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Abstract—A periodic boundary value problem is considered for one of the first versions of the Kuramoto–
Sivashinsky equation, which is widely known in mathematical physics. Local bifurcations in a neighbor-
hood of spatially homogeneous equilibrium points are studied in the case when they change stability. It is
shown that the loss of stability of homogeneous equilibrium points leads to the occurrence of a two-dimen-
sional local attractor on which all solutions are periodic functions of time, except for one spatially inhomo-
geneous state. The spectrum of frequencies of this family of periodic solutions fills the entire number line,
and all of them are unstable in the sense of Lyapunov’s definition in the metric of the phase space (the space
of initial conditions) of the corresponding initial boundary value problem. As the phase space, a Sobolev
functional space natural for this boundary value problem is chosen. Asymptotic formulas are given for peri-
odic solutions filling the two-dimensional attractor. To analyze the bifurcation problem, analysis methods
for an infinite-dimensional dynamical system are used: the integral (invariant) manifold method combined
with the methods of the Poincaré normal form theory and asymptotic methods. Analyzing the bifurcations
for the periodic boundary value problem is reduced to analyzing the structure of the neighborhood of the
zero solution to the homogeneous Dirichlet boundary value problem for the equation under consideration.
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INTRODUCTION
One of the most traditional versions of the Kuramoto–Sivashinsky equation (KSE) is dealt with in this

paper [1–3]. The periodic boundary value problem (BVP) for this equation is studied. Several papers have
been devoted to this problem [4–10]. The problem of local bifurcations has been considered. Most of these
papers were based on reducing the BVP to a finite-dimensional dynamical system. As a rule, one version
of the Galerkin method was used for such a reduction (see, for example, [5]). Thereafter, the resulting sys-
tem of ordinary differential equations was analyzed, and local bifurcations for it were studied. Generally,
such an analysis led to the establishment of conditions under which either Andronov–Hopf or Turing–
Prigogine bifurcations occur, that is, the conditions were established under which cycles or spatially inho-
mogeneous solutions can be found for a finite-dimensional dynamical system.

An analysis of this problem without using the Galerkin method or other methods for reducing the
problem to its finite-dimensional analog revealed the possibility of bifurcation of a two-dimensional local
attractor the solutions on which are periodic functions of time, and all these solutions are unstable in the
sense of Lyapunov’s classical definition. These results were obtained based on strict mathematically
grounded methods for analyzing infinite-dimensional dynamical systems. The possibility of such a bifur-
cation was also noted earlier when studying other dynamical systems [11, 12]. The results presented below
formed the basis for the authors' report at the conference “New Trends in Nonlinear Dynamics,” which
took place from October 5 through October 7, 2017 [13].

1. STATEMENT OF THE MATHEMATICAL PROBLEM
We consider periodic BVP

(1)τ ξξξξ ξξ ξ+ α + β + γ = ,2 0w w w ww
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(2)
where  The differential equations in partial derivatives (1) is usually called the Kur-
amoto–Sivashinsky equation (see, for example, [1–3]). Changes

make it possible to rewrite the BVP in a normalized form, thus reducing the number of parameters in the
equation. From now on, we will study BVP

(3)
(4)

where  It is assumed in this equation that 

We note certain properties typical of the solutions to BVPs (3) and (4).
First,  is a solution to this problem. Second, if  is its solution, then

Indeed, we have 

Therefore, relations

In BVPs (3) and (4), we put

This change allows us to reduce BVPs (3) and (4) to auxiliary BVP

(5)

(6)
In ВVPs (5) and (6), the linear differential operator (LDO)  is defined by equality

and depends on the parameter  We emphasize that the value of  is arbitrary. LDO  which is
defined on sufficiently smooth functions  satisfying conditions (6), is the generating operator of an
analytic semigroup of linear bounded operators in Hilbert space  if

We let  denote the Hilbert space consisting of -periodic functions  having generalized deriv-
atives up to order  that belong to space  A norm in  can be defined by equality

Finally,  and consists of functions  such that  If BVP (3), (4) is supple-
mented with initial condition

(7)
combined (initial boundary value) problem (5)–(7) will be locally correctly solvable and its solutions form
local semiflow
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Note that BVP (5), (6) has a zero-equilibrium point. In particular, the problems of the behavior of solu-
tions to auxiliary BVP (5), (6) with the initial conditions  as  will be considered in
this study. Here,  denotes a ball of radius  centered at zero of the phase space of solutions to BVP (5), (6)
(that is, the ball centered at zero of the Hilbert space 

2. LINEARIZED BOUNDARY VALUE PROBLEM
In this section, we consider a linearized version of BVP (5), (6), that is, BVP

(8)

(9)

where LDO  has been defined in the previous section.
We can verify in a standard manner that BVP

has nontrivial solutions

if  and 

We emphasize that  and does not depend on  In our case, quantity  plays
the role of a parameter, and only  depends on . We also note that  The family of
eigenfunctions of the LDO under consideration , forms a complete orthogonal
system in separable Hilbert space  These remarks imply the assertion.

