
ISSN 0146-4116, Automatic Control and Computer Sciences, 2018, Vol. 52, No. 3, pp. 231–242. © Allerton Press, Inc., 2018.
Published in Russian in Avtomatika i Vychislitel’naya Tekhnika, 2018, No. 3, pp. 55–69.
Algorithms for Indicating the Beginning of Accidents Based
on the Estimate of the Density Distribution Function

of the Noise of Technological Parameters1

T. A. Alieva, N. F. Musaevab, *, and M. T. Suleymanovaa

aInstitute of Control Systems of the ANAS, Baku, AZ1141 Azerbaijan
bAzerbaijan University of Architecture and Construction, Baku, AZ1073 Azerbaijan

*e-mail: musanaila@gmail.com
Received April 28, 2017; in final form, December 30, 2017

Abstract—A technology has been developed, which allows for calculating the probability density func-
tion of noise, its maximum and inflection points, using the discrete values of a signal corrupted by an
additive random noise. Computational experiments have been conducted. It has been demonstrated
that knowledge of those characteristics of noise allows systems of monitoring, control, diagnostics,
forecasting, identification, management, etc. to register not only the initial period of fault origin, but
also the moment when preventive maintenance measures, routine or major overhaul works are
required.
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1. INTRODUCTION
It is a known fact that in most cases signals transmitted and received in diagnostics, forecasting, con-

trol, identification and other systems are distorted by external disturbances, which are regarded as inter-
ferences. Causes and sources of additive interferences (or noises)  that are superimposed on the useful
signal  and lead to the appearance of the noisy signal  can be a variety of factors.
In this case, if the cause of the noise is known and it is regular, then there are many methods for its elim-
ination [1–5]. However, noise is very diverse both in its origin and in its physical properties. Therefore,
the methods of managing them differ somewhat from each other, for instance, methods of noise suppres-
sion; building receivers that are noise-insensitive; minimization of noise transmission through communi-
cation channels, filtration methods, etc. [2–5].

However, among many different types of noise, there are also those caused by the influence of various
destabilizing factors, such as defects, wear, corrosion, cracks, breakdowns and other malfunctions of
equipment, devices, structures, engine, mechanism, motor, etc. [6, 7]. To solve these problems, methods
for calculating the noise characteristics of noisy signals are developed [6–11]. In such cases, the noise sig-
nals the onset of defects or malfunctions. Such random noise, as a rule, appears as early as at the initial
stage of an incipient defect, when nothing is known about the defect itself in practice and it cannot be
detected. For instance, the noise caused by the presence of contamination or water vapor at the joint of
two metals, noise from the influence of microcavities in the walls of the well during logging, etc. [4]. Infor-
mation about the existence of defects arrives much later, only when they assume a clearly expressed form
and a repair is required. Therefore, if we detect such noise in time and calculate their characteristics, they
can become informational, allowing us to find out the nature of defects at an early stage, and thus prevent
possible breakdowns, failures, accidents, etc. In this case, the information about the noise is useful infor-
mation about the abnormal situation that has occurred, and the noise itself is regarded as the carrier of this
information.

It is known that the interference is of random nature and is a random function with random amplitude
and phase and a higher frequency than the useful signal. In addition, it is traditionally assumed that inter-

1 The article is published in the original.
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ference is white noise and is described by a normal distribution law with a zero mathematical expectation
[1–5]. However, in practice, white noise is regarded as a mathematical idealization, since all real pro-
cesses always have a spectral density decreasing at very high frequencies, and therefore have a finite cor-
relation time  and a limited average power [5].

But this information alone is not sufficient to solve the aforementioned problems, since such basic
characteristics of random noise as high-order moments, the distribution density function, probability of
random noise getting into some interval remain unknown. At the same time, it is these characteristics that
contain a sufficient amount of information about the properties of the noise and are exhaustive for solving
the above problems.

There are appropriate formulas to calculate the characteristics of noise in the theory of analysis of ran-
dom processes [4, 5]. However, for the practical application of these formulas, it is necessary to know the
discrete values of the additive random noise , which cannot be isolated from the noisy signal .
Therefore, in practice, we confine ourselves to calculating the characteristics of the noisiest random pro-
cess , forming and controlling observations [11–15], suppressing noise [3], determining the stopping
time [2], etc.

