
ISSN 0146-4116, Automatic Control and Computer Sciences, 2018, Vol. 52, No. 7, pp. 843–849. © Allerton Press, Inc., 2018.
Original Russian Text © V.S. Vasilev, A.I. Legalov, 2018, published in Modelirovanie i Analiz Informatsionnykh Sistem, 2018, No. 4, pp. 347–357.
Loop-invariant Optimization in the Pifagor Language1

V. S. Vasileva, * and A. I. Legalova, **
aSiberian Federal University, Institute of Space and Information Technology, Krasnoyarsk, 660074 Russia

*e-mail: vsvasilev@sfu-kras.ru
**e-mail: legalov@mail.ru

Received March 15, 2018

Abstract—The paper considers methods of program transformation equivalent to optimizing the cycle
invariant, applied to the functional data-flow model implemented in the Pifagor programming lan-
guage. Optimization of the cycle invariant in imperative programming languages is reduced to a dis-
placement from the cycle of computations that do not depend on variables that are changes in the loop.
A feature of the functional data f low parallel programming language Pifagor is the absence of explicitly
specified cyclic computations (the loop operator). However, recurring calculations in this language
can be specified recursively or by applying specific language constructs (parallel lists). Both mecha-
nisms provide the possibility of parallel execution. In the case of optimizing a recursive function,
repeated calculations are carried out into an auxiliary function, the main function performing only the
calculation of the invariant. When optimizing the invariant in computations over parallel lists, the cal-
culation of the invariant moves from the function that executes over the list items to the function con-
taining the call. The paper provides a definition of “invariant” applied to the Pifagor language, algo-
rithms for its optimization, and examples of program source codes, their graph representations (the
program dependence graph) before and after optimization. The algorithm shown for computations
over parallel lists is applicable only to the Pifagor language, because it rests upon specific data struc-
tures and the computational model of this language. However, the algorithm for transforming recur-
sive functions may be applied to other programming languages.

Keywords: data driven functional parallel programming, Pifagor programming language, code optimi-
zation, loop optimization, invariant optimization, program dependence graph
DOI: 10.3103/S0146411618070295

INTRODUCTION
Optimization is a process of equivalent conversion that eliminates redundant calculations, the execu-

tion of which does not affect the program execution path. Such conversions improve the required charac-
teristics of the program. One such transformation, widely used in imperative programming, is the loop-
invariant optimization [1]. A calculation is called a loop-invariant if for a certain group of operators it gives
the same result regardless of how many times the body of the cycle is executed. When performing loop-
invariant code motion, such calculations are removed from the loop body and placed in front of him,
thereby reducing the amount of calculations [2].

Features of loop-invariant optimization in imperative languages, you can consider the following simple
example on the C++ programming language.

1 The article was translated by the authors.

int inv (int n, int p) { int inv (int n, int p) {

int s = 0; int s = 0;

int i = 0; int i = 0;
int inv_n = n-2;

int inv_p = p*3;

while (i < n-2) { while (i < inv_n) {

s += p*3; s += inv_p;
843

844 VASILEV, LEGALOV
The part of code on the left side contains the loop, that at each iteration calculates n – 2 and p*3. It is
possible to remove these operations from the loop, because the variables n and p do not change inside the
loop. The optimized version of the program is shown in the right side.

The Pifagor language is developed as a tool for writing architecture-independent parallel programs. It
is based on the data-flow computing principle [3]. The program in this language consists of functions,
each of which uniquely mapped in the dataflow graph (DFG) which reflects data dependencies between
operators [4].

The DFG is acyclic because the Pifagor uses the principle of the single use of computational resources,
which essentially reinforces the principle of single assignment [5]. This graph can be used to perform var-
ious optimizing transformations that ensure the generation of more efficient executable code. Specificity
underlying computing language model, allows to generate recurring calculations, either recursively, or
through parallel lists operations.

1. INVARIANT OPTIMIZATION IN A RECURSIVE FUNCTION
An invariant of the recursive function, by analogy with the loop invariant, we will consider calcula-

tions, the result of which will not change during the repeated execution inside recursive calls. Such calcu-
lations depend on constants and values that cannot be changed between recursive calls.

