
ISSN 0146-4116, Automatic Control and Computer Sciences, 2019, Vol. 53, No. 7, pp. 573–583. © Allerton Press, Inc., 2019.
Russian Text © The Author(s), 2018, published in Modelirovanie i Analiz Informatsionnykh Sistem, 2018, No. 6, pp. 589–606.
Even Simple π-Calculus Processes Are Difficult to Analyze
M. M. Abbasa, * and V. A. Zakharovb, c, **
aMoscow State University, Moscow, 119991 Russia

bNational Research University University Higher School of Economy, Moscow, 101000 Russia
cIvannikov Institute of System Programming, Russian Academy of Sciences (ISP RAS), Moscow, 109004 Russia

*e-mail: unlock96@gmail.com
**e-mail: zakh@cs.msu.ru

Received September 15, 2018; revised October 30, 2018; accepted November 10, 2018

Abstract—Mathematical models of distributed computations, based on calculus of mobile processes
(π-calculus) are widely used for checking information security properties of cryptographic protocols.
Since -calculus is a Turing-complete computation model, this problem is unsolvable in the general
case. Therefore, its study is carried out only for some special classes of π-calculus processes with
restricted computational capabilities, for example, for nonrecursive processes with all runs limited in
length, for processes with a limited number of parallel components, etc. However, even in these cases
the proposed checking procedures are very time consuming. We assume that this is due to the very
nature of the π-calculus processes. The goal of this paper is to show that even for the weakest passive
adversary model and for relatively simple protocols that make use of only basic π-calculus operations,
the checking of the information security properties of these protocols is a co-NP-complete problem.

Keywords: π-calculus, protocol, security, passive adversary, verification, complexity, NP-completeness
DOI: 10.3103/S0146411619070022

INTRODUCTION
Aiming to extend the expressive capacities of Calculus of Communicating Systems (CCS), Rober Mil-

ner and his colleagues introduced in [25] a new mathematical model of distributed computation environ-
ments (DCEs) called mobile process calculi or, in short, π-calculus. Its two distinct features are the pat-
tern (ν-operator) of generating new names and the opportunity to transfer communication channel names
along communication channels. These qualities enable π-calculus processes to change the communicative
environment by introducing new communication channels in the course of computations and thuswise
model the migration of processes. As shown by Milner in article [26], π-calculus processes can simulate
computations of λ-calculus terms. This is why, unlike CCS, π-calculus is a Turing-complete computation
model. The Turing-completeness of π-calculus stems from the combination of the two specified features
with the replication operator inherited from CCS; should any of the three factors be absent, π-calculus
ceases being a universal computational model.

Within a relatively short period following the publication of [25] it was found out that, in addition to
describing the behavior of mobile process systems, π-calculus could be used with success to formally
describe patterns of handling objects in object-oriented programming [33] and model business processes
[30] and biochemical reactions [28]. However, the greatest interest was sparked by the fact that the authors
of [1] revealed that π-calculus could be used for constructing formal models of cryptographic protocols.

In their seminal work [19], D. Dolev and E. Yao propose to divide the check of cryptographic protocol
security properties in two subtasks: (1) prove the security properties (confidentiality, integrity, etc.) for
basic functions (encryptions, hashing, etc.) used in cryptographic protocols; (2) check cryptographic pro-
tocols for resistance under the assumption that all the cryptographic primitives used in them meet neces-
sary security requirements. That said, the Dolev–Yao model endows an adversary with powerful capabil-
ities, including the one to intercept, form, and send messages along open communication channels. The
spi-calculus proposed in [1] for modeling cryptographic protocols has appeared an efficient model in the
framework of which the security check of cryptographic protocols in the Dolev–Yao model can be
reduced (or, more formally, defined by reduction) to checking various kinds of equivalence of spi-calculus
processes or to checking specially distinguished vulnerability states of processes for reachability. The paper

π

573

574 ABBAS, ZAKHAROV
[2] proposes one more expansion of π-calculus—so called applied π-calculus, which allows constructing
complex terms and describing their algebraic properties through equations. Applied π-calculus can also be
enriched with auxiliary memory with shared and confidential cells [5, 9]; this memory makes it conve-
nient to describe authentication and key distribution protocols, etc.

There are a lot of works about analyzing the behavior of processes in calculi of cryptographic protocols
based on π-calculus. Since π-calculus is an algorithmically complete computational model, all the speci-
fied tasks are algorithmically undecidable in the general case. This is why, they are studied only for some
special classes of processes with limited computation capabilities, e.g., for nonrecursive processes with all
runs limited in length, for processes with a limited number of parallel components, etc. The major
achievements of exploring the tasks of analyzing the behavior of spi-calculus processes are exposed below.
The reachabilty check has been proven a decidable task for nonrecursive spi-calculus processes [3, 23] and
is NP-complete [29]. The most useful kinds of process equivalence for cryptographic apps are test [1] and
visible equivalence [2]. The decidability of checking nonrecursive processes for test equivalence was estab-
lished in [20]; however, the proposed decision procedure has high computational complexity. The algo-
rithms of checking visible equivalence for some classes of spi-calculus processes and applied π-calculus
were presented and corrected in [10, 15, 16, 18]. As also shown in [16], the visible equivalence check for
nonrecursive applied π-calculus processes is an NP-complete task. In addition to visible processes equiv-
alence, more primitive bisimulation relationships were examined as well [8]. According to [32], the check
of the open bisimulation of nonrecursive spi-calculus processes is a decidable task. In addition, it was
explored in [7] whether spi-calculus processes could be verified by static analysis. The strength of this
approach is that it can be applied to any processes, recursive processes included. The proposed formal tech-
niques of analyzing cryptographic protocols with the help of π-calculus were applied in practice and make it
possible to detect and eliminate a vulnerability in the authenticated routing protocol (ARAN) [22].

