G. Murty, D.W. Sweeney, and C. Karel in 1963, was the
main motivation for these articles. We show that this algorithm is not a direct algorithm. Earlier, in
2014, the author of this article showed that the Hungarian algorithm for the assignment problem is not
a direct algorithm. Therefore, the class of direct algorithms is not as broad as previously assumed.

Keywords: branch-and-bound method, traveling salesman problem, linear decision tree, clique num-
ber, direct algorithm
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INTRODUCTION

In 2015–2018, several articles [1–5] were published, the main results of which are estimates of clique
numbers of polyhedron graphs associated with various combinatorial optimization problems. The main
motivation for such estimates was the following thesis [5]: “It is known that this value characterizes the
time complexity in a broad class of algorithms based on linear comparisons.” Namely, we are talking about
the class of direct algorithms first introduced in [6]. As a proof of this thesis, works [2, 3] stated that this
class includes sorting algorithms, a greedy algorithm, dynamic programming, and the branch-and-bound
method1. The proofs that these algorithms (as well as the Edmonds’ algorithm for the matching problem)
are direct algorithms were first published in thesis [7] (see also [8]). In 2014, it was shown in [9] that the
Kuhn–Munkres algorithm for the assignment problem (and with it the Edmonds’ algorithm) does not belong
to this class. There we also described a method of modifying algorithms that is often used in practice, which
takes them out of the class of direct algorithms. Below, we will prove that the classical branch-and-bound algo-
rithm for the traveling salesman problem [10, 11] also does not belong to this class. It will thus be shown that
Theorem 2.6.3 from [7] (Theorem 3.6.6 from [8]) cannot be proved in the initial formulation. This leads to the
conclusion that the class of direct algorithms is not as broad as previously assumed.

The article is organized as follows. Section 1 presents a pseudocode of the classical branch-and-bound
algorithm for the traveling salesman problem. Section 2 introduces the basic notions of the concept of
direct algorithms and two key definitions: the direct algorithm and the “direct” algorithm. Section 3
shows that the classical branch-and-bound algorithm for the traveling salesman problem is not a direct
algorithm and Section 4 shows that it is not a “direct” algorithm.

1 But no source references with corresponding proofs were given.
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THE BRANCH-AND-BOUND ALGORITHM 817
1. BRANCH-AND-BOUND ALGORITHM FOR THE TRAVELING SALESMAN PROBLEM

Consider a complete orgraph  with a set of vertices  and arcs
. Each arc  is assigned a number , called an arc length. The length

of a subset  is the total length of its arcs: . The traveling salesman problem con-
sists in finding , which is a Hamiltonian circuit in  and has a minimal length of .

For ease of further discussion, let us put the numbers  in the matrix . We assign to the diag-
onal elements  the maximum possible lengths, , in order to exclude their effect on the operation
of the algorithm, and we assume that  for any number . We denote by  the set of
matrix row indices , and by  we denote the set of matrix column indices . At the beginning of
the algorithm operation, . We denote by  the submatrix of the matrix  that lies
at the intersection of rows  and columns .

The algorithm itself was described in detail in [11, Section 4.1.6] and [10]. We give only its pseudocode,
Algorithm 1. Separately, Algorithm 2 describes the process of reducing matrix rows and columns, and
Algorithm 3 describes the way of selecting such a zero element of a matrix that, when replaced by infinity,
maximizes the sum of matrix reductions.

Algorithm 1. Branch-and-bound method for the traveling salesman problem
Global: Hamiltonian circuit Hopt of minimal length; its length is lopt. Before

the algorithm was launched, lopt := ∞.
Input : distance matrix M; the set of arcs Arcs required to be included in the circuit;

the current sum of all reductions sum. At the very beginning of the algorithm operation, M ∶= C,
Arcs ∶= ∅, sum ∶= 0

1 Procedure BranchBound (M, Arcs, sum)

/* Reduce the matrix M

2 Reduction (M, sum)
3 if sum ≥ lopt then
4 terminate the current instance of the procedure

/* Choose the optimal zero element of the matrix M

5 (i, j) := ChooseArc (M)

/* Examine cases in which the circuit contains the arc (i, j)

