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Abstract—As shown by N. Sendrier in 2000, if a -linear code  with length , dimen-
sionality  and code distance  has a trivial group of automorphisms , it allows one to con-
struct a determined support splitting algorithm in order to find a permutation  for a code , being
permutation-equivalent to the code , such that . This algorithm can be used for attacking
the McEliece cryptosystem based on the code . This work aims the construction and analysis of the
support splitting algorithm for the code , induced by the code , . Since the group of

automorphisms PAut  is nontrivial even in the case of that trivial for the base code , it enables

one to assume a potentially high resistance of the McEliece cryptosystem on the code  to the

attack based on a carrier split. The support splitting algorithm is being constructed for the code 

and its efficiency is compared with the attack to a McEliece cryptosystem based on the code 
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1. INTRODUCTION
In the post-quantum era, the McEliece cryptosystems [1] are considered as possible alternatives to

asymmetric cryptosystems whose resistance is currently based on factorization complexity of large inte-
gers or discrete logarithmization in a finite group [2]. A prerequisite for constructing the McEliece cryp-
tosystems based on linear codes is the existence of effective (polynomial) decoding algorithms for these
codes. Meanwhile, this condition is not sufficient. Although the Reed–Solomon and Reed–Maller codes
possess fast decoding algorithms [3], the related McEliece cryptosystems are shown to give way to struc-
tural attacks [4, 5]. As found for the McEliece cryptosystems, the more the code is structurally similar to
a random code, the more difficult is the analysis of the corresponding McEliece cryptosystem. Among the
feasible ways to construct a robust McEeliece cryptosystem, there is the search or the construction of a
code with an available effective decoder and a random-like structure.

It is shown in work [6] that for a base code disposing the effective majority decoder, one can also con-
struct a decoder for the induced code , . In connection with this, the McEliece cryptosystem

was developed on the base of an induced code  [7]. If a McEliece cryptosystem based on the code
 is unstable to attacks on keys, one can carefully select the induced code parameters so that the attack on

the key of a related cryptosystem based on the induced code  will fail.
This work aims at the development of support splitting algorithms for induced codes and the estimation

of its efficiency in finding a secret key of the McEeliece cryptosystem based on the induced code .
The monograph has the following structure. The second section provides information on codes, support
splitting algorithms and preliminary results on induced codes. The support splitting algorithm for induced
codes is considered, as well. The third section gives the example of applying this algorithm in the deter-
mination of a secret permutation of a McEliece cryptosystem on the induced code, and its efficiency is
compared with that obtained in work [7]. The feasible use of induced codes in the identification algorithm
is also within the scope of this study.
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720 KOSOLAPOV, SHIGAEV
2. SUPPORT SPLITTING ALGORITHM FOR INDUCED CODES

2.1. Preliminary Results

Let  be the Galois field with a strength , where  is the degree of a prime number. For a vector 

from a space  with dimensionality , the weight  can be found as the power of a set of nonzero
coordinates of the vector . Consider a -code  with a dimensionality , a length  and a code dis-

tance  in a space . Let  be a code generator matrix, . Codes  and  with dimensionality
 and length  are called permutation-equivalent, if there is a permutation  from a symmetric group ,

acting on the elements of a set , so that

Hence, one uses the common designation . The next step is to determine the invariant and the
signature from [8]. For some subset , designate a set of vectors, obtained from those of the code 
by zeroing the coordinates with numbers from , by . Let  be a set of all codes with a length ,

. The mapping  is called the invariant over a set , if any two permutation-equiva-
lent codes  and  obey the equality: . A signature over a set  is the mapping

, so that any permutation  and any code  are referred to the equality:
. Below we consider only the signatures based on the invariant that meets the fol-

lowing rule:

(1)

where . A discriminant of the code  is a signature , for which  and  from  result in
 Then a full discriminant for the code  is a signature cal , so that  for

all different  and  from . The known fact can be summarized by the lemma below.

Lemma 1. Let  be a -code, , . The equality  is valid if and only if
, where  is a factor-class from the factor-set .

Proof. It is evident, if , then . Let us prove in the opposite direction. Assume the

equality , where . Since , then . Hence ,
, and consequently .