At the same time, the extraction of useful components from noisy recorded signals or the determina-
tion of the characteristics of noise and interference to extract useful information from them is one of the
principal objectives of primary signal processing [5, 12–15]. Therefore, the present paper proposes a
detection technology based on discrete observations representing an additive mixture of unobserved useful
signal and normally distributed random noise  with a zero mathematical expectation, the density dis-
tribution function of the noise and the resulting characteristics.

2. PROBLEM STATEMENT
In the time interval , a continuous random stationary ergodic noisy technological process
 is observed, consisting of the sum of the random useful component  and random noise ,

which are also stationary ergodic and cannot be isolated from . The random process  contains
information about one technological parameter being examined, e.g., temperature, pressure, f low, etc.
and can comply with different distribution laws.

For the random process , it is possible to calculate selective estimates of such characteristics as
mathematical expectation , variance , mean square deviation , correlation function  from
to the formulas:

(1)

where , τ = 0, , , ,… is the time shift.
The useful component  evaluates the current state of the process under study. It is known a priori

that the noise in a system of monitoring, control, diagnostics, forecasting, management, identification,
etc. is caused by defects, faults, malfunctions, etc. and has normal distribution  and zero mean

. Moreover, within the amplitude-frequency characteristic of the system under investigation at the
time of the defect generation, the correlation time of the noise  is much shorter than that of the useful
signal .

Since the stationary random noise  is ergodic, its mathematical expectation  and the mean
square deviation  have the same value for any of the random functions in the set. Therefore, the density
function of the normal distribution  of the noise can be represented as:
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(2)

It is obvious from formula (2) that to determine the density function of the distribution  of the
noise  one must know the mean square deviation , which is unknown, and its value cannot be iso-
lated from the noisy process . Then, in the form and dynamics of the change in the density function
of the distribution  of the noise , one can assess the changes occurring in the technical condition
of the object under study, i.e., extract the necessary useful information. This is due to the fact that in prac-
tice, real technological processes are not strictly stationary. These processes are quasi-stationary, that is,
they can be regarded as stationary at some time interval.

Therefore, in monitoring, control, diagnostics, forecasting, management, identification and other sys-
tems, at the initial stage of defects, faults, malfunctions, etc., the noise is subject to the normal distribution
law with a certain form. After a certain period of time, as the degree of failure increases, the distribution
density function changes its form. When a defect acquires a clearly expressed form, the law of distribution
can change to a law different from normal. Therefore, the problem arises of determining the density func-
tion of the normal distribution  of the noise . This will allow:

(1) to reveal the dynamics of the change in the form of the normal noise curve  in time, and, accordingly,
the dynamics of the change in the most probable values (which fall in the interval ),
the frequently occurring values (which fall into intervals  and

) and the unlikely values (which fall into the intervals 
and ) of the noise of the investigated noisy parameter , and determine the
values that are accepted with probabilities:

(2) determine the maximum of the density function of the normal distribution  of the noise of
the investigated noisy parameter  and establish the correspondence of its value to each faulty state of
the object;

(3) determine the coordinates of the inflection points of the density function of the normal distribution
of the noise of the investigated noisy parameter  and establish the correspondence of their values to
each faulty state of the object.

If the matrix of informative features is formed, the elements of which are the mean square deviation,
the density function of the normal distribution, then it is possible to determine not only the initial period
of the defect generation, but also the moments when it is necessary to carry out preventive maintenance,
current or major repairs. Therefore, an algorithm for determining the density function of the normal dis-
tribution  of the noise is proposed below.

3. TECHNOLOGY FOR CALCULATING THE SECOND-ORDER MOMENT
OF THE NOISE OF THE NOISY SIGNAL

It is known that the normal distribution  of the noise  of the noisy signal  is characterized

by two parameters: mathematical expectation  and mean square deviation  (or square root of
the variance). Since the noise is distributed  according to the normal law with zero mean , the
problem comes down to calculating only the parameter . We first calculate the variance . To this end,
we use expression (1) for calculating the correlation function  of the noisy signal .
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Considering that the useful signal  and the noise  do not correlate, i.e.

the following can be written:

(3)

where ,  are the correlation functions of the useful signal  and the noise , respec-
tively.