6 if |I| = 3 then

/* Find a single Hamiltonian circuit

7 H := HamiltonCycle(Arcs  {(i, j)})

8 if len(H) < lopt then
9 Hopt := H

10 lopt := len(H)
11 else

/* Remove the ith row and jth column

12 Mnew := M(I(M) \ {i}, J(M) \ {j})

/* Find the forbidden arc

13 (l, k) := ForbiddenArc (Arcs, (i,j))
14 Mnew[l,k] := ∞
15 BranchBound (Mnew, Arcs  {(i, j)}, sum)

/* Examine cases in which the circuit does not have the arc (i, j)

16 M[i,j] := ∞
17 BranchBound (M, Arcs, sum)

18 Function HamiltonCycle (Arcs)
19 Find a Hamiltonian circuit which contains all arcs from Arcs.

= ( , )G V A = [ ] = {1,2, , }V n n…

{ }= ( , ) , ,A i j i j V i j∈ ≠ ( , )i j A∈ ijc ∈ Z

H A⊆
( , )

len( ) = iji j H
H c

∈
*H A⊆ G len( *)H

ijc = ( )ijC c
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=b∞ − ∞ b ∈ Z I( )M
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∪
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∪
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818 MAKSIMENKO
20 Function ForbiddenArc (Arcs, (i, j))

21
Find a pair of vertices l and k which are the end and the beginning of the largest (by inclusion)

path in Arcs containing (i, j).

Algorithm 2. Reducing the rows and columns of a matrix
Input : matrix M; the current sum of all reductions sum.
Output : reduced matrix M; modified sum.

1 Procedure Reduction (M, sum)

/* Reduce the rows of the matrix M

2 for i ∈ I(M) do
3 m := ∞

/* Find m = m(i) = minj ∈ J(M)M[i,j]

4 for i ∈ J(M) do

5 if m > M[i,j] then m := M[i,j]
6 sum := sum + m
7 for j ∈ J(M) do M[i,j] := M[i,j] − m

/* Reduce columns of the matrix M

8 for j ∈ J(M) do
9 m := ∞

10 for i ∈ I(M) do
11 if m > M[i,j] then m := M[i,j]
12 sum := sum + m
13 for i ∈ I(M) do M[i,j] := M[i,j] − m

Algorithm 3. Arc selection
Input : matrix M.
Output : the arc (i*, j*) whose lower Hamiltonian circuit length estimate is maximum when forbidden.

1 Function ChooseArc(M)
2 w := −1
3 for i ∈ I(M) do
4 for j ∈ J(M) do
5 if M[i,j] = 0 then
6 m := ∞

/* Find m = mintM[i,t]
7 for t ∈ J(M)\ {j} do

8 if m > M[i,t] then m := M[i,t]
9 k := ∞

/* Find k = mintM[t,j]
10 for t ∈ I(M)\ {i} do

11 if k > M[t,j] then k := M[t,j]
/* Compare m + k with the current record w

12 if m + k > w then
13 w := m + k
14 (i*, j*) := (i, j)

/*

/*

/*

/*

/*

/*
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THE BRANCH-AND-BOUND ALGORITHM 819
2. DIRECT ALGORITHMS
In presenting the basics of the theory of direct algorithms, we follow [7] (see also [8]).
For the purpose of unifying the description, the arc-length matrix  will hereafter be called an input

data vector2 or simply an input. The solution of the traveling salesman problem, i.e., the Hamiltonian cir-
cuit , will be represented as a 0/1-vector  with the same dimensionality as . The coordi-
nates of this vector , for , and  otherwise. We denote by  the set of all 0/1"-vectors
x corresponding to the Hamiltonian circuits in the orgraph  under consideration. Therefore, given a
fixed input , the traveling salesman problem is to find a solution  such that 

. Hereafter, we call such a solution  optimal with respect to input C. Following [7, Definition 1.1.2],
the set of all such optimization problems formed by a fixed set of feasible solutions  (in the case of the
traveling salesman problem,  is uniquely defined by the number of vertices of the orgraph ) and all pos-
sible input vectors  will be called a problem . Two feasible solutions  of the problem  are
called adjacent if the vector  is found such that they and only they are optimal with respect to . The
subset  is called a clique if any pair  is adjacent.

