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Abstract⎯Component-based systems permit standardisation and re-usability of code through the use
of components. The architecture of component-based systems can be modified thanks to dynamic
reconfigurations, which contribute to systems’ (self-)adaptation by adding or removing components
without incurring any system downtime. In this context, the present article describes a formal model
for dynamic reconfigurations of component-based systems. It provides a way of expressing runtime
reconfigurations of a system and proving their correctness according to a static invariant for consis-
tency constraints and/or a user-provided post-condition. Guarded reconfigurations allow us to build
reconfigurations based on primitive reconfiguration operations using sequences of reconfigurations
and the alternative and the repetitive constructs, while preserving configuration consistency. A prac-
tical contribution consists of the implementation of a component-based model using the GROOVE
graph transformation tool. This implementation is illustrated on a cloud-based multi-tier application
hosting environment managed as a component-based system. In addition, after enriching the model
with interpreted configurations and reconfigurations in a consistency compatible manner, component
systems’ implementations are related to their specifications by a simulation relation.
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mentation, GROOVE
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1. INTRODUCTION
Component-based systems permit standardisation and re-usability of code through the use of components;

this approach also favours the separation of concerns principle. The architecture of component-based systems
can be modified thanks to dynamic reconfigurations. They contribute to systems’ (self-)adaptation [1] by add-
ing or removing components without incurring any system downtime. Dynamic reconfigurations depend-
ing on systems’ environment must happen not only in suitable circumstances, but also need to preserve
the consistency of systems. Whereas the former can be ensured by adaptation policies, the latter is directly
related to the definition of reconfigurations.

With relation to consistency constraints over component-based systems described in [2], their preservation
of the system under scrutiny was uneasy to prove, mostly because of the lack of precise semantics for primitive
reconfiguration operations. Therefore, when considering more complicated reconfigurations composed of
sequences, repetitions, or choices over primitive reconfiguration operations, there is a need to express reconfig-
urations’ preconditions and postconditions in a precise and concise way. For this reason, to express non prim-
itive guarded reconfigurations we use the concept of weakest precondition, introduced in [3].

Furthermore, using the GROOVE graph transformation tool [4], we build an implementation to per-
form dynamic reconfigurations on graph-based models of component-based systems. This practical con-
tribution allows us, not only, to simulate the run of a system being reconfigured, but, also, to generate all
the possible reconfiguration combinations, or a subset of them. Since the present work aims at formalising
reconfigurations using graph transformations, the third and main contribution consists in proving the cor-
rectness of interpreted systems, using graph rules to perform reconfigurations, wrt. our reconfiguration
model. This also demonstrates the correctness of our implementation.

1 The article was translated by the authors.
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Let us remark that this work is motivated by applications in numerous frameworks that support the
development of components together with their monitors/controllers, as, e.g., Fractal [5], CSP||B [6],
FraSCAti [7], etc.

The paper is organised as follows: Section 2 presents, as a case study, a cloud-based multi-tier applica-
tion hosting environment managed as a component-based system. Background information on our com-
ponent-based reconfiguration model, as well as, elements of operational semantics are given in Section 3.
Using our case study, Section 4 describes an implementation of our model using the GROOVE tool to
express reconfigurations by means of graph transformations. Finally, Section 5 shows correctness results,
and Section 6 presents related work and our conclusion.

2. CLOUD ENVIRONMENT EXAMPLE

Internet service providers and telecommunications operators tend more and more to define themselves
as cloud providers. In this context, automation of software and (virtual) hardware installation and config-
uration is paramount. It is not enough for an application to be cloud-ready; it has to be scalable and scal-
ability mechanisms need to be integrated in the core of the cloud management system.

We consider a typical three-tier web application using a front-end Web server, a middle-ware applica-
tion server, and a back-end data providing service such as a database or a data store. Figure 1 shows a single
virtual machine (or VM) hosting together the three services of such an application. The VM is represented
as a composite component  containing sub-components representing each service
( , , and ) of the application. Each of the service sub-component has
two provided interfaces: one to provide its service, and another one used to monitor the service.