Even when nonrecursive spi-calculus process P has only a finite set of computations, it is not a simple
task to analyze the behavior of P in interaction with the outside environment. The reason is that in the
Dolev–Yao model the outside environment (adversary) is presented as an infinite family of processes !
and the task of checking information security properties consists in analyzing the behavior of all pro-
cesses, where . Generally speaking, the processes from ! are capable of generating as complex
messages as possible, which is why the system of processes can have an infinitely large number
of states and computations. The techniques proposed and developed in works [10, 15, 16, 18, 20, 32] allow dis-
tinguishing (sometimes indirectly) such finite subset of processes , which describes the out-
side environment, that in the Dolev–Yao model the security check of protocol P requires only analyzing
a finite number of processes, where . To say the least, the size of set of processes appears
exponentially dependent on the size of process P, which is why the algorithms of checking properties of
spi-calculus or applied π-calculus for security, proposed in the indicated works, are not efficient.

The papers [3, 4] were the first ones, where the task of checking insecurity properties of cryptographic pro-
tocols with a limited number of sessions (nonrecursive protocols) was declared NP-complete. However, those
works considered only model cryptographic protocols with simple (atomic) encryption keys. In addition, the
authors of [4] provide only outline the estimation of the complexity of the decision procedure they describe.
For the full proof of the theorem of NP-completeness of checking insecurity properties of nonrecursive cryp-
tographic protocols with atomic encryption keys see publications [21, 31]. The paper [29] supported that result
by showing that the insecurity property checking task also remained NP-complete for nonrecursive cryp-
tographic protocols with composite encryption keys. The proof that this task belongs to the complexity
class NP relies on the proposition that any unsecure protocol in the Dolev–Yao model can be compro-
mised by an active adversary able to generate messages the size of which polynomially depends on the pro-
tocol size. In subsequent articles [11–14] this approach to designing insecure checking procedures and
estimating their complexity was applied to protocols with more intricate cryptographic primitives. How-
ever, as shown in article [24], the proof of the proposition about the existence of the minimal polynomial
adversary model, which is exposed in article [29], contains a mistake corrected in [24].

In all the works mentioned above the authors explored the task of checking insecurity properties for
cryptographic protocols with an ever growing diversity of computational and communicative actions, and
the main emphasis was to prove that the problem under consideration is in NP. The NP-completeness of
the task in question was proven by reducing the satisfiability problem for 3-CNF to that task. Naturally,
the reduction would be simplified with the growing complexity of the cryptographic protocols model. Var-
ious means accepted in spi-calculus were used for the purpose, including encryption/decryption func-
tions, pair functions, branching operators, etc. We assume, however, that the difficulties with analyzing
the security of cryptographic protocols modeled by various extensions of π-calculus are conditioned, first

P R
R ∈ !

{ }:P R R ∈ !

', ' ⊆! ! !

P R 'R ∈ ! '!
AUTOMATIC CONTROL AND COMPUTER SCIENCES Vol. 53 No. 7 2019

EVEN SIMPLE π-CALCULUS PROCESSES ARE DIFFICULT TO ANALYZE 575
of all, by the algorithmic difficulties typical of π-calculus proper as the basic model of distributed mobile
computation systems. We consider the task of checking for security of protocols, described by the basic
means of π-calculus, in the passive adversary model. The analyzed protocols are a parallel composition of
processes , each of which is a sequential composition of message sending and receiving

. Only one among all the names used as messages is confidential; all the others are
considered either commonly known or random names used only once. The passive adversary can intercept
(eavesdrop) messages transferred along communication channels the names of which he knows. The cap-
tured names expand the adversary’s knowledge and can be used in subsequent interceptions. A protocol
is considered secure when, whatever its execution, confidential names will not be part of the adversary’s
knowledge.

In this article we show that even basic π-calculus tools will suffice for constructing for any 3-CNF ϕ
such process of the specified kind that will resist the passive adversary if and only if a
3-CNF ϕ is unsatisfiable. That said, the size of linearly depends on the size of formula ϕ, and all
the runs of this process are completed in a normal manner, without getting caught in a deadlock. In light
of the results on the NP-completeness of checking the insecurity properties and cryptographic protocols,
that are obtained in articles [3, 4, 11–14, 21, 24, 29, 31], the main theorem of this article shows that the
main factor determinative to the complexity of the considered task is the limited computating length of
cryptographic protocols; the influence of other factors such as diversity of cryptographic primitives and
protocol computing control tools used in the protocols, structure and size of transferred messages, etc., is
secondary.

The article is structured as exposed below. Section 2 describes the syntax and semantics of π-calculus.
Section 3 defines the passive adversary model and formulates the task of checking π-calculus processes for
security in the passive adversary model. Section 4 describes the structure of , correspondent to arbi-
trary 3-CNF ϕ, and shows that this process is characterized by normal termination—all of its computa-
tions are completed in one and the same empty process. It has also been found out that all the computa-
tions in are safe if and only if 3-CNF ϕ is unsatisfiable. It follows hereforth that the satisfiability of
3-CNF can be reduced to checking the insecurity properties of π-calculus processes in the passive adver-
sary model. In the concluding section we discuss the significance of the results.

Syntaxis and Semantics of π-Calculus

We shall confine only to considering the basic recursive fragment of synchronous monadic calculus of
mobile processes. Assume there is some infinite number of objects 1, that will be referred to as names.
They serve to indicate communication channels and also data transferred along such. Names will be
recorded in lowercase letters as .

Elementary synchronous communicative action E is any expression (message y sent along com-
munication channel x) or (reception of a message, binding name y, along communication channel x). A
π-calculus process is any expression made up according to the following rules:

The set of processes thus defined will be referred to as 3.
The occurrences of names in a process are divided in free and bound.
Set fn(P) of the free names of P is defined with respect to the process structure according to the follow-

ing rules:

1. ,

2.

3.

4. .