The convex hull  is called a polyhedron of the problem . Since  is a subset of the vertices of
the unit cube in the traveling salesman problem,  coincides with the set of vertices of the polyhedron

. In this terminology, two solutions  are adjacent if and only if the corresponding vertices
of the polyhedron  are adjacent [7]. It is known [12] that all vertices of the traveling salesman
polyhedron are pairwise adjacent for , where  is the number of vertices of the orgraph  in which
the optimal Hamiltonian circuit needs to be found.

Direct algorithms belong to the class of linear separation algorithms, which can be conveniently repre-
sented as linear decision trees.

Definition 1 ([7, Definition 1.3.1]). A linear decision tree of the problem  is an oriented tree
that has the following properties:

(a) Every node except one, called the root, has exactly one arc; there are no arcs entering the root.
(b) For every node, there are either two arcs coming out of it, or there are no such arcs at all; in the first

case, the node is called an inner node and in the second one, an outer node, or a leaf.

(c) Some vector  is associated with some inner nodes.
(d) Each leaf corresponds to an element from  (several leaves can correspond to the same element of

the set ).
(e) Each arc  corresponds to a number , either  or ; two arcs coming from the same node have

different values.
(f) For each circuit  connecting the root and the leaf (the notation of the circuit

lists vectors  corresponding to its nodes; the arc  exits a node , ), and for any input  from the
inequalities , , it follows that the solution  is optimal with respect to .

Therefore, within the theory of linear separation algorithms, attention is paid only to those operations
in which conditions  are tested, where  is the vector of input data. For example, in line 5 of
Algorithm 2, the inequality  is tested in the very first step of the loop; in the second step, the con-
dition  is tested, etc. In functions HamiltonCycle and ForbiddenArc of Algorithm 1, from
the point of view of linear separation algorithms, nothing interesting happens, because no comparisons
with elements of the input data vector are performed.

The operation of the linear separation algorithm for a fixed input data vector  is some circuit
 connecting the root  and some leaf  of the corresponding linear decision tree. The

leaf in our case is a Hamiltonian circuit (more precisely, its characteristic vector) which it is optimal with
respect to .

Let  be some internal node in the linear decision tree of the algorithm, and  be the set of all feasible
solutions (the set of labels of all leaves). Denote by , , the set of labels of all leaves of this tree
preceded by the node , and by  and  we denote subsets of the set  corresponding to two arcs

2 Elements of the matrix can always be written out in a row or a column.

C
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AUTOMATIC CONTROL AND COMPUTER SCIENCES  Vol. 55  No. 7  2021



820 MAKSIMENKO
exiting from . Obviously, . Denote by  the set of labels that are discarded in

the case of transition along the negative arc. By analogy, let us define the set of labels  that
are discarded when passing through a “positive” arc.

Definition 2 ([7, Definition 1.4.2]). A linear decision tree is called a direct tree if for any internal node
 and for any clique  the inequality

(1)

It follows directly from the definition that the height of a direct tree (i.e., the number of comparisons used
by the algorithm in the worst case) for the problem  cannot be less than , where  is the
clique number of the set  [7, Theorem 1.4.3].

If we want to prove that some algorithm is not a direct algorithm, it is sufficient to specify a clique 
consisting of four solutions and a node  such that .

For each , let us define the initial data cone

That is,  consists of all vectors  such that  is optimal with respect to .
Definition 3 ([7, Definition 1.4.4]). A linear decision tree is called a “direct” tree if every circuit

 connecting the root and the leaf satisfies the following conditions:
(*) For any  adjacent to , there is a number  such that the conditions  and

 are incompatible.
(**) For any , from the incompatibility of the conditions

for  adjacent to , and from the solidity of the cone

it follows that the branch starting at the node  with the arc  has at least one leaf labeled .
“Direct” trees are united with direct trees by the fact that their height is also bounded from below by

the quantity  [7, Theorem 1.4.5].
In order to prove that Algorithm 1 is not a “direct” algorithm, we restrict ourselves to testing condition (*)

of this definition. Namely, we specify a very particular input vector  that uniquely defines some circuit
. Next, we choose  adjacent to , for which conditions  and

 are compatible for any . Let us emphasize that we need to test the compatibility of condi-
tions  and  separately for each , regardless of the results of other compar-
isons. That is, for each , it is sufficient to specify  such that  and .