Consider the SSA algorithm that finds a permutation  for two permutation-equivalent codes  and

 using , so that . Notice that  in the general case, but  by
Lemma 1. The permutation σ', returned by the SSA algorithm, will be called suitable. If  is the total dis-
criminant, then σ = σ', and the permutation σ will be found at the first iteration of the cycle from this
algorithm. As follows from statement 8 of the monograph [8], the complete discriminant fulfills for the
code , when the group of automorphisms  of the code C is trivial. Mention that codes with a
trivial group of automorphisms exist [9].

According to work [8], even if the complete discriminant of the code  exists, its calculation may be
a computationally difficult task. In this respect, there was proposed the approach [8] that ensures the
construction of computationally simple complete discriminants based on incomplete discriminants.
Since it considers only signatures based on invariants (see Eq. (1)), the latter have to be computationally
simple.
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ON THE SUPPORT SPLITTING ALGORITHM FOR INDUCED CODES 721
An example of a computationally simple invariant for low-dimensionality codes is the mapping

 that assigns the code  to its weight numerator  where  is the
number of vectors with weights  in the code ,  is the set of polynomials from one variable with coef-
ficients from . Using this invariant, one can construct a signature , determined
from the rule . Mention that the computation complexity of the invariant

 increases in a nonpolynomial order with dimensionality of the code . Hence a discriminant in
work [8] is based on the computation of weight numerators of the code hull. A hull of the code  [8]
implies the intersection of the code  with its dual code :

(2)

A choice of this characteristic is due to the fact that the hull dimensionality is typically much less than the
dimensionality of the code , which enables one to efficiently calculate the numerators, as well as to plot
computationally simple discriminant even in case of the large dimensionality of the code .

2.2. Induced Codes and Their Properties

Let  be a -code with a generator matrix  and a check matrix , . The Car-
tesian product  of codes  and  is assumed to be a set in the following form:

where  is the concatenation of vectors  and . It is easily to see that the generator and check matrices

of the code  can be presented as

where  is a zero -matrix. As follows from definition (2):

(3)
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722 KOSOLAPOV, SHIGAEV
Lemma 2. Let  be a -code,  is a numerator of the code , . Then

the numerator of the code  takes the form

Proof. Each code vector  from  can be presented by a concatenation  of vectors  and 

from codes  and , respectively. Find the number of weight vectors  in the code
. For this, consider all kinds of ordered pairs  of nonnegative integers, so that .

Each pair  in the code  has a set from  of weight vectors . These sets do not inter-

sect for various pairs. Hence, the code  contains

weight vectors . Then

A tensor product  of matrices  and  is implied to be a matrix

Let  be a -code with a generator matrix ,  is the unit matrix of the order . A subspace,
generated by the lines of a matrix , will be designated by  and called the induced code (or

the code induced by the code ) [7]. A generator matrix of this code  has a block
structure

(4)

where each block line has  nonzero matrices  and one matrix . Since

then Lemma 2 yields
Corollary 1. Let  be a -code with a generator matrix  and  be a numerator of the

code . Then

(1) ;

(2) :  = 

It also appears that a check matrix of the code  can be written as , where

 is the check matrix of the code . As follows from Eq. (3), the hull of the code  takes the form

(5)
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Consider the induced code , . A group of automorphisms  of this code is

nontrivial. Indeed, the generator matrix of the code  is presented by a block diagonal structure (4),
and any permutation of blocks of this matrix results in a generator matrix of the same code. The permu-
tation of block columns of this matrix is equivalent to the permutation of block lines. There are  such
block column permutations in total. Hence the group of automorphisms of the code  has a power
of at least . It yields the following lemma.

Lemma 3. A group of automorphisms  of the code  contains a subgroup

, being isomorphic to a group .

Notice that each element of the group  has the form

(6)

Let  be, where ,  is a subgroup of the group , where the
permutations involve only the elements of a set Ii, n, and the elements of a set  are fixed. Con-

sider a group Q =  , . It is easy to see that

(7)

We remind that an orbit of an element  under the action of a subgroup  is a set
. Then , , are the orbits that form by a subgroup  on the elements of a

set . Expression (7) yields the following auxiliary lemma.