Furthermore, the VM of Fig. 1 also contains four observers, that are sub-components used to monitor
services. The sub-component  is used to monitor the Operating System of the VM. It is also bound
to the sub-components , , and  used respectively to monitor the services of the

, , and  sub-components. Finally, the VM composite component itself
has two provided interfaces: one used to provide services, and a second one used for monitoring.

Of course, a VM does not have to be monitored, nor have to host the three types of services. Figure 2
illustrates a cloud environment, , containing a VM used for development purpose ( ) that
contains the three tiers of the application without being monitored; such a VM is called unmanaged. The
three other VM are all monitored, i.e., managed, and each contains a tier of the application. The reader
can note that each of the managed VM contains only the observers responsible for monitoring the oper-
ating system and the type of service provided. The cloud environment has three provided interfaces: two
to provide its service, whether it is or not in a development version, and another one, used for monitoring,
connected to a sub-component  bound to all the monitoring interfaces of the managed VM.

A cloud provider must be able to provide on-demand (sets of) VMs configured with the right service
components and the appropriate monitoring. In this context, we study the provisioning of a single VM as
illustrated Fig. 1. Depending on the services to provide and the monitoring state (managed vs unmanaged)
the necessary components should be added. During the life cycle of the VM some configuration changes
can happen; we consider them as reconfigurations of a component-based system.

virtualMachine
httpServer appServer dataServer

osObs
httpObs appObs dataObs

httpServer appServer dataServer

clouEnv vmDev

monitorObs

Fig. 1. Managed virtual machine with three-tier application compoments.
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3. COMPONENT-BASED MODEL

3.1. Consistent Configurations
Component models are very heterogeneous. In general, software components are seen as black boxes

having fully described interfaces, or grey boxes if some of their inner features are visible. The interactions
are then specified using components’ definitions and their interfaces. A recent survey on software archi-
tecture can be found in [8].

In this section, we revisit the architectural reconfiguration model introduced in [2, 9]. Following [9],
a configuration is defined to be a set of architectural elements (components, required or provided inter-
faces, and parameters) together with relations to structure and to link them.

Definition 1 (Configuration). A configuration  is a tuple  where
•  is a set of architectural elements, such that
–  is a non-empty set of the core entities, i.e components;
–  is a finite set of the (required and provided) interfaces;
–  is a finite set of component parameters;
–  is a finite set of the interface types and the parameter data types;

• 

is a set of architectural relations which link architectural elements, such that

•  is a total function giving the component which
supplies the considered interface or the component of a considered parameter;

•  is a total function that associates a type to each
(required or provided) interface and to each parameter;

•  is a total function indicating whether each
required interface is  or ;

•  is a relation linking a sub-component to the corresponding com-
posite component2;

•  is a total function which gives the depth3 of components;
•  is a partial function which binds together a provided inter-

face and a required one;

2 For any , we say that  has a sub-component , i.e.  is a child of . Shared components (sub-components of
multiple enclosing composite components) can have more than one parent.

3 It is linked with  relation.

c Elem Rel,
Elem Components Interfaces Parameters Types= � � �

Components
Interfaces RequiredInts ProvidedInts= �

Parameters
Types ITypes PTypes= �

⎧= ⎨
⎩

Container ContainerType Contingency
Rel

Parent Depth Binding Delegate State Value
� �

� � � � � �

Container Interfaces Parameters Components: →�

ContainerType Interfaces Parameters Types: →�

Contingency RequiredInts {mandatory optional}: → ,
mandatory optional

Parent Components Components⊆ ×

( )p q Parent, ∈ q p p q

Depth Components: → N

Parent

Binding ProvidedInts RequiredInts: →

Fig. 2. Cloud environment example.
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•  is a partial function to express delegation links;
•  is a total function giving the status of instantiated components;

•  is a total function which gives the current value of each parameter.
We also introduce a set  of configuration propositions which are constraints on the architectural ele-

ments and the relations between them. These propositions are specified using first-order logic formulae

[10]. The interpretation of functions, relations, and predicates over  is done according to basic defi-
nitions in [10] and Def. 1. The interested reader is referred to [2].