Below is a function in the Pifagor language, which describes calculations similar to the C++ example
described above. Figure 1 shows the DFG of this function. The argument passed to the function is a list
containing four values, which are named similarly to the variables from the previous example.

rec_inv << funcdef X {
i << X:1;
n << X:2;
s << X:3;
p << X:4;
[((i, (n,2):-):[=>, <]):?]^(
s,
{
block {
next_s << (s, (p,3):*):+;
break << ((i,1):+, n, next_s, p)
:rec_inv;

}
}

):. >> return;
}
In this example:
• the immutable arguments are “n” and “p“ (the second and fourth elements of the list “X”, respec-

tively);
• invariants are calculations “(n,2):-”, “(p,3):*”, as well as operations inside the parallel list “[=>, <]”.

From Fig. 1 it can be seen that these calculations do not depend on changing arguments of a recursive
function (“i” and “s”).

Forming a parallel list “[=>, <]” is formally an invariant, but it cannot be optimized, since this value
is passed to the function as an additional argument, but according to the transformation algebra, the par-
allel list disclosured when performing such operation [5].

To detect invariant of recursive function, it is necessary:
• build a set Args of nodes that are function arguments;

++i; ++i;

} }

return s; return s;

} }
AUTOMATIC CONTROL AND COMPUTER SCIENCES Vol. 52 No. 7 2018

LOOP-INVARIANT OPTIMIZATION IN THE PIFAGOR LANGUAGE 845

Fig. 1. The DFG of a recursive function with invariant.

2 n

>

–

i

1

+

+

?

<=

p

*
s

3

next_s

rec_inv

return .
• select a subset ConstArgs of immutable arguments from Args;
• select the invariant from the set of program operators(set Invs), using the following method: a graph

node is an element of this set if it does not perform the operation of forming a parallel list and has data
dependencies only on constants that are elements of ConstArgs and other elements of Invs.

To optimize the function F, containing invariant performed to creation of auxiliary function G. Calcu-
lations of invariants from the F function are transferred to G. Also in the function G is added to the call of
F, herewith the results of the invariant calculation are passed ton F as additional arguments. In the F func-
tion, use values of the invariants are replaced by the use of appropriate arguments. Figure 2 shows the
DFG considered above function after optimization. The following listing is the code in Pifagor after opti-
mization.

rec_inv_opt_h << funcdef X {
i << X:1;
n << X:2;
s << X:3;
p << X:4;
inv_n << X:5;
inv_p << X:6;
[((i, inv_n):[=>, <]):?]^(
s,
{
block {
next_s << (s, inv_p):+;
break << ((i,1):+, n, next_s, p, inv_n, inv_p)
:rec_inv_opt_h;
AUTOMATIC CONTROL AND COMPUTER SCIENCES Vol. 52 No. 7 2018

846 VASILEV, LEGALOV
}
}

):. >> return;
}
rec_inv << funcdef X {
n << X:2;
p << X:4;
inv_n << (n,2):-;
inv_p << (p,3):*;
return << (X:[], inv_n, inv_p)
:rec_inv_optimization_h;

}
It should be noted that the optimization results are formed in the intermediate representation without

generating the source code. In this article, the source code of the functions is provided only for a visual
demonstration of the results of the optimization carried out.

2. OPTIMIZATION OF INVARIANT IN CALCULATIONS WITH PARALLEL LISTS
In some cases, it is possible to replace recursive calculations in the Pifagor language with parallel lists

operations, which allow you to specify the simultaneous processing of all data by a single function. In this
way possible to achieve higher efficiency of paralleling than using recursion, in particular, it is possible to
translate such constructions into parallel loops of some languages and libraries of parallel programming.

In accordance with the transformation algebra of the data-flow model, applying a function to a parallel
list transforms into many parallel operations, such that this function is applied in parallel to each element
of this list:

A list item can be both an atom and a data list. Duplicate calculations with parallel lists can be seen in
the following example. Suppose there is a data list , each element must be multiplied
by a value . To perform such operation as described above, it is necessary to create a parallel list of pairs

 and apply the multiplication operation to it. This situation arises frequently. At the same time,

, , ... : → : , : , ... :1 2 1 2[] [].n nx x x f x f x f x f

= , , ...1 2()nXList x x x
Y

,()ix Y
AUTOMATIC CONTROL AND COMPUTER SCIENCES Vol. 52 No. 7 2018

Fig. 2. The DFG of the recursive function after optimization of the invariant.