In practice, for such infra-low frequency slow-flowing technological processes as oil refining, petro-
chemistry, when  is significantly (manifold) small compared to the observation time , the noise

 is formed from high-frequency spectra as a result of such faults as wear, corrosion, carbon formation,
etc. and has a higher spectrum than the useful component  itself. The value of the useful component
within the time interval  does not have time to change, and matches the value of , i.e.

(4)

This equality holds when  is, for instance, 10–20 h, and  seconds or minutes (depending on the
specifics of the process being studied). In this case, the sampling interval  is selected based on the finite
correlation time  of the noise  with useful signal.

Obviously, such a strict equality is not true for all real processes, but for such as refining, petrochem-
istry. For other technological processes, an approximate equality is permissible. Then for the above indus-

trial facilities, when condition (4) is satisfied, the relation  is equal to unity, i.e. [17]:

(5)

At the same time, since the sampling interval  for the Gaussian random noise is selected based on
the finite correlation time  of the noise, then the correlation function  can be represented as fol-
lows [5]:

(6)

Therefore if, using formula (1), we calculate the estimates of the correlation function  of the
noisy signal at τ = 0 and at the time interval that is sufficiently small in comparison to the observation time

 and find the difference between these estimates, we will get

(7)

Taking into account conditions (5), (6) and the fact that the estimates of the autocorrelation functions
of the useful signal  and the noise , respectively, at zero time shift τ = 0 are the variances of the
useful signal and the noise, respectively:

we get the estimate of the variance  of the noise  of the noisy signal :

(8)

Thus, the variance  of the noise  can be calculated by determining the difference in the esti-
mates of the autocorrelation function  of the noisy signal at a zero time shift, τ = 0, and a sufficiently
small time shift  equal to the correlation time  of the noise.
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However, this formula is suitable for the “ideal” case, when the sampling interval is selected based on
the finite correlation time  of the noise . In earlier works, the formula for calculating the noise vari-
ance was derived for the more general case, when the choice of the sampling interval  was based on the
frequency band of the spectrum of the noise  rather than that of the useful component , i.e.

, where  is the noise cutoff frequency, Hz [7–10]:

(9)

4. ALGORITHM FOR CALCULATING THE DENSITY FUNCTION OF THE NORMAL 
DISTRIBUTION OF THE NOISE OF THE NOISY SIGNAL

It will be shown in the following paragraphs that, considering the condition  = 0, expression (2) and
formulas (8), (9) for calculating the noise variance  of the noise , it is possible to determine the fol-
lowing characteristics of the noise  of the noisy signal  listed in the problem statement.

(1) The distribution density function  of the normally distributed noise  of the noisy signal :

(10)

(2) The maximum of the normal distribution density function:

(11)

(3) The coordinates of the inflection points of the normal distribution density function  of the
noise :

(12)

Thus, we have developed algorithms for calculating the distribution density function , its maxi-
mum , and the inflection points of the normally distributed noise  of the noisy signal .

5. TECHNOLOGY FOR CALCULATING THE DISCRETE VALUES OF THE DENSITY 
FUNCTION OF THE NORMAL DISTRIBUTION OF THE NOISE OF THE NOISY

SIGNAL AND CONSEQUENTIAL CHARACTERISTICS
We propose in the following paragraphs the discrete algorithms for determining the distribution density

function  of the normally distributed noise  with the mathematical expectation  = 0, maxi-
mum , inflection points with the coordinates from (12).

Assume that the noisy digital signal  consisting of the useful signal  and the additive noise
 arrive from a sensor located within the range of factors influencing the facility and receiving digital

information from this facility. The signal  is sampled at the interval  selected based on the finite
correlation time  of the noise. Then the time interval  consists of  very small intervals , i.e.