1 2 nP P P�

1 2i mP act act act= . . .�

1 2 nProc P P Pϕ = �

Procϕ

Procϕ

Procϕ

a b … x y z, , , , ,
x y

()x y

()
()
()

() ()

, :: complete the process
. take action and proceed to executing process

execute processes and in parallel
enter new name and proceed to executing .

P Q
E P E P
P Q P Q

x P x P

=

ν

0

() 0fn =0

() () { , } (()) () { })\{ },fn x y P fn P x y fn x y P fn P x y. = ∪ , . = ∪
(()) ()\{ },fn x P fn P xν =

() () ()fn P Q fn P fn Q= ∪
AUTOMATIC CONTROL AND COMPUTER SCIENCES Vol. 53 No. 7 2019

576 ABBAS, ZAKHAROV
The occurrence of a name x in P is considered free if it is not appeared in any subprocess or
 of P. We write to indicate a process derived from P by synchronously replacing all the free

occurrences of name y with name x. Substitution {x/y} is called correct for process P when any free occur-
rence of y is not found in any subprocess of .

The operation semantics of mobile processes is determined by structural congruence relation and
reduction relation . The relation is the smallest congruence relation in set of processes 3, that sat-
isfies the following equalities:

1. , , , i.e., system is a commutative semigroup;

2. for any name , and correct for the process P substitution ;

3. for any name ;

4. , .
It is easy to see that if then .
The reduction relation is the smallest relationship which for any processes

 and names meets the following requirements (the satisfiability of for a quadruple
 is traditionally denoted as):

1. ;

2. at ;

3. at ;

4. , and at .

Quadruples meeting the process reduction relation will be referred to as reductions (in
other words, communications along communication channels). A channel , along which it is possible
to reduce process , is called active in process .

The run of a process is any sequence of reductions recorded as

(1)

A process not admitting any kind of reduction is called deadlock. The run (1) is called complete if is a
deadlock. If then the run completion is normal. The obvious proposition we shall use in analyzing
process calculations is exposed below.

Proposition 1. If a communication channel is active in a process , then the communication along
occurs in any complete run (1).

In other words, a message will be eventually sent along each active channel in .

Passive Adversary Model
An outside observer (adversary) relative to π-calculus process P is regarded as some process R that can

be engaged in interaction with . This interaction is determined by parallel composition . All the
names of P that are connected by the operator can be interpreted as one-time used data generated by the
process. This is why the communication of P and R can initially be executed only along the communica-
tion channels from the set . Then, however, the adversary gets (intercepts) the messages communi-
cated along these channels and thus finds out new names he can use for subsequently communicating with

. A passive adversary R is able only to eavesdrop messages sent by P along the communication channels
known to the adversary in the course of sending and receiving messages. This ability of a passive adversary
is modeled by a pair of successively executed actions . The messages thus eavesdropped are not
lost or replaced. A passive adversary can be represented by any process R emerging as a successive com-
position of pairs of reception and sending of one and the same message along one and the same commu-
nication channel. Unlike a passive adversary, an active adversary is able not only to eavesdrop messages,
but, also to construct new messages and substitute intercepted messages; an active adversary can be rep-
resented by any -calculus process .

() 'x Pν
() 'y x P. { }P x y

() 'x Pν P

π≡
π→ π≡

P Pπ≡0 P Q Q Pπ≡ () ()P Q R P Q Rπ≡ (), ,03

{ }() ()y P x P x yπν ≡ ν ()x x fn P, ∈/ { }x y

()(()) ()x P Q x P Qπν ≡ ν ()x x fn Q, ∈/
()x πν . ≡0 0 ()(()) ()(())x y P y x Pπν ν ≡ ν ν

P Qπ≡ () ()fn P fn Q=

π→ ⊆ × × ×3 1 1 3

' 'P Q P Q, , , x y z, , π→
P x y Q, , , ()x yP Qπ⎯⎯⎯→

{ }()() (()) x yx y P x z Q P Q y zπ. . ⎯⎯⎯→
() 'x yP Pπ⎯⎯⎯→ () 'x yP Q P Qπ⎯⎯⎯→
() 'x yP Pπ⎯⎯⎯→ ()() () 'x yz P z Pπν . ⎯⎯⎯→ ν .

P Qπ≡ () 'x yP Pπ⎯⎯⎯→ ' 'P Qπ≡ () 'x yQ Qπ⎯⎯⎯→
()x yP Qπ⎯⎯⎯→

x x
P P

0P

1 11 1 2 2 () ()() ()
0 1 1

n n n nx y x yx y x y
n nP P P P− −

−π π π π⎯⎯⎯⎯→ ⎯⎯⎯⎯→ ⎯⎯⎯⎯⎯→ ⎯⎯⎯⎯→ .�

nP
nP π≡ 0

x 0P x

0P

P P R
ν

()fn P

P

()x y x y.

π R
AUTOMATIC CONTROL AND COMPUTER SCIENCES Vol. 53 No. 7 2019

EVEN SIMPLE π-CALCULUS PROCESSES ARE DIFFICULT TO ANALYZE 577
Information security properties of process P display itself in its interaction with an adversary of a par-
ticular kind. An abstract adversary model usually used to avoid the need for considering the behavior of
all possible compositions is determined by the state of its knowledge K defined as the set of names
known to the adversary. This set may change while process P performs actions. If a process P interacts with
a passive adversary, state of the interacting system can be transformed to only through a cer-
tain transition of the process . If an adversary is active, can be transformed to by both,
making a certain reduction of the process P and performing some action or of the process on
condition that the state of the adversary’s knowledge allows him to form pairwise action or .
The adversary’s purpose is to achieve the state of knowledge from some distinguished family that poses
a security threat.