<= > inv_n

?

i
1 inv_p s

+ +n p inv_n inv_p

rec_inv_opt_h

.return

LOOP-INVARIANT OPTIMIZATION IN THE PIFAGOR LANGUAGE 847

Fig. 3. A fragment of the graph that specifies repeating computations on lists.

YData

dup

I
YList

arg nums

arg

Result

XList XList

foo

[]

#

instead of a multiply operation, another function can be used, for example, foo. The generalized source
code for this case will look like this:

Len << XList:|;
YList << (Y, Len):dup;
(XList, YList):#:[]:foo;
This example calculates the length Len of the list XList, which elements are processed. The Len value

is used when performing the duplicate operation (dup) that forms the list of data YList. This list consists
of Len duplicates of Y values. The XList and YList are placed in another list (tuple). A transposition oper-
ation (#) is applied to this tuple, the result of which is the desired list of pairs. Then, the list of pairs is
converted into a parallel list by the [] operator, to which the foo function is applied. Each element of the
YList is equal to Y, this value will be the second argument of the foo function. Thus, calculations depending
on Y and constants will be an invariant and can be optimized.

For the proposed method of optimization is crucial that part of the data is duplicated (operation dup is
performed). Duplicate data are constant parameters. In this case, the invariant is the calculation in the foo
function, depending only on constants, constant parameters and other invariants. Such an invariant can
be moved from the foo function to the calling function.

To identify constant parameters in the function that implements the calculations on the parallel list,
the optimizer searches in the DFG fragments, the scheme of which is shown in Fig. 3. YList contains
duplicate data, in the general case there can be several such lists.

The search for invariants inside the foo function is performed in the same way as for recursive func-
tions, only the method of defining immutable arguments differs (ConstArgs). The invariant is moved to the
calling function, and the result of its calculation is passed to foo as an additional argument.

As an example, consider the rotation function around the axis of a three-dimensional shape given by a
list of points. The function takes two parameters – the shape (Figure) and the angle in radians
(Alpha_rad), which is required to rotate. To rotate the point, use the x_rotate function. To apply it to all
points, the number of points (PointsCount) in the Figure is determined and a list of corners (Angles) is cre-
ated, the length of Angles is PointsCount. To rotate a point, the matrix-row containing the coordinates of
the point is multiplied by the corresponding rotation matrix.

figure_rotate << funcdef X {
Figure << X:1;
Alpha_rad << X:2;
PointsCount << Figure:|;
Angles << (Alpha_rad, PointsCount):dup;
return << (Figure, Angles):#:[]:x_rotate;

}
// rotation of point X in three-dimensional space
AUTOMATIC CONTROL AND COMPUTER SCIENCES Vol. 52 No. 7 2018

848 VASILEV, LEGALOV
// around the x-axis on alpha_rad
x_rotate << funcdef X {
Point3d << X:1;
Alpha_rad << X:2;
cosA << Alpha_rad:cos;
sinA << Alpha_rad:sin;
rotMartix << (
(1, 0, 0),
(0, cosA, sinA:-),

(0, sinA, cosA)
);
return << ((Point3d), rotMartix):matrix_mul;

}
As a result of the optimization of the shape rotation function, construct a graph equivalent to the fol-

lowing code fragment:
1 figure_rotate_inv_opt << funcdef X {
2 Figure << X:1;
3 Alpha_rad << X:2;
4
5 PointsCount << Figure:|;
6 Angles << (Alpha_rad, PointsCount):dup;
7
8 cosA << Alpha_rad:cos;
9 sinA << Alpha_rad:sin;
10
11 rotMartix << (
12 (1, 0, 0),
13 (0, cosA, sinA:-),
14 (0, sinA, cosA)
15);
16
17 rotMatrices << (rotMartix, PointsCount):dup;
18
19 return << (Figure, Angles, rotMatrices):#:[]:x_rotate_inv_opt;
20 }
21
22 x_rotate_inv_opt << funcdef X {
23 Point3d << X:1;
24 Alpha_rad << X:2;
25 rotMartix << X:3;
26
27 return << ((Point3d), rotMartix):matrix_mul;
28 }
The invariant was the computation of sine, cosine of an angle, and the operation of forming a rotation

matrix. In the optimized code, all calculations are performed only once, regardless of the number of points,
but the resulting matrix is duplicated (the list rotMatrices), since they are included in the figure_rotate_inv_opt
function (lines 5–17).