, and the signal  varies only slightly over the interval . If we give  and  discrete values
that are multiples of , i.e. , ν = 1, 2, …; , μ = 0, 1, … and introduce the notation

; ,  for the estimates of the correlation functions,
then the algorithm for determining the distribution density function  of the noise is represented as
follows:
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(1) The estimates of the autocorrelation function of the noisy signal at μ = 0 and  are calculated:

(13)

(14)

;  is the mathematical expectation of .

(2) The variance and the mean square deviation of the noise  of the noisy signal  are calcu-
lated:

(15)

(16)

(3) Considering that  = 0 and the deviation from the mathematical expectation in absolute value for
a normally distributed random parameter does not exceed tripled standard deviation, the discrete values
of the distribution density function  of the noise  are calculated in the interval , i.e. at

. To this end:

—the minimum and maximum values of  are calculated: 
—the sequence of possible values of  is given at a certain interval , in ascending order from 

to : , ;
—the sequence of possible values of the noise , , , ,…,  is formed, for which the

condition  holds;
—the density function of the normal distribution at the points , , , ,…,  is calcu-

lated.

(4) The maximum of the normal distribution density function  of the noise  of the
noisy signal  is determined from expression (11), which is at the point  = 0, i.e.  = 0.

(5) The coordinates of the inflection points of the normal distribution density function  of the
noise  are determined from expression (12).

6. TECHNOLOGY OF THE COMPUTATIONAL EXPERIMENTS

To verify the validity of the algorithm for calculating the normal distribution density function  of

the noise  of the noisy signal , the maximum  of this function, and the inflection points

 and , computational experiments were conducted using MATLAB

computing environment. The computational experiments were carried out as follows.
First, the useful signal  was formed. Then the probability distribution was determined for discrete

values of the useful signal , i.e. for , where , With the use of the random number
generator, the normally distributed noise  with different preset values of the distribution parameters

,  was formed. It was supposed to be the real noise. The noisy signals
 were formed. The essence of the experiments came down to calculating the

distribution density function  of the noise from developed algorithms (8)–(16) using the values of
the generated noisy signal . The resulting distribution density function  of the noise was

μ = Δt

( ) ( ) ( )
° °

° °
=

= Δ Δ∑
1

10 ,
N

g g i

R G i t G i t
N

( ) ( ) ( )( )
° °

° °
=

Δ = Δ + Δ∑
1

1 1 ,
N

g g i

R t G i t G i t
N

( ) ( )
°

= − gG t G t m ( )
=

= Δ∑
1

1
N

g
i

m G i t
N

( )G t

( )Ε t ( )G t

( ) ( ) ( ) ( ) ( ) ( ) ( )( )
° ° ° °

ε εε ° ° ° °
= =

∗ ∗= = − Δ = Δ Δ − Δ + Δ∑ ∑
1 1

1 10 0 1 ;
N N

g g g g i i

D R R R t G i t G i t G i t G i t
N N

ε ε
∗ ∗σ = .D

εm

ε*( )N Ε ( )t ε
∗± σ3

( )ε ε
∗ ∗− σ ≤ Ε ≤ + σ3 3t

Ε( )t ε ε
∗ ∗ε = − σ ε = + σmin max3 ; 3 ;

Ε ( )t Δε εmin

εmax ( )ε = εmin1 ( ) ( )ε + = ε + Δε εmax1 ,...,i i

( )ε 1 ( )ε 2 ( )ε 3 ( )ε 4 εmax

ε − < ε( 1) ( )i i
( )ε 1 ( )ε 2 ( )ε 3 ( )ε 4 εmax

( )( )∗ εmaxN i ( )Ε Δt
( )ΔG t εm εmax( )i

( )∗ εmaxN
( )Ε Δt

( )ε*N

( )Ε t ( )G t ( )∗ εmaxN

ε

ε

⎛ ⎞
∗⎜ ⎟−

⎜ ⎟∗π⎝ ⎠

1;
2

D
D e

ε

ε

⎛ ⎞
∗⎜ ⎟

⎜ ⎟∗π⎝ ⎠

1;
2

D
D e

( )X t
( )X t ( )ΔX i t = 0,1,2,...i

( )Ε Δi t

ε = 0m ε εσ = D
( ) ( ) ( )Δ = Δ + Ε ΔG i t X i t i t

( )ε*N
( )ΔG i t ( )ε*N
AUTOMATIC CONTROL AND COMPUTER SCIENCES  Vol. 52  No. 3  2018



ALGORITHMS FOR INDICATING THE BEGINNING OF ACCIDENTS 237
compared with the distribution density function  of the noise, which was constructed using the gen-
erated discrete values of the noise .