In this article we confine ourselves to considering the interaction of π-calculus processes with the pas-
sive adversary. He is characterized by the list of entries about the names he knows. To form the entries we
shall introduce new operator and use expression , where , to indicate the entry of name in
the adversary’s database. The passive adversary model is any list of entries (database) A that can be con-
structed according to the following rules:

Unlike the operator , the entry operator does not bind names, which is why the set of the free
names of an adversary consists of all the names included in expression .

A passive adversary may follow π-calculus runs; we shall formally describe this phenomenon through
the parallel composition operator.

We shall use the term “monitoring of a process P by an adversary A” to refer to any expression M that
can be derived according to the following rules:

We shall indicate the set of all possible monitorings as , and the set of free names of a monitoring M as
fn(M), in which we are especially interested in free names included in adversary entries (κx). We shall use
expression open(M) to denote the subset of all free names of the specified kind.

Similarly to the semantics of π-calculus processes, the operation semantics of monitorings is deter-
mined by structural congruence relation and transition relation . The relation is the smallest con-
gruence relation on the set of monitorings } that includes structural congruence relation on the set of
processes and meets the following equalities:

1. for any name , and a correct for monitoring substitution
;

2. for any pair of names and an adversary ;
3. for any names and an adversary .
The first of these identities means that all of the adversary’s data about one-time names are valid only

for the observed process whereas the other two identities allow considering the adversary’s knowledge base
as an unordered set of entries. Taking account of the latter circumstance, we shall settle with A(X) to
denote adversary for an arbitrary set of names.

Transition relation is the smallest binary relation on the set of monitorings }, that meets the fol-
lowing requirements for any processes , model adversary , monitorings , and
names :

1. at ;

2. at ;
3. at ;
4. at , , and .

According to the second of the herein cited rules, if an observed process communicates certain data along
a communication channel, the name of which is known to the adversary, the communicated data will also

P R

()P K, (' ')P K,
P ()P K, (' ')P K,

()x y x y P
K x z ()x z

S

κ ()xκ x ∈ 1 x

()
() ()

:: empty database
. database with the entry of name .

A
x A x

=
κ

0

ν κ ()fn A
A A

()
() ()

:: adversary follows process
. monitoring is performed in the region of determining name used once .

M P A A P
x M M x

=
ν

}

≡ → ≡
π≡

{ }() ()y M x M x yν . ≡ ν . ()x x fn M, ∈/ M
{ }x y

() () () ()x y A y x Aκ . κ . ≡ κ . κ . x y, A
() () ()x x A x Aκ . κ . ≡ κ . x A

1 2() () ()nx x … xκ . κ . . κ .0
→

' 'P Q P Q, , , A ' 'M N M N, , ,
x y,

'P A P A→ () 'x yP Pπ⎯⎯⎯→
() ' () ()P x A P y x Aκ . → κ . κ . () 'x yP Pπ⎯⎯⎯→

() () 'x M x Mν . → ν . 'M M→
'N N→ M N≡ 'M M→ ' 'M N≡
AUTOMATIC CONTROL AND COMPUTER SCIENCES Vol. 53 No. 7 2019

578 ABBAS, ZAKHAROV
be known to the adversary. We shall refer to the reflective transitive closure of the transition relation as
. If holds, monitoring is considered reachable from monitoring .
Case 1. Assume that there is a process

and a passive adversary model . Then the monitoring generates the following
sequence of transitions:

An adversary with certain a priori data about the process aims to find out certain confidential data han-
dled in the process. This is why finite name sets X and Y are both the attack and the threat relative to which
the process security requirement is formulated. We shall say that a process P secure with respect to the
threat Y in carrying out the attack X (in short, P is -secure) if is not true for any mon-
itoring M reachable from the initial monitoring , i.e., none of the runs of the process P allows a
passive adversary, knowing only name set X in the beginning, to eavesdrop the process communications
so as to form set Y from the eavesdropped names. In a passive adversary model the security checking prob-
lem for processes is to find out whether the process P is -resistant for an arbitrary process P, an
attack X, and a threat Y. In the aforementioned example process P is not secure w.r.t the threat in
carrying out the attack .

Complexity of the Security Checking Problem for Processes

Theorem 1. In the passive adversary model the security checking problem for processes from the set 3 is
co-NP-complete.

Proof. Since the processes from the set 3 contain no replication operator or other means of describing
computations recursively, the length of each run of process P from set 3 does not exceed the size of the
process P. In addition, as seen from the definition of transition relation , the number of pairwise incon-
gruent descendants (images) for each monitoring M by the relation does not exceed the squared size
of M. It follows hereforth that the security checking problem for processes from the set 3 is in co-NP.

To prove the co-NP-completeness of the considered problem, we shall show that the problem of
checking 3-CNF for unsatisfiability is log-space reducible to it. A process we shall construct for an
arbitrarily specified 3-CNF ϕ is able to model the computation of the value of formula on all sets of vari-
able values and allows an adversary to eavesdrop confidential name transmitted along open com-
munication channel iff is satisfiable.

Assume that an arbitrary 3-CNF depends on variables ; each clause
 in 3-CNF is recorded as , where are literals that are variables or

their negations. We shall distinguish the name of literal from the name of the variable this literal is based
on. Each literal will be denoted as , where if and if . It can be reckoned with-

out loss of generality that each literal is included in 3-CNF ϕ. In addition, for every
literal we shall write to denote the contrary literal of opposite polarity and write to denote the total
number of occurences of literal in the formula ϕ.

Let us describe the structure of the process . The only two free names it contains are and
. The former denotes an open communication channel (exposed to eavesdropping) and constitutes

an attack. The name denotes confidential data and constitutes a threat. All the other names
occurred in are bounded by operators . This set of names consists of names of variables ,

names of positive and negative literals corresponding to these variables, clause names

∗→ 'M M∗→ 'M M

(() () ()) (() ())P x y ch x x y z ch z z secret= ν . ν . . . ν . . .0 0

()A ch= κ .0 M P A=

() () ((() () 0) (0) () ())

() () () (() () ())

M

x z y x y x secret x ch

x y z secret x ch

↓
ν . ν . ν . . . κ . κ .