3. ALGORITHM 1 IS NOT “DIRECT”
Consider the traveling salesman problem in a complete orgraph on five vertices. The set of feasible

solutions  of such a problem consists of 24 0/1-vectors corresponding to the Hamiltonian circuits in that
orgraph. All 24 solutions are pairwise adjacent [12].

Assume that the elements of the arc length matrix  satisfy the following conditions:

(2)

At the very beginning of the operation of the algorithm under consideration, this matrix is reduced (Algo-
rithm 2). We limit our discussion to the row reduction stage. Successive comparisons result in selecting
the smallest element in the first row (in this case, ) and subtracting it from all its elements. Then the
minimum element in the second line is selected, which is , and the minimum element in the third line
is . Then the algorithm proceeds to test the following inequality

B =B B BX X X+ −∪ = \B B BR X X− + −

= \B B BR X X+ − +

B Y X⊆

{ }min , 1.B BR Y R Y+ −∩ ∩ ≤
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( )C K∈ y [ ]i k∈
, sgn > 0i iB C d ( )C K∈ y [ ]i k∈

[ ]i k∈ iC , sgn > 0i i iB C d ( )iC K∈ y

X

5 5C ×∈ Z

12 13 12 14 12 15

21 23 21 24 21 25

31 32 32 34 34 35

, , ,
, , ,

> , > , > .

c c c c c c
c c c c c c
c c c c c c

≤ ≤ ≤
≤ ≤ ≤

12c
21c

35c
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(3)

(the comparison  is used in the algorithm only for brevity and does not contain any information).
The corresponding node of the linear decision tree of the algorithm is denoted by . It is clear that the
algorithm enters this tree node if and only if conditions (2) are satisfied for the input vector .

Consider the characteristic vectors of the four Hamiltonian circuits:

It is easy to test that the input vectors

satisfy conditions (2), and for each  and for any  the inequality 
is satisfied. Hence, all four vectors are included in the set of labels  of all the leaves of the tree of the
algorithm preceded by the node .

Let us show that  and  are part of the set of labels  discarded if inequality (3) is satisfied, and 
and  are part of the set of labels  discarded if inequality (3) is not satisfied.

Assume that conditions (2) and inequality (3) are satisfied for the input matrix . Then  for

Similarly,  for

41 42>c c

41> c∞
B

C

0 0 1 0 0 0 0 1
0 0 0 1 0 1 0 0
1 0 0 0 1 0 0 0= , = ,
0 1 0 0 0 1 0 0
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   
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C C
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822 MAKSIMENKO
Therefore, .
Assume that conditions (2) are satisfied for , but inequality (3) is not satisfied. Then  for

and  for

Hence, .
Therefore, condition (1) for a given node  is not satisfied, and Algorithm 1 is not a direct algorithm.

4. ALGORITHM 1 IS NOT “DIRECT”
When analyzing Algorithm 1 as a linear decision tree, we only encounter inequalities of the following

kind:

(4)

where  is the input vector,

(5)

 is the all-ones vector. In other words, condition (5) means that the sets of unit coordinates for  and
 are equal and do not overlap. For each such inequality and for some feasible solution of

, we need to check that there exists  for which this inequality holds. This analysis
is greatly simplified if we use the following criterion.

Lemma 1. Let  be the characteristic vector of some Hamiltonian circuit in a complete orgraph
. If conditions (5) and  are satisfied, then inequality (4) and condition  are

compatible.
Proof. Let

It follows from condition  that . Assume

0 0 0 1
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0 0 1 0' = .
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0 0 1 0
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, BR+∈z w
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 

x
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and, after that,  for .

Then  and  (since  and
 satisfy condition (5)). Hence, inequality (4) for such  will be satisfied.

Let us now show that  for any .

Obviously, .