To show that a useful signal can obey different distribution laws, it is possible to put forward a hypoth-

esis about the distribution, and then verify it by Pearson’s chi-squared test ( ) .

To test the hypothesis, it is necessary to calculate the empirical frequencies . To do this, we need to
divide the entire variation range of the useful signal , consisting of  samples, into  intervals:

, count the number of values  that fell into each of the intervals , and build a histogram.
To this end, we can use the MATLAB standard function [l,xout]=hist(x,n) that counts the number of hits
of  in the intervals with the xout middle. Next, we calculate the theoretical frequencies  of the
hits in the intervals , where  is the probability of the useful signal  hitting the interval . The
theoretical probability  in MATLAB is calculated using the standard functions betacdf (beta-distribu-
tion), expcdf (exponential distribution), logncdf (lognormal distribution), normcdf (normal distribution),
etc. After this, we select the significance level of the criterion  and determine the table value of Pearson’s
chi-squared test , where the number of degrees of freedom is ,  is the number of distri-

bution parameters. If  then the hypothesis  is rejected, if , then the hypothesis of the
corresponding distribution law of the useful signal is admitted.

Then, using expressions (2), we calculated the distribution density function , the maximum
 of the distribution density function and the inflection points of the generated noise  set to

obtain the noisy signal . After that, the distribution density function  of the noise , the

maximum  of this function and the inflection points were calculated using algorithms (8)–(16)
proposed in the paper, and a comparative analysis was carried out. For this purpose, the following were
determined:

(1) the relative errors of the discrete values of the distribution density function  of the noise

,  in the interval :

(2) the relative error of the maximum of the distribution density function:

(3) the relative errors of the first and second inflection points along the abscissa and ordinate axes from
expressions:

—along the abscissa axis for the first point  and the second point :

—along the ordinate axis :
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where , and the value of  was assigned based on the given assumption that .

7. RESULTS OF THE COMPUTATIONAL EXPERIMENTS

The following experiments were performed. It is known that any stationary random process  on
the infinite interval T can be approximated arbitrarily accurately with a linear combination of harmonic
oscillations with random amplitude and phase [18]. In the general form, the set of functions [18]

characterizes a random process if the probability distribution functions of the coefficients ,  and the
phases , ,  are known. Since the values of the real technological parameter are , a con-
stant component was added to .

For this reason, in performing the computational experiments, the useful signals  were formed in
the form of a sum of harmonic oscillations with different distribution laws. It was assumed that a useful
signal is a stationary ergodic process and  is one of its realizations.

First Type Experiments
The deterministic useful signal X(t) = 40sin (1.1t + 0.5) + 25cos(0.5t) + 35sin(1.2t + 1.5) + 55cos(1.4t + 0.3) +

20sin (2.5t + 0.7) – 80cos(2.3t + 1.5) + 300 is formed as a sum of harmonic oscillations.
The noise  obeys the normal distribution law with the mathematical expectation  and

the mean square deviation .

Second Type Experiments
The random useful signal

 is simulated in the form of a perturbed harmonic discrete function

with the initial phase  that has a uniform probability distribution (or with a uniform probability density),
where , K = 2400, exponent n = 1.5; signal period  = 600; the initial phase  is given in the
form rand(size(k))pi/3 [18], where the function rand (size(k)) forms a vector commensurate with the vec-
tor  whose elements are random variables distributed according to the uniform law in the interval (0, 1).

The noise  obeys the normal distribution law with the mathematical expectation  and
the mean square deviation .

The third type experiments and the fourth type experiments demonstrate the suitability of the proposed
method for a wider class of stochastic processes.

Third Type Experiments
The random useful signal

 is simulated in the form of a per-

turbed harmonic discrete function with the amplitude and the initial phases , , that have a uniform
probability distribution (or with a uniform probability density), where , K = 2400, exponents n = 1.5,
n = 0.5; signal period T = 800; the amplitudes are given in the form rand(size(k)), rand(size(k)); the initial
phases ,  are given in the form rand(size(k))pi/3, rand(size(k))pi/3 [18].