Let  be a set of configurations. An interpretation function  gives the largest

conjunction of  evaluated to true on . We say that a configuration  satisfies

, when ; in this case,  is valid on , otherwise,  does not satisfy .

Among the configuration propositions, the architectural consistency constraints  in Table 1 express
requirements on component assembly common to all the component architectures [2]. Intuitively,

• a component supplies, at least, one provided interface (CC.1);

• the composite components have no parameter (CC.2);

• a sub-component must not include its own parent component (CC.3);

• two bound interfaces must have the same interface type (CC.4) and their containers are sub-com-
ponents of the same composite (CC.5);

• when binding two interfaces, there is a need to ensure that they have not been involved in a delegation
yet (CC.6); similarly, when establishing a delegation link between two interfaces, the specifier must ensure
that they have not yet been involved in a binding (CC.7);

• a provided (resp. required) interface of a sub-component is delegated to at most one provided (resp.
required) interface of its parent component (CC.8), (CC.9) and (CC.11); the interfaces involved in the
delegation must have the same interface type (CC.10);

• a component is  only if its mandatory required interfaces are bound or delegated (CC.12).

Definition 2 (Consistent configuration). Let  be a configuration and  the consistency
constraints. The configuration  is consistent, written consistent( ), if . We write 
when .

The reader interested in a detailed description of our consistency constraints is referred to [2].

3.2. Reconfigurations and Consistency Propagation
In general, the system configuration is the specific definition of the elements that define or prescribe what

a system is composed of, while a reconfiguration can be seen as a transition from a configuration to another.
Reconfigurations are composed of primitive operations such as instantiation/destruction (new/destroy) of com-
ponents; addition/removal (add/remove) of components; binding/unbinding (bind/unbind) of component
interfaces; starting/stopping (start/stop) components; setting parameter values of components (update). These

primitive operations obey pre/post predicates. For example, before adding a sub-component  to a com-

posite , one must verify, as in Table 2, that (a)  and  exist (2) and are different (3),

(b)  is not a descendant of  (4)4, and (c)  has no parameter (5). When these precondi-

tions are met, the postcondition consists in adding  to the  relation, as expressed by

.

Inspired by the predicate-based semantics of programming language constructs [11], we consider a

reconfiguration operation , and two configurations  and  such that the transition between  and 

is performed using  (denoted by ). Then, given , some conditions on the configuration

of the system under scrutiny, the notation  denotes, as in [3], the weakest precondition for the

configuration  such that activation of  can occur and, if so, is guaranteed to lead to  satisfying the

postcondition . More formally, in our case, if  and  then . There-
fore, considering the add primitive reconfiguration operation whose preconditions are displayed in Table 2, the

weakest precondition  is the conjunction of preconditions (2) to (5).

4 In the paper, the transitive closure of  relation is used for pre/post-conditions only to simplify their writing/readability;
instead, the  relation can be used to express them as first order logic formulae.
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Inspired by [3] and using the same notations, Table 3 provides the grammar of axiom <guarded recon-

figuration> for guarded reconfigurations. Let  represent a primitive reconfiguration operation, also

called primitive statement. We extend the set of primitive reconfiguration operations with the skip oper-

ation, which does not induce any change on a given configuration. Hence, for any postcondition , we

have . Afterwards, like in [3], the semantics of the “;” operator is given by

 where  and  are statements.

Guarded reconfiguration sets are used to define the alternative and the repetitive constructs; these sets

are not statements. In a nutshell, the alternative construct selects for execution only guarded lists with a

true guard, whereas, the repetitive construct selects for execution guarded lists with a true guard and is

repeated until none of the guards is true. If a guarded reconfiguration set is made of more than one

guarded reconfiguration, they are separated by the [] operator5.