Thus, if the F function contains a call to the foo function on a parallel list and there is an invariant, then
the optimization can be performed using the following algorithm.

(1) In the F function, find the node of the function call, whose argument is such a list that one or more
of its elements is the result of the dup operation.
AUTOMATIC CONTROL AND COMPUTER SCIENCES Vol. 52 No. 7 2018

LOOP-INVARIANT OPTIMIZATION IN THE PIFAGOR LANGUAGE 849
(2) Create a list ConstArgNums indices of constant arguments of the F.
(3) In the func function, find and save invariants in the list Invs. Taking into account that arguments

with indices from the list textit ConstArgNums are constants. A Inv node belongs to the set Invs if it:
(4) is an actor;
• is in the zero delayed list;
• depends by data only on constants, arguments (ConstArgNums) and other invariants;
• not a grouping operation in a parallel list.
(4) Move invariants from func to F.
(5) Find the use of moved invariants in the func; create a list UsingInvs from nodes whose values are

missing in the func function. For the above example, the invariant will be, for example, the list grouping
operation (0, cosA, sinA:-), however, this value is not directly used in the x_rotate_inv_opt function there-
fore it is not added in the UsingInvs.

(6) In function F, add the results of calculating the elements of UsingInvs as parameters of the func
function. For this, duplicate by the built-in function dup. In the above example, add into figure_rotate_-
inv_opt:

rotMatrices << (rotMartix, PointsCount):dup;
(7) In the function func add the code for extracting the calculated values of the invariants from the

argument list of the function. In particular, for the rotation function, add to x_rotate_inv_opt
rotMartix << X:3;

3. CONCLUSIONS
The article for the Pifagor language shows the possibility of carrying out transformations that are equiv-

alent to optimizing the cycle invariant for two cases: recursive function and parallel lists. Invariant-opti-
mization of the recursive function may be applicable to other programming languages, however, such
optimization for computations on parallel lists is based on specific language constructs and can be used
only in the Pifagor. In both variants of optimization we consider the function, which body is executed
multiple times. The optimizer searches for fragments in the body of this function, the result of which will
be the same for all function calls. These fragments are moved out of function and calculated once (and
passed to the function as additional arguments) – therefore, the transformation reduces the amount of
computation. The presented optimization methods are carried out after the translation of the source code of
functions, thereby providing an architecturally independent analysis of the program code. Other transforma-
tions of data-flow parallel programs, including verification, testing, debugging, as well as conversion to archi-
tecture-dependent forms, can be carried out after applying the proposed optimization methods.

ACKNOWLEDGMENTS
The research is supported by RFBR (research project no. 17-07-00288).

REFERENCES
1. Aho, A.V., Lam, M.S., Ravi Sethi, and Ullman, J.D., Compilers: Principles, Techniques, and Tools, 2006, Addi-

son Wesley, 2nd ed.
2. Dortman, P.A., Program optimization in SFP, in Programmnye sredstva i matematicheskie osnovy informatiki

(Software Tools and Mathematical Foundations of Informatics), Novosibirsk, 2004, pp. 43–49.
3. Legalov, A.I., Matkovsky, I.V., Kropacheva, M.S., Udalova, Y.V., and Vasilev, V.M., Technological aspects of

creating, converting and executing functional data-flow parallel programs, Scientific Service on the Internet: All
Facets of Parallelism: Proceedings of the International Supercomputer Conference, Moscow, 2013, pp. 443–447.

4. Legalov, A.I., Vasilyev, V.S., Matkovskii, I.V., and Ushakova, M.S., Support tools for creation and transforma-
tion of functional-dataflow parallel programs, Tr. Inst. Sist. Progr. Ross. Akad. Nauk, 2017, vol. 29, no. 5,
pp. 165–184.

5. Legalov, A.I., Functional language for creating of architectural independent parallel programs Comput. Tech-
nol., 2005, vol. 10, no. 1, pp. 71–89.
AUTOMATIC CONTROL AND COMPUTER SCIENCES Vol. 52 No. 7 2018

	INTRODUCTION
	1. INVARIANT OPTIMIZATION IN A RECURSIVE FUNCTION
	2. OPTIMIZATION OF INVARIANT IN CALCULATIONS WITH PARALLEL LISTS
	3. CONCLUSIONS
	ACKNOWLEDGMENTS
	REFERENCES