The noise  obeys the normal distribution law with the mathematical expectation  and
the mean square deviation .
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Table 1. Characteristics of the noise

Characteristics Given value Calculated value Relative error, %

1 Value of Pearson’s chi-squared test 230.75 (tabulated) 6687.5 6687.5 > 230.75
2 Second-order moment of the noise 627.44 617.02 1.66
3 Mean square deviation 25.049 24.84 0.84047
4 Mathematical expectation 0 0.33345 33,345
5 Max of the distribution density function 0.015958 0.016059 0.6354
6 First inflection point along the abscissa axis –24.667 –24.84 0.69793
7 Second inflection point along the abscissa axis 25.333 24.84 1.9869
8 Inflection point along the ordinate axis 0.0096788 0.0097412 0.64034
Fourth Type Experiments
The random useful signal

 is simulated in the form of a per-

turbed harmonic discrete function with the amplitudes and the initial phases ,  that have a uniform
probability distribution (or with a uniform probability density), where , K = 2400, exponents
n1 = 1.5, n2 = 2.7; signal periods  = 10000; the initial phases ,  are given in the form rand(size(k))pi/3,
rand(size(k))pi/5. The amplitudes obey the normal distribution law with the mathematical expectations
m1 = 0; m2 = 0 and the mean square deviations s1 = 0.4; s2 = 0.5 and are given in the form
normrnd(m1, s1, 1, K), normrnd(m2, s2, 1, K), where the function normrnd() allows obtaining the matrix
of allows to obtain a matrix of pseudo-random numbers with dimension of 1K elements distributed
according to the normal law for parameters m1, m2 (mathematical expectations) and s1, s2 (mean square
deviations) [18].

The noise  obeys the normal distribution law with the mathematical expectation  and
the mean square deviation .

The results of the calculations for Experiment N2 are presented in Table 1. Similar results were obtained
for Experiment N1, N3, N4.

8. COMPARATIVE ANALYSIS OF THE COMPUTATIONAL EXPERIMENTS
The following conclusions have been drawn after analyzing the obtained results.

(1) In all experiments, the calculated value of Pearson’s chi-squared test  for testing if the normal
distribution of the useful signal is greater than the tabulated value  with the number of degrees of free-
dom  and the significance level α = 0.95. Therefore, useful signals do
not obey the normal distribution law (Table 1, row 1). This means that the developed algorithms can be
applied to a wide class of useful signals even when the classical conditions of the theory of stochastic pro-
cesses are violated.

(2) In all experiments, the predetermined  and calculated  estimates of the variance and the mean

square deviations of the noises practically match (Table 1, rows 2, 3): , , and the values
of the relative errors  and  are 1.66% and 0.84047%.

(3) In all experiments, the given estimate  of the mathematical expectation of the noise and the esti-
mate  = 0 of the mathematical expectation of the noise accepted by the condition of the problem prac-
tically match (Table 1, row 4): , and the magnitude of the relative error  does not exceed
33.345%.

(4) In spite of the fact that the absolute value of the noise  is estimated at hundredths of unity in

the range  of the most probable values, the values of the relative errors 
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Table 2. The normal distribution density function of the noise

i , % i , %

1 0.00017727 0.00017528 1.126 91 0.015505 0.015547 0.27227
11 0.00048926 0.00048777 0.30553 101 0.013329 0.013274 0.40916
21 0.0011862 0.0011904 0.35341 111 0.010066 0.0099398 1.2516
31 0.0025263 0.0025477 0.84755 121 0.0066775 0.0065272 2.2508
41 0.0047263 0.0047818 1.1744 131 0.0038913 0.0037589 3.402
51 0.0077674 0.0078709 1.3324 141 0.001992 0.0018984 4.6994
61 0.011214 0.011362 1.3207 151 0.00089578 0.00084081 6.1368
71 0.014221 0.014383 1.1394 161 0.00035386 0.00032658 7.7074
81 0.015843 0.015968 0.7893