↓
ν . ν . ν . κ . κ . κ . .

0

0

()X Y, ()Y open M⊆
()P A X

()X Y,
{ }secret

{ }ch

!

→
'M →

Procϕ
ϕ

secret
ch ϕ

1 2 ND D … Dϕ = ∧ ∧ ∧ 1 2 nx x … x, , ,
1iD i N, ≤ ≤ , 1 2 3i i i∨ ∨, , , 1 2 3i i i, ,, , ,

,

, xσ 1σ = x=, 0σ = x= ¬,

1 {0,1}ix i nσ, ≤ ≤ , σ ∈ ,
, *, m,

,

Procϕ ch
secret

secret
Procϕ ν 1 nx … x, ,

1 1n n… …∗ ∗, , , , ,, , , ,
AUTOMATIC CONTROL AND COMPUTER SCIENCES Vol. 53 No. 7 2019

EVEN SIMPLE π-CALCULUS PROCESSES ARE DIFFICULT TO ANALYZE 579
, and also three special names g, h, and r. The process is a composition of parallel subpro-
cesses meant to play the roles exposed below.

1. A subprocess is meant to activate for each variable precisely one of literals or
by sending for each a message that can be received either by process or by process :

2. For each of literals , , and a subprocess is meant to activate all the
name communication channels used in the process :

3. A subprocess is meant to check that formula takes the value 0 on the set of variable values
correspondent to activated literals:

where a subprocess is recorded for each clause as

Thus, if the literals contrary to literals are activated, each process sends the name of
the open channel along the communication channel .

4. A subprocess is meant to check that the formula ϕ takes the value 1 on the set of variable
values correspondent to activated literals:

where a subprocess for each clause is recorded as

and a subprocess as

Thus, if at least one literal included in each clause is acti-
vated, then the process sends the secret name along the communication channel .

5. A subprocess is meant to ensure communication along the open communication channel ch
after checking the value of ϕ and launch the garbage collection process that will allow executing all unfin-
ished actions of the process :

The collection of garbage is launched by message sending actions and .
6. Garbage collection subprocess is meant to activate all the literals not activated by the sub-

process and force to execute all the actions of subprocesses and that remained
untaken after the first activation of the literals by the process :

where

We shall denote by the set of all nemes, except for and , appeared in the aforemetioned
processes. The process is the parallel composition of all those subprocesses. In this composition all
the names from the list are bounded by the operator as

1 Nd … d, , Procϕ

Init 1ix i n, ≤ ≤ , ix ix¬
ix

i
S,

i
S ∗
,

1 2 nInit x z x z … x z=0

2n ixσ=, 1 i n≤ ≤ {0,1}σ ∈ S,

, Procϕ

∗+

=
���������

times

()i

m m

S x z z z … z 0

,
,

, , , ,

0Checkϕ= ϕ

1 20 0 0 0ND D DCheck Check Check … Checkϕ= = = == ,

0iDCheck = 1 2 3i i i iD = ∨ ∨, , ,

0 1 2 3
* * *() () ()

iD i i iCheck z z z r ch= =0, , ,

1 2 3i i i, ,, , , 0iDCheck =
ch r

1Checkϕ=

1 21 1 1 1ND D DCheck Check Check … Check CheckAllϕ= = = == ,

1iDCheck = 1 2 3i i i iD = ∨ ∨, , ,

1 1 2 3(()) (()) (())
iD i i i i i iCheck z d z z d z z d z= = ,0 0 0, , ,

CheckAll

1 2() () ()NCheckAll d z d z … d z r secret=0

1 3ji j, ≤ ≤, 1 2 3 1i i i iD i N= ∨ ∨ , ≤ ≤ ,, , ,

1Checkϕ= secret r
OpenCh

Procϕ

(()) (())OpenCh r y ch y g z h z ch x=0 0

g z h z
Garbage

Init 0Checkϕ= 1Checkϕ=
Init

Garbage Final Collect= ,

1 2() nFinal g z x z x z … x z= ,0

1 1 2 2 1 2() () () () () () () () () ()N N NCollect h z d z d z d z d z … d z d z r y r y … r y=0

names ch secret
Procϕ
names ν
AUTOMATIC CONTROL AND COMPUTER SCIENCES Vol. 53 No. 7 2019

580 ABBAS, ZAKHAROV
It is easy to see that, with CNF ϕ available, can be constructed in logarithmic space.

We shall show first that any complete run of recorded as

(2)

finishes in a normal way, i.e., .
First of all, note that none of names being the argument of any message reception action is the

name of any communication channel. This means that in the course of the run (2) the names of commu-
nication channels are unchanged (only renaming acceptable for congruence relation is possible). In
addition, for every name of a channel the number of message sendings along this channel in the process

 is equal to the number of message receptions from the same channel. This is why, to prove the nor-
mal completion of the run (2), it is enough to show that all the message sending actions of the process

 are executed in this run.

Note that in the channel is active, whereas the process is deadlock. This means that, by
Proposition 1, the communication along the channel was carried out during the run (2). The receptions
of messages from this channel are observed only in literal activation subprocesses and . We shall
consider one of those subprocesses, in which the communication along the channel was carried out ear-
liest in the run (2); assume that this subprocess is meant to activate a literal . Then, after the first
communication along the channel is executed, the communication channel is activated. According
to the description of the subprocess , the activity of the channel will be maintained during the run
until all the possible actions aimed at receiving messages from this channel are completed.

After the communication is executed along (in either or), the channel also becomes
active, and reasonings similar to the ones provided above for the channel will hold. Extending these rea-
sonings to all communication channels , we conclude that in the run (2) communication chan-
nels become activated for certain binary tuple ; these
channels will be maintained as active during the run until all possible actions aimed at receiving messages
from these channels are completed.