5 As in [3], the order in which guarded reconfigurations appear is semantically irrelevant.

ope

R
( )wp skip R R, =

1 2 1 2( ) ( ( ))wp S S R wp S wp S R; , = , , 1S 2S

Table 1. Consistency constraints
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To present the semantics of the alternative construct, let  denote  and

 denote , then . For the repeti-

tive construct, let  denote . Let  and for ,

, then . Intuitively,  is the

weakest precondition guaranteeing termination after at most  selections of a guarded list, leaving the sys-

tem in a configuration such that  holds.

Let  be a set of operations, where  is a finite set of guarded reconfigurations

instantiated wrt. the system under consideration, and  is the name of a generic action representing all

the running operations6 of the component-based system.

Definition 3 (Operational semantics). The structural operational semantics of a component-based system with
reconfigurations is defined by the labelled transition system  where  is a set

of configurations,  is a set of initial configurations,   is the reconfiguration relation
obeying  predicates, and  is a total interpretation function.

Let us note  for . Given the model , a path  of  is

a sequence of configurations  such that . An execution is

a path  in  s.t. . We write  to denote the -th configuration of . The notation  denotes

the suffix path , and  denotes the segment path . Let 

denote the set of paths, and  ( ) the set of finite paths. A configuration  is reachable from  when

there is a path  in  s.t.  and  with . Let  be a configuration, the set of

all configurations reachable from  is denoted . This notion can be lifted from configurations to

sets of configurations by .

Proposition 1 (Consistency propagation). Given ,  implies .

Proof (sketch). We start the proof by establishing that each primitive operation  preserves configuration

consistency. This means, for  being a postcondition of , that we have .

We show this result for  the proof is similar for the other primitive operations. Let be  such that consistent

and the preconditions of  hold on . Then, the transition  leads to configuration  such that

consistent , i.e., that the postconditions of  satisfy the consistency constraints of Table 1 too; formally,

. Indeed, as the  relation
from the postcondition (1) is not involved in (CC.1), (CC.4) to (CC.9), (CC.11), and (CC.12), these con-

straints hold on  too. For the remaining constraints, one has:

(CC.2): As precondition (5) of Table 2 ensures that the parent component  has no parameters,

(CC.2) holds on  with  added to  (cf. (1));

6 The normal running of different components also leads to configuration change, e.g., by modifying parameter values. How-
ever, following [12], we consider that those operations do not change system architecture.
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Table 3. Guarded reconfigurations grammar

  

  

    

guarded reconfiguration ::= guard guarded list→

guard ::= boolean expression

guarded list ::= { }statement ; statement

guarded reconfiguration set ::= { }guarded reconfiguration [] guarded reconfiguration

alternative construct ::= if guarded reconfiguration set fi

repetitive construct ::= do guarded reconfiguration set od

statement ::= alternative construct | repetitive construct | ope
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(CC.3): Precondition (4) of Table 2 means that  cannot be a descendant of , thus prevent-

ing a cycle in the  relation for  when  becomes a parent of ;

(CC.10): There are two cases: Either there already was a delegation relation between interfaces of

 and  on  before the application of the  operation, or not. In the latter case the con-

straint (CC.10) trivially holds on . In the former case, since consistent , the  relation already

had  with well-typed interfaces for , and the application of  does not change the

types and the relation, therefore the constraint holds on .

Let be ; by definition, there exists  and a sequence of operations from  to

ultimately reach . By definition, there also exists a sequence of primitive operations 

and a set of intermediate configurations 7 such that , , ,

, where, for ,  (resp. ) meets the preconditions (resp. postconditions) of

 (  standing for ). Indeed, if this sequence of primitive operations or  would not exist,  would

not be reachable from any configuration in .

Now, let us prove that a guarded reconfiguration having a sequence of primitive statements in its

guarded list preserves consistency. Let  be a guarded list composed of  primitive operations, i.e.,

, with  and  being respectively preconditions and postconditions of ,

we note . Let us prove by induction on  that . For , we have

 and . Let us now consider ; we have

. Since  and ,

we have, by definition [3],  = .