( )( )εN i ( )( )ε*N i ( )( )Δ εN i ( )( )εN i ( )( )ε*N i ( )( )Δ εN i
vary only in the range of 0.27–1.25% (Table 2, rows 71–111). In the intervals 

and  of frequently encountered values of the noise , the absolute values of
errors amount to thousandths of unity, and the relative errors in these intervals slightly exceed the previous
values and vary within the range of 0.84–3.4% (Table 2, rows 31–61, 121–131). In the intervals

 and  of rarely encountered values of the noise ,
when absolute values of the errors amount to thousandths of unity, the relative errors do not exceed 0.3–
7.7% (Table 2, rows 1–21, 141–161). This indicates that in all experiments the given estimate  and
the calculated estimate  of the normal distribution density function of the noise practically match
(Table 2): .

(5) In all experiments, the given and the calculated maximums of the normal distribution density func-
tion of the noise practically match (Table 1, row 5):   , and the value of the relative
error  does not exceed 0.6354%.

(6) In all experiments, the given and the calculated inflection points of the normal distribution density

function of the noise practically match (Table 1, rows 6–8): ,

, , and the values of the relative error ,  and 

do not exceed 0.6973–1.9869%.
Thus, the computational experiments demonstrate that the distribution density function, its maximum

value and the inflection point of the given noise and the distribution density function, its maximum value
and inflection points calculated using the developed technology, practically match.

9. TECHNOLOGY FOR DETECTING INCIPIENT DEFECTS WITH THE USE
OF THE DENSITY FUNCTION OF THE NORMALLY DISTRIBUTED NOISE

Let us consider one of the possible variants of solving the problem of indicating the onset of the defect
generation process using the estimates of the variance and the mean square deviation of the noise calcu-
lated from expressions (8)–(15), the distribution density function, its maximum and inflection points. It
will be shown in the following paragraphs that these estimates can be used as reliable indicators of the
occurrence of faults.

Assume that in the normal state of the facility, before the start of the defect generation process, the use-
ful signal does not contain a noise. Then the following equalities hold:
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Fig. 1. The distribution density function of the noise at different states of the facility.
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When the latent period of the defect inception begins and the facility goes into an emergency state,
these conditions are violated, i.e.:

Since the distribution density function  requires that we specify a set of points, we can confine

ourselves to the maximum value  and the inflection points.
For instance, let us consider an acoustic signal that comes from the output of an acoustic sensor

installed on a gas pipeline (or oil pipeline). In the normal state of the gas pipeline (or oil pipeline), a useful
signal appears in the output of the sensor in the form of a “hum” that does not contain high-frequency
noise. When a microcrack appears, the “hum” turns into “whistling” under the influence of the high-fre-
quency component that appears, which a noise is. The variance, the mean squared deviation, the maxi-
mum and the inflection points of the distribution density function of that noise have a certain value, e.g.

, , .
As the microcrack grows, the “whistling” also increases and becomes “snoring.” Then the character-

istics of the noise change, taking on the values: , , .

Then the “snoring” turns into “gurgling,” and the characteristics take on the values: , , .
Thus, depending on the fault degree, the mean square deviation, maximum and inflection points of

the distribution density function of the noise change. This indicates that these characteristics determine
the nature of the fault. Over time, unless proper repair work is performed, the distribution law itself
changes, which already indicates an emergency state. Figure 1 shows the graphs of the distribution density
functions of the noise for all three cases.

Thus, the estimates of the variance, mean square deviation, distribution density function, its maximum
and inflection points can be used to indicate the onset of microchanges in the technical condition of the
control object.

10. CONCLUSION
The technologies proposed in this paper have wide practical application and allow systems of monitor-

ing, control, diagnostics, forecasting, management, identification, etc. to identify not only nascent
changes, but also the moments when preventive maintenance, current and major repairs must be carried
out [5, 6, 19]. This is because knowing the distribution density function of the noise, its maximum value
and inflection points, as well as the dynamics of the curve shape change, we can make conclusions on the
nature of the variation of the noise. Thus, with the use of the said characteristics, it is possible to obtain
sufficiently exhaustive information about the state of the system, facility or device under study.
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