Let . Note that if , then , because any Hamiltonian circuit in an orgraph on
 vertices is uniquely defined by any of its  arcs. Hence,  for any .

In particular, the conditions of the lemma are satisfied if  has no more than two units.
Therefore, assume  and consider the following input vector (we substitute infinity with a space):

(6)

It is clear that the only optimal solution is the following vector

and its corresponding circuit . It is easy to test that the set of all feasible solutions
 consists of six pairwise adjacent vectors. Assume

Note that  is the second (after ) by optimality with respect to . This fact greatly simplifies further test-
ing of corresponding comparisons.

In general, the working scheme of the algorithm for a given input  is shown in Fig. 1.
First of all, let us consider which inequalities are tested at the first run of the BranchBound proce-

dure with input . When reducing the first row of the matrix  (row 5 of Algorithm 2), the inequalities
, , and  are tested (and satisfied). Further on, we will not consider inequalities

in which the sum (or difference) of elements of the initial matrix is compared to infinity, because they are
always satisfied and compatible with any feasible solution. Note that the listed inequalities satisfy the con-
ditions of Lemma 1, because . Hence, they are compatible with the condition .

When the first row is reduced, its cells , , contain differences , and the variable
sum takes the value of .

When the second row is reduced, the inequalities  and  are tested. According to
Lemma 1, they are consistent with the condition .

When the second row is reduced, in its cells , , there are differences , and the
variable sum takes the value .

When the last two rows are reduced, the situation is exactly the same. When the reduction of the rows
is finished
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824 MAKSIMENKO

Fig. 1. General scheme of Algorithm 1 for the input given by formula (6).
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3. BranchBound(C ", (2, 3), 0)

terminate the procedure

terminate the procedure
Next, when the first column is reduced, the inequalities  and  are tested.
We know that , , . Hence, the inequalities

 and  are tested. Each of them satisfies the conditions of Lemma 1.
When we reduce the remaining three columns, the situation repeats. The value of sum does not change

when the columns are reduced, because each column already contains zeros.
After that, the sum  lopt condition is tested in Algorithm 1. However, lopt . Therefore, the

algorithm proceeds to calculate the function ChooseArc.
The first zero element is . After that, the comparisons are performed  and

 in row 8 of Algorithm 3. In this case, after the previous reduction step, we have
 and . Obviously, the inequality  satisfies the

conditions of Lemma 1. In this step,  is assigned. Next, in line 11 of Algorithm 3, compari-
sons  and  are performed. In this step,  and

. The conditions of Lemma 1 are satisfied again. In this step,  is assigned.
Next, the comparison  or, what is the same,  is performed. Obvi-
ously, this inequality is compatible with the condition . The variable  is populated with the
value of the expression .

The second zero element is . By analogy, let us list only nontrivial comparisons. The inequality
 or  is obviously compatible with the condition . The

inequality  is also compatible. Next, in row 12 the inequality  is tested or, given
the previous steps,

Obviously, it satisfies the conditions of Lemma 1. After this step

13 12 14 12

21 23 24 23

31 34 32 34

42 41 43 41

0
0

.
0

0

C C C C
C C C C
C C C C

C C C C

− − 
 − −
 =

− − 
 − − 

M

[2,1] > [3,1]M M [3,1] > [4,1]M M

21 23[2,1] = C C−M 31 34[3,1] = C C−M 41 41[4,1] = = 0C C−M

21 23 31 34>C C C C− − 31 34 > 0C C−

≥ = ∞

[1,2]M > [1,3]∞ M
[1,3] > [1,4]M M

13 12[1,3] = C C−M 14 12[1,4] = C C−M 13 12 14 12>C C C C− −
14 12:m C C= −

> [3,2]∞ M [3,2] > [4,2]M M 32 34[3,2] = C C−M

42 41[4,2] = C C−M 42 41:k C C= −
> 1m k+ − 14 12 42 41 > 1C C C C− + − −

( )C K∈ y w
14 12 42 41C C C C− + −

[2,3]M
[2,1] [2,4]≤M M 21 23 24 23C C C C− ≤ − ( )C K∈ y

[1,3] [4,3]≤M M >m k w+

21 23 13 12 14 12 42 41> .C C C C C C C C− + − − + −
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The third zero element is . The inequality  or  is obviously

compatible with the condition . The inequality  is also compatible. The condition

 is as follows

and is also compatible with the condition .