This allows us to show that guarded reconfigurations having a statement based on a guarded reconfig-

uration set made only of primitive statements (  or , where  denotes

) also preserve consistency using only hypothesis on the state-
ments’ preconditions and postconditions.

Therefore, with the same reasoning, considering non primitive statements instead of primitive ones and
using only hypothesis on statements’ preconditions and postconditions, we can prove that consistency is pre-
served a) for guarded reconfigurations having a guarded list composed of a sequence of (non primitive) state-

ments ( ) and b) for guarded reconfigurations having as guarded list a statement

(  or , where  denotes ).

4. RECONFIGURATIONS WITH GROOVE

The use of graph transformation systems for modelling and analysing software systems architectures,
which originates from [13, 14], is now standard. A graph transformation systems (GTS) is defined by a set
of rules that can be used to modify the structure of an initial hypergraph. In general, reduction rules can
be defined as graph morphisms. For the basic definitions, the reader is referred to [15].

Following these works, graphs and graph transformation rules are respectively used to represent con-
figurations as well as reconfigurations. This makes standard graph transformation tools applicable to build
the state space of reachable graphs, i.e. configurations, and thereby derive information about the system.

This section describes how our model has been implemented within the GROOVE graph transforma-
tion tool [4]. This implementation is then used to experiment with our case study.

4.1. Implementing with GROOVE

GROOVE uses simple graphs for modelling the structure of object-oriented systems at design-time,
compile-time, and runtime. Graphs are made of nodes and edges that can be labelled. Graph transforma-
tions provide a basis for model transformation or for operational semantics of systems. Our implementa-
tion uses the GROOVE typed mode to guarantee that all graphs are well-typed. It consists of generic types

7 Note that  is not necessarily a subset of . For example, if each operation of  is a sequence of two primitive operations,

the intermediary configuration with odd index, i.e., , would not belong to  and .
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and graph rules that can manage assigned priorities in such a way that a rule is applied only if no rule of
higher priority matches the current graph.

In GROOVE graph transformations obey rules consisting of (a) patterns that must be present (resp.
absent) for the rule to apply, (b) elements (nodes and edges) to be added (resp.deleted) from the graph,
and (c) pairs of nodes to be merged. Colour and shape coding allow these rules to be easily represented. For
example, our implementation models the add primitive operation using the graph rule represented in Fig. 3. In
this figure, there are (a) a component and a composite component such that edges labelled “ ” ensure that the
“Composite” node is the same node of type composite, whereas, the edge labelled “ ” guarantees that the
“component” node is a node of type component different from the one labelled “Composite”; (b) the red

(dashed fat) which “embargo” edges labelled “ ” (resp. “ ”) ensuring that there is no parent
relation transitive closure between nodes labelled “Composite” and “Component” (resp. there is no parent
relation between nodes “Component” and “Composite”). If the above-mentioned conditions are satisfied,

the green (fat) edge labelled “ ” is created between the nodes “Component” and “Composite.”

Of course, such a graph transformation rule can always be expressed using (a) a LHS (left hand side)
sub-graph presenting preconditions of the rule, (b) a NAC (Negative Application Condition) sub-graph
specifying what may not occur when matching a rule, and (c) a RHS (right hand side) sub-graph present-
ing the postconditions. The LHS, NAC, and RHS sub-graphs expressing the rule described in GROOVE
by Fig. 3 are displayed Fig. 4.

The input of our implementation is a graph containing a component-based system, represented using
the model presented in Section 3. Such a graph displays a configuration, as in Def. 1, where elements and
relations are respectively represented by nodes and edges.

Figure 5 shows a screenshot of GROOVE displaying, in the main panel, a graph modelling the vmApp
component-based system used in example of Fig. 2. Components are shown with an attribute showing their state
(either stopped or started) and have their labels prefixed with CC (Composite Component) or PC (Primitive
Component), interfaces names start with a lowercase letter, whereas interface types start with a capital letter. The
top left panel shows graph rules ordered by priority, whereas the bottom left panel contains GROOVE types.