Then we need to consider two cases, depending on the value taken on by the formula on the set of
variable values .

If then CNF ϕ contains a clause for a certain triplet of above distin-
guished literals . According to the description of the subprocess , one of the compo-
nents of its parallel compositions is a subprocess

Since, as it was shown above, the subprocesses sustain the activity of paths until all possible
actions aimed at receiving messages from these channels are performed, the communication in the run (2)
is executed along the channels , involving the message receiving actions of the subprocess

. After the last of the three reductions is made, the communication channel becomes active,
because the reception of messages from this channel launches one of the components of the parallel com-
position of the subprocess . If , then each clause contains one of above dis-
tinguished literals . Therefore, according to the description of the subprocess for each

, the parallel composition of this subprocess contains the component , where
is one of the literals distinguished above that is the name of an activated communication channel. Since
the literals channels are maintained as active until all possible actions aimed at receiving messages from
these channels are performed, reductions are made in the run (2) involving all the message receiving
actions occurred in the beginning of the indicated components. After these reductions are executed, com-
munication channels with names are activated in sequence. The activation of these channels
is conditioned by the fact that the receptions of messages from these channels appear in the beginning of

() ()1
1

0 1n
n

Proc names Init S S … S S Check Check OpenCh Garbageϕ ∗ ∗ ϕ= ϕ== ν . .,
,

,
,

Procϕ

Procϕ

0 1 1m mProc P P P Pϕ π π π − π= → → → →�

mP = 0
u ()uv

π≡
u

Procϕ

Procϕ

Procϕ 1x mP

1x

1xS
1xS¬

1x
1

1 1xσ=,

1x 1,

S, 1,

1x Init Final 2x
1x

1 2 nx x … x, , ,
1 2

1 1 2 2
n

n nx l x … xσ σ σ= , = , , =, , 1 1()n…α = σ , σ , , σ

ϕ
α

() 0ϕ α =
1 2 3j i i iD = ¬ ∨ ¬ ∨ ¬, , ,

1 2 3i i i, ,, , , 0Checkϕ=

1 2 30 () () ()
jD i i iCheck z z z r ch= =0, , ,

S, 1 2 3i i i, ,, , ,

1 2 3i i i, ,, , ,

0jDCheck = r

OpenCh () 1ϕ α = 1jD j N, ≤ ≤ ,
1 2 n…, , ,, , , 1Checkϕ=

1j j N, ≤ ≤ ()i jz d z. .0, i,

1 2 Nd d … d, , ,
AUTOMATIC CONTROL AND COMPUTER SCIENCES Vol. 53 No. 7 2019

EVEN SIMPLE π-CALCULUS PROCESSES ARE DIFFICULT TO ANALYZE 581
the sequential composition of actions forming subprocess . Then, according to Proposition 1, the
run (2) involves communications along the channels

If all the mentioned message exchanges along include the message receiving actions from
the subprocess , the communication channel is activated upon their execution. If at least one
of the mentioned communications includes an act of message reception from the subprocess , this
will be possible according to the description of this subprocess only upon a communication along the
channel . However, according to the description of the subprocess , a message can be transmitted
along this channel only upon a communication along the channel .

Thus, the channel in the run (2) is activated irrespective of the value of . So, according to Prop-
osition 1, an act of communication takes place along the channel in the run (2). Let us consider the very
first of such reductions. It cannot be made via message receptions from the subprocess ; as indi-
cated above, these actions can be used only upon message exchange along the communication channel ,
which can be activated only after at least one act of communication along . Therefore, the first commu-
nication along in the run (2) involves the reception of a message along this channel from the subprocess

.
According to the description of this subprocess, after the first act of message reception from the chan-

nel is executed that is contained in the subprocess, the channels , , and are activated in sequence.
This is why, according to Proposition (1), the communications in the run (2) take place along the indi-
cated channels. After these reductions all channels appear reactivated. After the acts of com-
munication are executed along these channels through the acts of message receptions from subprocesses

, all the channels correspondent to all CNF ϕ literals are activated. After the communication along all
the activated literal communication channels through the acts of message reception from the subprocesses

 and , all channels as well as the channel become activated. The commu-
nications along these paths are executed through the acts of message reception from the subprocess

 as well as in case of . The process appeared in the run (2) as a result of these
actions contains no actions at all; i.e.,

Thus, any run (2) of the process is completed in a normal manner.

Then we should note that the only names allowed by process for transmission along the channels
by are and . We shall show that a reduction will be possible in any run (2)
of if and only if 3-CNF ϕ is satisfiable.

The only act of message transmission along the open communication channel occurs in the subpro-
cess structured so that in the (2) the reduction shall be preceded by the
reduction and cannot be preceded by any communication with acts from the subpro-
cess .

All the acts of message sending along the channel appear only in the subprocesses and
. However, in these actions are meant to send the name along the channel and the

name can be sent along the channel only in the subprocess . In this subprocess, such an
action is preceded by the reception of messages from the communication channels . Therefore,
in the run (2), the reduction can be made if and only if this action is preceded by the
communications along the paths .

The acts of message sending along the indicated channels are contained only in the subprocesses
. In the description of each of subprocesses the activation of communica-

tion channel is preceded by a communication along one of three channels . Denote by
the name of the channel the communication along which in the run (2) preceded the acti-
vation of the channel .