Lemma 4. A length of each orbit, forming under the action of a group to the elements of
a set  is a multiple of .

2.3. Support Splitting Algorithm

As aforementioned, two permutation-equivalent codes with a complete discriminant  for finding the
most suitable permutation require not more than one iteration of the internal cycle of a SSA algorithm. It
follows from Lemma 3, there is no complete discriminant for the code , because the group of auto-

morphisms of this code is nontrivial. Consider an algorithm plotting problem for the codes  and

, which allows a suitable permutation  to be determined so that .

Lemma 5. Let  be a -code. Then for  and any signature , found from the rule (1),
the following equality is valid:

(8)

Proof. According to definition (1), . Let  

be. For any permutation  from the invariant definition:  = . Consider an

arbitrary nontrivial permutation . Hence,

Since π is the nontrivial permutation, then the elements (6) of a group  for  result in:
. This is a contradistinction.

Taking the representation (6) into account, Lemma 5 yields a corollary below.

Corollary 2. For the code  and , the following equality is valid:  =

, for all .
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724 KOSOLAPOV, SHIGAEV
Thus, any signature for the code , determined using the rule (1), has not more than  various
values. The more values the signature has for the code, the fewer cycles of the SSA algorithm are required
for finding a suitable permutation.

Lemma 6. If , then any signature for the code , found from the rule (1),
has less than  values.

Proof. It follows from Corollary 2 that any signature for the code , established from the rule (1),

has not more than  various values. Hence, in according to statement 8 [8], the group  in a

set  leads to the formation of not more than  different orbits. Let 
be, then there is an element , so that  for some . Therefore, it
obtains from Lemma 4 that at least one orbit has a length not less than . Hence, the group 
favors the formation of not more than  orbits. Based on statement 8 [8], a signature has not more than

 various values.

Corollary 3. Let a signature 6 be defined in accordance with the rule (1). If 6 for the code  has

 various values, then .

Example 1. Consider a code  and find a weight numerator of the code , then
. If , then  = ; if , then  =
. Hence

(9)

where

. For  one obtains:  = , thus

(10)

where

If  is a -code, so that is its complete discriminant, then, according to Corollary 1 and gen-
eralizations of formula (10) to the case , a signature  for the code  has  various values.

Then it follows from Corollary 3 that a group of automorphisms of the code  is described in a sim-
ple manner.

Lemma 7. Let 6 be a signature found from the rule (1). Then for any  there are the following
equalities:

(1)  ;

(2) 

(3) 
Proof. The proof of the equality (1) follows from Corollary 2; the equality (2) follows from the

equality (1). Prove Statement (3). It appears from Statement (2) that

Since  is the arbitrary permutation from the group , then the statement is proved.
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A symbol  means a factor-class  of a factor-set – .

Lemma 8. If a signature  for the code  is determined using the rule (1) and has  various values,

then  and

(11)

hence .

Proof. It follows from Statement (3) of Lemma 7 and condition (11) that for any  the following
equalities are valid:

Since in accordance with the condition, a signature has a maximum amount of various values , then
 with respect to the construction of a group  (  is a maximum subgroup that does not change the

order of elements in a set ).

Let  be a factor-set of a group  with respect to a group ,

 Let also  be a transversal of a factor-set

, or a set of representatives of the adjacency classes , . Among the
possible plotting schemes of a set , there is a  algorithm.

Theorem 1. Let  be a -code, ,  is a signature defined from the rule (1) and having

 various values for the code ,  is a transversal of a factor-set . Then there is an algo-
rithm with a computation complexity , which finds a suitable permutation , so that

.