The fourth zero element is . It is easy to test that  and  are com-

patible with the condition . The condition  is as follows

and is also compatible.

At this point, we are still in the first instance of the BranchBound procedure. After the implementa-

tion of the function ChooseArc described above, the arc  is selected (the sum  turned

out to be the largest for it), the second row and the third column are removed from the matrix , and the

arc  becomes forbidden. The following matrix is fed to the input of the second instance of the pro-
cedure BranchBound

(the empty row and the empty column are left for the ease of reading). It is clear that nothing new happens
when it is reduced, because each row and each column contains zeros. When the function ChooseArc is

called in line 12, the following comparisons  are carried out.

Obviously, this inequality is compatible with the condition . Next, the following inequality holds

which satisfies the conditions of Lemma 1. The following comparison

is also compatible with .

Thus, after calling the function  in the second instance of BranchBound, the arc  is

selected. A Hamiltonian circuit with the arcs  and  is uniquely defined. The following assign-
ment is performed

The algorithm then proceeds to consider cases in which the circuit contains the arc  but does not con-

tain . The third instance of BranchBound is started with the matrix

In the reduction, the two ones are replaced by zeros. No “discarding” comparisons are carried out. The

value of the variable sum is incremented by  and by . The current

instance of the procedure terminates on row 3 after testing the inequality sum  lopt:

Note that a valid solution  is completely discarded by the algorithm at this very step (taking into account

the previously tested inequality ). Nevertheless, this inequality satisfies the conditions of Lemma 1

and, hence, together with the condition .

21 23 13 12= .w C C C C− + −
[3,4]M [3,1] < [3,2]M M 31 34 32 34<C C C C− −

( )C K∈ y [1,4] < [2,4]M M
<m k w+

14 12 31 34 21 23 13 12<C C C C C C C C− + − − + −
( )C K∈ y

M[4,1] [4,2] < [4,3]M M [3,1] < [2,1]M M
( )C K∈ y <m k w+

31 34 42 41 21 23 13 12<C C C C C C C C− + − − + −

( , ) = (2,3)i j m k+
M

(3,2)

0 1

' :
1 0

0 1

C

 
 
 =
 
 
 

>m k w+

14 12 42 41 > 1.C C C C− + − −
( )C K∈ y

31 34 14 12 14 12 42 41,C C C C C C C C− + − ≤ − + −

31 34 42 41 14 12 42 41C C C C C C C C− + − ≤ − + −
( )C K∈ y

(1,2) (1,2)

(2,3) (1,2)

12 23 34 41: .C C C C= + + +lopt

(2,3)

(1,2)

1

'' : .
1 0

0 1

C

 
 
 =
 
 
 

14 12[1,4] = C C−M 42 41[4,2] = C C−M
≥

14 12 42 41( ) ( ) > 0.C C C C− + −
y

31 34>C C
( )C K∈ y
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826 MAKSIMENKO
Along with the third instance of the procedure BranchBound, the second instance of this procedure is also
terminated. The algorithm proceeds to execute the next to last row in the first instance. In this instance

In order to analyze cases, in which the circuit does not have the arc , we call a fourth instance of the
procedure with the following matrix

When reducing the second row, the comparison  is performed, and when reducing the

third column, . Obviously, neither of them discards the entire cone . The value is

increased by .

Finally, the comparison sum  lopt completes this fourth instance of the procedure and the entire
algorithm in general. This comparison is as follows

and is also compatible with the condition .

Thus, condition (*) from Definition 3 is not satisfied for this algorithm.
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Translated by O. Pismenov

12 23 34 41= .C C C C+ + +sum

(2,3)

0 2 1

2 2
''' : .

1 2 0

0 1 2

C

 
 
 =
 
 
 

[2,1] [2,4]≤M M
[1,3] [4,3]≤M M ( )K y

21 23 13 12( ) ( )C C C C− + −
≥

21 23 13 12( ) ( ) 0C C C C− + − ≥
( )C K∈ y
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