Lemma 1. The solutions to BVP (8), (9) are asymptotically stable if  and unstable if  If 
the solutions are stable.

The zero solution to nonlinear BVP (5), (6) is asymptotically stable for , and it is unstable for
 With , the critical case concerning the stability of the zero solution to the BVP is realized. For

this , we have  This pair of eigenvalues is associated with eigenfunctions 
For the other eigenvalues of LDO , inequalities  hold.

3. THE MAIN RESULT
We consider nonlinear BVPs (3), (4) and (5), (6) with  In this section, it is convenient to

assume that  This choice of  is due to the convenience when stating the main result.

Theorem 1. There exists positive constant  such that for all  BVP (5), (6) for any 
has unique stable limit cycle  belonging to sufficiently small neighborhood  All solutions with
sufficiently small initial conditions approach  in the sense of the norm of the phase space with an
exponential rate. For solutions forming this cycle, we have asymptotic formula

(10)

where 
With , we obtain not a cycle but a one-dimensional invariant manifold filled with spatially inho-

mogeneous equilibrium points of BVP (5), (6). In the case of general position , the Andronov–
Hopf bifurcation theorem is applicable. When analyzing BVP (5), (6), we should take into account its
characteristic feature lying in the fact that Eq. (5) depends on parameter  This problem has a cycle for

any , and only the period depends on :  Theorem 1 can be proven in a rather standard
manner. The derivation of (10), as well as the above-mentioned fact about the nature of the dependence
on parameter  require detailed explanation. This will be done in the next section (that is, in Section 4).
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Obviously, equality

(11)

defines a two-parameter family of periodic solutions to BVP (3), (4) if  The two-parameter

family of solutions (11) forms two-dimensional invariant manifold  which geometrically is the direct
product of cycle  and a line. All other solutions from its small neighborhood approach  at an
exponential rate with an exponent that does not depend on  (recall that  does not depend on ).
Therefore,  is a local attractor for solutions to BVP (3), (4).

On the other hand, all solutions  are individually unstable in the norm of space 
To see this, we consider two distinct solutions from the family of periodic solutions (11), that is,

 and , and single out the leading parts in the asymptotic representa-
tions for these two solutions:

Put  Then, we have

Direct calculations show that

Calculations for other terms are similar; finally, we arrive at

Without loss of generality, we can assume that  We put

With  chosen in this way, inequality

holds. Therefore, for sufficiently small , inequality

is valid. On the other hand, with sufficiently small  and , we have

where  is an arbitrarily small positive constant. The last remark proves that any solution from family (11)
is unstable.

4. AUXILIARY BOUNDARY VALUE PROBLEM
In this section, we consider another auxiliary BVP
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which is also of independent interest. Here,  and the LDO is 

whose domain of definition contains sufficiently smooth functions  satisfying boundary conditions

The spectrum of LDO  consists of a countable set of eigenvalues  which

are associated with eigenfunctions  All eigenvalues of this LDO are real and of multiplicity

one. In particular,  that is,  Nonlinear BVP (12), (13) has a zero equilibrium point for
which a case close to the critical case of the simple zero eigenvalue is realized. In a neighborhood of the
zero solution to BVP (12), (13), there exists one-dimensional invariant manifold  Other solutions in
the vicinity of the zero solution to BVP (12), (13), approach  with time at an exponential rate. The
dynamics of solutions on  is governed by scalar first-order equation (the normal form (NF))

(14)

It is advisable to seek solutions on  in form

(15)

Here,  are solutions to NF (14),  and functions , belong
to the following class of functions:  if

(1) for a fixed  .
(2) The function has continuous partial derivatives with respect to  and . 
(3) The function satisfies hinge support boundary conditions (13).

(4) Equalities  hold.

Upon substituting sum (15) into BVP (12), (13) and equating the terms at the same powers of ,
we obtain inhomogeneous BVPs to determine the terms of (15):

(16)

(17)

where the LDO is  The derivatives of  should be calculated using Eq. (14),
that is, the NF. Therefore, we have

An analysis of the solvability of BVP (16), (17) has shown that

We now consider a truncated version of NF (14), namely, ordinary differential equation

which has three equilibrium points:  Zero equilibrium point  is unstable,
while nontrivial equilibrium points  and  are asymptotically stable. The following assertion is true.

Theorem 2. There exists  such that for all  BVP (12), (13) has two asymptotically stable
equilibrium points
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Note that equality

remains valid; that is, physically, we have the same equilibrium point but in another system of coordinates.
Therefore, equilibrium point  is dealt with in the sequel.