Proof. Let . This permutation  can be found by a simple calculation
of signatures of codes  and . Then Lemma 8 gives . As seen from Lemma 1, a suitable permuta-
tion that converts the code  into a code , is a permutation , where . Since the

signature has  various values, then it obtains from Corollary 3 that . Hence a
suitable permutation can be established by sorting out the elements in a transversal . Thus, a suitable per-
mutation can be found via the SSAForTensor algorithm, whose complexity is , due to sorting out the
elements with respect to a transversal .
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726 KOSOLAPOV, SHIGAEV
Mention that Theorem 1 in the estimation of complexity of the  algorithm takes only
the power of the transversal into account, but neglects the computation complexity of signatures (steps 1 and
2), as well as the complexity of checking the coincidence of two codes (steps 4) and the complexity of con-
structing a transversal  used as an input parameter. The coincidence of two codes can be verified by mul-
tiplying the generator matrix  by a check matrix  of the code . Thus, the com-
plexity of this test depends polynomially on , i.e., the verification can be implemented by the effective
way. On the other hand, plotting the effectively computable signatures is an individual task [8]. In partic-
ular [8], the effective signatures can be constructed using a numerator of a code hull, which is likely to have
a small dimension. As follows from Eq. (5), the hull dimensionality for the induced code increases by 
times in comparison with a hull of the base code. In turn, this may substantially slow down the calculation
of numerators of its projection in the general case and complicate the computation of signatures, because
it requires that the vectors of the hull projection are sorted out for all coordinates. Plotting a transversal 
is also a complex problem at high enough values . The above proposed  algorithm
has a -nonpolynomial complexity, although it can be done in advance.

Meanwhile, while the code  possess the effectively computational signature, determined from
the rule (1) and offering  various values along with a transversal , a  algorithm is
assumed to be more powerful than  at establishing a suitable permutation. This is due to the fact that

 searches a suitable permutation over the whole adjacency class  and  algorithm
makes a search over a set  only, whose power is lower by  times than  because

3. APPLICATION OF INDUCED CODES IN CRYPTOGRAPHY

3.1. A McEliece Cryptosystem Based on Induced Codes

Consider a McEliece cryptosystem based on a -code , where  is a -code with a
generator matrix . In this cryptosystem, an open key  is a pair , and a secret
key  is a matrix pair , where  is a random nondegenerate -matrxi,  is a random per-
mutation -matrix, where  with  as a unit matrix of dimensions . The
coding rule of an arbitrary message  has the form

(12)

where  and .
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The decoding uses a rule , where  is the decoder of the code

, which guarantees the correction of  and less errors and recovers a vector . A McEliece crypto-

system based on the code  will be designated by .

Since the code with a generator matrix  and the code  are permutation-equivalent, the

 cryptosystem can be hacked by finding a matrix pair (S',P'), so that 

[4], and the permutation referred to a permutation matrix  belongs to .

As shown in work [7], if the McE(C) cryptosystem on the base code  is unstable to attacks, there is
an algorithm for establishing a suitable permutation matrix for the  cryptosystem, whose

complexity is estimated by . Using the Stirling formula, it obtains that

(13)

Furthermore, a suitable permutation in case of a discriminant existing for the code  can be
found using the SSA. Consider the most favorable condition in the viewpoint of the attacker, when the
effectively calculated signature  with  various values is known for the code  and a transversal 

is constructed for a factor-set . Thus, the conditions of Theorem 1 are fulfilled, and
SSAForTensor can be substituted for . It follows from Theorem 1 that the persistence of a cryptosys-
tem  is evaluated by . Using the Stirling formula gives

(14)

Notice that expressions (13) and (14) are the estimated powers of sets of keys, where suitable permuta-
tions are being searched by sorting out via the algorithm [7] and SSAForTensor. According to monograph
[10], sorting out with respect to a key set with a power of  and higher is considered computationally
impracticable. In order to compare estimations (13) and (14), take as an example the construction of the
induced code  using a double Ride—Maller -code , where  and

.

Tables 1 and 2 show the values  calculated for a hacked cryptosystem ,
, where the parameter  in Table 2 is evaluated from expression (13), and that in

Table 1 is obtained from formula (14). The cells highlighted in both tables correspond to the parameters
of the induced code , for which the sort complexity is not less than . A comparative analysis of
the corresponding values in tables reveals that hacking based on a SSAForTensor splitting algorithm is
much more efficient than that described in work [7]. However, this hacking in selecting parameters  and
 can also be impracticable.