Let us consider set of singled out literals . According to the description of the sub-
processes , each clause of CNF ϕ contains one of the literals of the considered
set. In addition, one can see that the set has no complementary pairs. Actually, if had complementary

pair of literals and , that would mean that in the run (2) communication channels and

CheckAll
1 2 .Nd d … d, , ,

1 2 Nd d … d, , ,
CheckAll r

Collect

h OpenCh
r

r ()ϕ α
r

Collect
h

r
r

OpenCh

r ch g h

1 2 nx x … x, , ,

S,

0Checkϕ= 1Checkϕ= 1 2 Nd d … d, , , r

Collect CheckAll () 0ϕ α = mP
.mP ≡ 0

Procϕ

Procϕ

r ch secret ()
1

ch secret
i iP P +π⎯⎯⎯⎯⎯→

Procϕ

ch
OpenCh ()

1
ch secret

i iP P +π⎯⎯⎯⎯⎯→
()

1
r secret

j jP P +π⎯⎯⎯⎯→
Garbage

r 0Checkϕ=

1Checkϕ= 0Checkϕ= ch r
secret r CheckAll

1 2 Nd d … d, , ,
()

1
r secret

j jP P +π⎯⎯⎯⎯→
1 2 Nd d … d, , ,

1 1
kDCheck k N= , ≤ ≤ 1kDCheck =

kd 1 2 3k k k, ,, , ,
ki,

1 2 3, , ork k k, , ,

kd

{ }: 1
kiL k N= ≤ ≤,

1 1
kDCheck k N= , ≤ ≤ kD

L L
0
kix=,

1*
kix=, ,
AUTOMATIC CONTROL AND COMPUTER SCIENCES Vol. 53 No. 7 2019

582 ABBAS, ZAKHAROV
 would have been activated before the reduction . According to the description of
the subprocesses and , both indicated channels can be activated only after two communications
along the channel are executed. The acts of message sending along the channel occur in subpro-
cesses and ; however, in the section of the run (2), preceding the execution of the reduction

, all the actions of the subprocess are still blocked and the subprocess has

only one act of message sending along the channel . Hence, only one of two channels and can be
activated before the reduction in the run (2).

The existence of a noncontradictory set of literals with at least one literal in common with each clause
in CNF means that CNF ϕ is satisfiable. Thus, if the reduction is executed in
some run of the process , CNF ϕ is satisfiable. On the contrary, if CNF ϕ is satisfiable, it is easy to
make the run of in which the name is transmitted along the open communication channel

. Therefore, is secure with respect to the threat in carrying out the attack if and only
if CNF ϕ is unsatisfiable. Hence, the unsatisfiability of 3-CNF is log-space reducible to checking the secu-
rity of processes from set in the passive adversary model.

CONCLUSIONS
We should note once again that the result of the co-NP-completeness of checking nonrecursive cryp-

tographic protocol models for security is not an essential novelty. The novelty of the result is that it has
been obtained for perhaps the most basic computational model in which it is possible to formulate the task
of checking information security properties. Theorem 1 shows that, even in the simplest setting, when
there are no cryptographic primitives in protocols being checked and an adversary is passive this problem
is intractable.

The passive adversary model and the new understanding of monitoring, which expands the expressive
capabilities of mobile process calculi as a means for specifying cryptographic protocols, worth special
attention. As far as we know, the adversary and its interactions with the protocol were earlier modeled
beyond the limits of the rigid model of π-calculus. We are convinced that the notion of monitoring will
allow developing the general active adversary model correspondent to the Dolev–Yao concept. The pur-
pose of our further research is to create this model and obtain for it results on the complexity of checking
the resistance of protocols similar to the ones determined in articles [4, 11, 21, 24, 29, 31].

Since the check of nonrecursive π-calculus processes appears to be a difficult problem, it is interesting
to find out for which classes of processes this problem is decidable in polynomial time. According to the
proof of theorem 1, this problem is closely related to the check of π-calculus processes for normal termi-
nation. The latter is a topical problem of checking the behavior of systems of interacting processes for cor-
rectness. One of the topics we also consider for further research is that of finding efficiently verifiable suf-
ficient conditions for normal termination of π-calculus processes.

FUNDING

This work was supported by the Russian Foundation for Basic Research, projects nos. 18-01-00854 and 16-01-00714.

CONFLICT OF INTEREST

The authors declare that they have no conflicts of interest.

REFERENCES
1. Abadi, M. and Gordon, A.D., A calculus for cryptographic protocols: The spi calculus, Inf. Comput., 1999,

vol. 148, no. 1, pp. 1–70.
2. Abadi, M. and Fournet, C., Mobile values, new names, and secure communication, Proceedings of the 28-th ACM

Symposium on Principles of Programming Languages, 2001, pp. 104–115.
3. Amadio, M.R. and Lugiez, D., On the reachability problem for cryptographic protocols, Proceedings of the 11-th In-

ternational Conference on Concurrency Theory, 2000, pp. 380–394.

*, ()
1

ch secret
i iP P +π⎯⎯⎯⎯⎯→

S, S ∗
,

mx mx
Garbage Init
()

1
ch secret

i iP P +π⎯⎯⎯⎯⎯→ Garbage Init

mx , *,
()

1
ch secret

i iP P +π⎯⎯⎯⎯⎯→

Procϕ
()

1
ch secret

i iP P +π⎯⎯⎯⎯⎯→
Procϕ

Procϕ secret
ch Procϕ { }secret { }ch

3

AUTOMATIC CONTROL AND COMPUTER SCIENCES Vol. 53 No. 7 2019

EVEN SIMPLE π-CALCULUS PROCESSES ARE DIFFICULT TO ANALYZE 583
4. Amadio, M.R., Lugiez, D., and Vanackere, V., On the symbolic reduction of processes with cryptographic func-
tions, Theor. Comput. Sci., 2003, vol. 290, no. 1, pp. 695–740.

5. Arapinis, M., Liu, J., Ritter, E., and Ryan, M., Stateful applied pi calculus, Proceedings of the Principles of Se-
curity and Trust—Third International Conference, 2014, pp. 22–41.

6. Blanchet, B. and Smith, B., Automated reasoning for equivalences in the applied pi calculus with barriers, Pro-
ceedings of the 29-th IEEE Computer Security Foundations Symposium, 2014, pp. 310–324.