We extend function  to interval  to be an odd function and then to the entire number line
to be a periodic function with a period of  Resulting function  is an equilibrium point of BVP

(18)

(19)
When verifying this assertion, we use the fact that Eq. (18) is invariant for odd functions. Indeed, if

 is an odd function of variable  then all terms in the left-hand side of Eq. (18) preserve this property.
We now consider family of functions  where  for each  and ,

this family gives a periodic solution to auxiliary BVP (5), (6) with the preservation of stability of equilibrium
point  in the sense that periodic solution  is orbitally asymptotically stable. The last fragment of
this section completes the proof of formula (10). We also note that equilibrium point  undoubtedly leads
to the same family of periodic solutions. Equilibrium points  and  of BVP (18), (19) are associ-
ated with different representatives of the family of periodic solutions (10). They differ in phase value.

In conclusion, we note that solution  has a period of  if  and quantity 
assumes any value in 

ACKNOWLEDGMENTS
This study was supported by the Ministry of Education and Science of the Russian Federation (project

no. 1.10160.2017/5.1) and the Russian Foundation for Basic Research (project no. 18-01-00672).

REFERENCES
1. Kuramoto, Y., Chemical Oscillations, Waves and Turbulence, Berlin: Springer, 1984.
2. Sivashinsky, G.I., Weak turbulence in periodic flows, Phys. D: Nonlinear Phenom., 1985, vol. 17, no. 2, pp. 243–255.
3. Akhmediev, N. and Ankevich, A., Dissipativnye solitony (Dissipative Solitons), Moscow: Fizmatlit, 2008.
4. Armbruster, D., Guckenheimer, J., and Holmes, P., Kuramoto–Sivashinsky dynamics on the center-unstable

manifold, SIAM J. Appl. Math., 1989, vol. 49, no. 3, pp. 676–691.
5. Kevrekidis, I.G., Nicolaenko, B., and Scovel, J.C., Back in the saddle again: A computer assisted study of the

Kuramoto–Sivashinsky equation, SIAM J. Appl. Math., 1990, vol. 50, no 3, pp. 760–790.
6. Nicolaenko, B., Scheurer, B., and Temam, R., Some global dynamical properties of the Kuramoto–Sivashinsky

equations: Nonlinear stability and attractors, Phys. D: Nonlinear Phenom., 1985, vol. 16, no. 2, pp. 155–183.
7. Changpin, Li and Zhonghua, Y., Bifurcation of two-dimensional Kuramoto–Sivashinsky equation, Appl. Math.

JCU, 1998, vol. 13, no. 3, pp. 263–270.
8. Kulikov, A.N. and Kulikov, D.A., Formation of wave-like nanostructures on the surface of f lat substrates during

ion bombardment, Zh. Vychisl. Mat. Mat. Fiz., 2012, vol. 52, no. 5, pp. 800–814.
9. Kulikov, A.N. and Kulikov, D.A., Bifurcations of spatially inhomogeneous solutions in two boundary value

problems for the generalized Kuramoto–Sivashinsky equation, Vestn. Mosk. Inzh.-Fiz. Inst., 2014, vol. 3, no. 4,
pp. 408–415.

10. Kulikov, A.N. and Kulikov, D.A., Inhomogeneous solutions for a modified Kuramoto–Sivashinsky equation,
J. Math. Sci., 2016, vol. 219, no. 2, pp. 173–183.

11. Kulikov, A.N., Attractors of two boundary-value problems for a modified non-linear telegraph equation,
Nelineinaya Din., 2008, vol. 4, no. 1, pp. 57–68.

12. Glyzin, S.D. and Kolesov, A.Yu., An example of an attractor consisting of periodic Lyapunov-unstable periodic
trajectories, Model. Anal. Inf. Syst., 2008, vol. 15, no. 2, pp. 94–95.

13. Kulikov, A.N. and Kulikov, D.A., The Kuramoto–Sivashinsky equation: The existence of an attractor all solu-
tions on which are unstable, Tezisy dokladov mezhdunarodnoi nauchnoi konferentsii Novye tendentsii v nelineinoi
dinamike (Abstracts of the International Scientific Conference New Trends in Nonlinear Dynamics), Yaroslavl,
2017, pp. 50–51.

Translated by N. A. Berestova

− +, ε = − π − , ε( ) ( )w y w y

+S

+ , ε( )w y −π,[ 0]
π.2 + , ε( )yv

( )+ + + ε + = ,211 ( ) 0
12t yyyy yy yv v v v

, + π = , , = .0( 2 ) ( ) ( ) 0t y t y Mv v v

,( )t yv ,y

+, , , ε = + σ + ϕ ,ε ,0( ) ( )p t x c x tv v σ = −2 ;c c ϕ0

+S , , , ε( )p t x cv

− , ε( )w y
+ , ε( )yv − ,( )y zv

, , , ε( )p t x cv = π/2T c ≠ 0c T
+.R
AUTOMATIC CONTROL AND COMPUTER SCIENCES  Vol. 52  No. 7  2018


	INTRODUCTION
	1. STATEMENT OF THE MATHEMATICAL PROBLEM
	2. LINEARIZED BOUNDARY VALUE PROBLEM
	3. THE MAIN RESULT
	4. AUXILIARY BOUNDARY VALUE PROBLEM
	ACKNOWLEDGMENTS
	REFERENCES