As shown in monograph [11], the use of induced codes in McEliece cryptosystems causes the weaken-
ing of the resilience of a system to attacks on cipher based on the dataset decoding method. The acceptable
resilience to these attacks is achieved at large code lengths, which is due to the fact that dimensionality
and length of induced codes increase by  times at a fixed code distance. Meanwhile, a  cryp-
tosystem can be applied when coding involves the error vectors with weights beyond the capacity of a
decoder . So, a shared secret key generation protocol was obtained based on the above cryptosys-
tem [7]. The next subsection is dedicated to another application of induced codes, i.e., their use in cryp-
tographic identification protocols.
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Table 1. Values of 

l/n 8 16 32 64 128 256

2 12.73 28.23 59.73 123.23 series 250.73 series 506.23
3 30.63 67.67 series 142.75 series 293.90 series 597.22 series >1024
4 51.96 114.46 series 240.96 series 495.46 series 1006 series >1024
5 75.85 series 166.72 series 350.48 series 719.99 series >1024 series >1024
6 101.77 series 223.34 series 469 series 962.81 series >1024 series >1024
7 series 129.37 series 283.59 series 595.01 series >1024 series >1024 series >1024
8 series 158.43 series 346.93 series 727.43 series >1024 series >1024 series >1024
9 series 188.75 series 412.99 series 865.46 series >1024 series >1024 series >1024

( )!
! !

( )
2 ( )

log l
nl
n l

Table 2. Values of 

l/n 8 16 32 64 128 256

2 7 15 31 63 127 series 255
3 18.09 38.77 80.13 series 162.85 series 328.29 series 659.16
4 32.09 68.77 series 142.13 series 288.85 series 582.29 series >1024
5 48.34 103.60 series 214.11 series 435.13 series 877.17 series >1024
6 66.44 series 142.37 series 294.24 series 597.98 series >1024 series >1024
7 86.09 series 184.48 series 381.27 series 774.85 series >1024 series >1024
8 107.09 series 229.48 series 474.27 series 963.84 series >1024 series >1024
9 series 129.28 series 277.03 series 572.54 series >1024 series >1024 series >1024

−! 1
2log ((( ) ) )nl
3.2. Identification Protocol Based on Induced Codes

An identification protocol based on the complexity in finding the permutation for two permutation-
equivalent codes over a binary field was constructed by Girault [12]. Consider this protocol for a case .
Let  be a -matrix over a field , shared by all protocol users. Each user  randomly

chooses a vector  with a small weight  and calculates . The vector  is a public identifier of a
user . If the relying party  intends to authenticate a user , i.e., to check that the authenticated user
knows a vector , a 3-step protocol is being implemented.

Step 1:  randomly and equally likely choses a permutation -matrix  and an undegenerated
-matrix , calculates  and  and sends a matrix  and a vector s'to .

Step 2:  randomly and equally likely choses a bit  and sends it to .

Step 3a: If , then  transfers the matrices  and  to  that verifies that  and .

Step 3b: If , then  transfers  to  that verifies that  and .
This protocol is running  times, where a safety parameter  is chosen so that a proving party fraud

probability  is less than a predetermined threshold. Let the communication complexity of this proto-
col to be estimated. In Step 1, the proving party passes  bit of data. In Step 2, the
relying party transfers one bit. The amount of data transferred at Step 3 depends on the bit value : at 
there are  bit, and at  there are  bit transferred. Taking into
account the fact that the bit value  is chosen randomly and equally likely, then  iterations result in the
following communication complexity of a protocol:

(15)
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As mentioned in work [13], if a matrix is selected in a random manner, then the Giraut protocol is
unsteady. At the same time, it is possible to calculate the codes with high-dimensionality hulls, because
the complexity of the calculation of a signature  proposed in monograph [8] is a linear function of hull
dimensionality. These codes can be induced codes , whose hull dimensionality is l times higher
than that of the base code  (see Eq. (5)). If the complexity of the calculation of a signature is neglected
in assuming the effective computation of the latter, then the Giraut protocol can be implemented via the
Reed–Maller based code  (see Table 1), for which a cell value exceeds . Remembering that the
communicative complexity (15) increases with rising , it is essential to select the parameters of the
induced code that provide the smallest  among the permissible values. In the example considered in the
previous subsection, a minimally permissible value  is .
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