7. Bodei, C., Degano, P., Nielson, F., and Nielson, H.R., Static analysis for the pi-calculus with applications to
security, Inf. Comput., 2001, vol. 168, no. 1, pp. 68–92.

8. Borgstrom, J. and Nestmann, U., On bisimulations for the spi calculus, Math. Struct. Comput. Sci., 2005, vol. 15,
no. 3, pp. 487–552.

9. Bruni, A., Modersheim, S., Nielson, F., and Nielson, H.R., Set-pi: Set membership pi-calculus, Proceedings of
the 28-th IEEE Computer Security Foundations Symposium, 2015, pp. 185–198.

10. Chadha, R., Cheval, V., Ciobaca, S., and Kremer, S., Automated verification of equivalence properties of cryp-
tographic protocols, ACM Trans. Comput. Logic, 2016, vol. 17, no. 4, pp. 1–32.

11. Chevalier, Y., Kusters, R., Rusinowitch, M., and Turuani, M., Deciding the security of protocols with Diffie-
Hellman exponentiation and products in exponents, Proceedings of the 23-rd Annual Conference on the Founda-
tions of Software Technology and Theoretical Computer Science, 2003, pp. 124–135.

12. Chevalier, Y., Kusters, R., Rusinowitch, M., and Turuani, M., An NP decision procedure for protocol insecu-
rity with XOR, Theor. Comput. Sci., 2005, vol. 338, nos. 1–3, pp. 247–274.

13. Chevalier, Y., Kusters, R., Rusinowitch, M., and Turuani, M., Deciding the security of protocols with commut-
ing public key encryption, Electron. Notes Theor. Comput. Sci., 2005, vol. 125, no. 1, pp. 55–66.

14. Chevalier, Y., Kusters, R., Rusinowitch, M., and Turuani, M., Complexity results for security protocols with
Diffie-Hellman exponentiation and commuting public key encryption, ACM Trans. Comput. Logic, 2008, vol. 9,
no. 4, pp. 1–52.

15. Chretien, R., Cortier, V., and Delaune, S., Decidability of trace equivalence for protocols with nonces, Proceed-
ings of the 28-th IEEE Computer Security Foundations Symposium, 2015, pp. 170–184.

16. Cortier, V. and Delaune, S., A method for proving observational equivalence, Proceedings of the 2009 22nd IEEE
Computer Security Foundations Symposium, 2009, pp. 266–276.

17. Curti, M., Degano, P., Priami, C., and Balardi, C.T., Modelling biochemical pathways through enhanced pi-
calculus, Theor. Comput. Sci., 2004, vol. 325, no. 1, pp. 111–140.

18. Delaune, S., Ryan, M., and Smyth, B., Automatic verification of privacy properties in the applied pi calculus,
Trust Manage. II, 2008, vol. 263, pp. 263–278.

19. Dolev, D. and Yao, A., On the security of public key protocols, IEEE Trans. Inf. Theory, 1983, vol. 29, no. 2,
pp. 198–208.

20. Durante, L., Sisto, R., and Valenzano, A., Automatic testing equivalence verification of spi calculus specifica-
tions, ACM Trans. Software Eng. Methodol., 2003, vol. 12, no. 2, pp. 222–284.

21. Durgin, N.A., Lincoln, P., and Mitchell, J.C., Multiset rewriting and the complexity of bounded security pro-
tocols, J. Comput. Secur., 2004, vol. 12, no. 2, pp. 247–311.

22. Godskesen, J.C., Formal verification of the ARAN protocol using the applied pi-calculus, Proceedings of the
Sixth International IFIP WG 1.7 Workshop on Issues in the Theory of Security, 2006, pp. 99–113.

23. Huima, A., Efficient infinite state analysis of security protocols, Proceedings of the Workshop on Formal Methods
and Security Protocols, 1999.

24. Liang, Z. and Verma, R.M., Correcting and improving the NP proof for cryptographic protocol insecurity, Pro-
ceedings of the 5-th International Conference on Information Systems Security, 2009, pp. 101–116.

25. Milner, R., Parrow, J., and Walker, D., A calculus of mobile processes, I and II, Inf. Comput., 1992, vol. 100,
no. 1, pp. 1–77.

26. Milner, R., Functions as processes, Math. Struct. Comput. Sci., 1992, vol. 2, pp. 119–141.
27. Milner, R., Communicating and Mobile Systems—The Pi-Calculus, MIT Press, 1999.
28. Regev, A., Representation and simulation of biochemical processes using the pi-calculus process algebra, Pro-

ceedings of the 6-th Pacific Symposium on Biocomputing, 2001, pp. 459–470.
29. Rusinowitch, M. and Turuani, M., Protocol insecurity with finite number of sessions is NP-complete, Theor.

Comput. Sci., 2003, vol. 299, nos. 1–3, pp. 451–475.
30. Smith, H. and Fingar, P., Business Process Management: The Third Wave, Meghan-Kiffer Press Tampa, 2003.
31. Tiplea, F.L., Enea, C., and Birjoveanu, C.V., Decidability and complexity results for security protocols, in Ver-

ification of Infinite-State Systems with Applications to Security, Amsterdam: IOS Press, 2006, pp. 185–211.
32. Tiu, A. and Dawson, J., Automating open bisimulation checking for the spi calculus, Proceedings of the 23rd

IEEE Computer Security Foundations Symposium, 2010, pp. 307–321.
33. Walker, D., Objects in the π-calculus, Inf. Comput., 1995, vol. 116, no. 4, pp. 253–271.

Translated by S. Kuznetsov
AUTOMATIC CONTROL AND COMPUTER SCIENCES Vol. 53 No. 7 2019

	INTRODUCTION
	Syntaxis and Semantics of p-Calculus
	Passive Adversary Model
	Complexity of the Security Checking Problem for Processes

	CONCLUSIONS
	REFERENCES

		2020-02-27T10:31:03+0300
	Preflight Ticket Signature