4.2. Running Example

We consider a VM represented, as in Fig. 1, as a composite component  that may con-

tain sub-components representing services , , or  of an application.

=
≠

*Parent Parent

Parent

virtualMachine
httpServer appServer dataServer

Fig. 3. add primitive operation in GROOVE.

Parent*

Parent

Parent

Composite

Composite

Composite

Composite

Component

=

=

=
≠
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This VM may also contain observers, that are sub-components used to monitor services. The sub-com-

ponent  is used to monitor the Operating System of the VM and can be bound to the sub-compo-

nents , , or  used respectively to monitor the services of the ,

, and  sub-components.

Each VM has its features determined by an install code ( ) which is a binary number having each bit
acting as a f lag to enable or disable a given feature. This is summarised in Table 4 where the first line dis-
plays the features and the second one shows the related bit number. The following lines detail the gener-

ation of install codes for a server with a bare OS ( ), an application server managed ( ), and a

managed (resp. unmanaged) LAMP server having  (resp. ) as install code.

Our implementation creates the component-based system model representing the VM specified by a
given install code. Figure 6 shows a graph transition system generated by GROOVE during the creation of

VM with a bare OS (ic = 0), where the first state ( ) represents an empty graph, s1 denotes a graph rep-

osObs
httpObs appObs dataObs httpServer

appServer dataServer

ic

0ic = 5ic =
10 11

s0

resenting only the stopped VM composite compo-
nent, and s2 designates a graph with the same com-

ponent being started. The transitions are labelled
by the primitive reconfiguration operations being
performed.

Similarly, for a component-based system rep-
resenting a managed application server (ic = 5) the
graph transition system is displayed in Fig. 7. In
addition to the primitive reconfiguration opera-
tions used as transition labels, there is a label
“chk_present_appServerPC” which represents an

Fig. 5. Model of the vmApp component-based system displayed with GROOVE.

Fig. 4. Equivalent of GROOVE rule of Fig. 3 using LHS, NAC, and RHS graphs.

Parent* Parent Parent

Component Component Component

Component Component Component

(a) LHS (b) NAC (c) RHS

≠

Fig. 6. Bare OS (ic = 0).

s0

new

s1|q3

s2|q2

start
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assertion verifying whether or not the application server sub-component is present. This way, using
GROOVE control language, a function manage() adds and configures adequate monitoring sub-components.

For a VM having more than one service component, like a LAMP server (  or ), having
an http and a data service, the order for binding and starting these components is not predetermined as

illustrated Fig. 8. The evolution is first performed in a deterministic way from state  to . State , on

the top right denotes a graph matching the specification for an install code of value , i.e., an unmanaged

LAMP server. From that state, we can apply the manage() GROOVE function, between  to , to

obtain a managed LAMP server ( ). Let us notice that the evolution between  and  is non-

deterministic. We have two shortest paths (  and ) that can easily be dis-
covered using a breadth-first exploration.

Table 5 displays the number of states and transitions of the graph transition system for each install code.

The graph transition system for  displayed Fig. 8 has  states and  transitions. We can notice

that, in our implementation, the order of primitive reconfiguration operations is fully determined8 for

 and .

Considering Table 5 for , and , we see that for each VM with two services, the

managed version has  more states and transitions than the unmanaged one. A similar deduction can also
be made considering the last line of Table 5. This is because, as illustrated in Fig. 8, the manage()
GROOVE function fully determines the order of primitive reconfiguration operations. Let us mention that

the number of states and transitions for  (resp. ) is different from the ones for  or 

(resp.  or ) due to the fact that, unlike the httpServer or appServer, the dataServer sub-com-
ponent does not have a required interface (see Fig. 1), which induces more determinism to reach a con-
figuration involving this component.

5. IMPLEMENTATION VS. SPECIFICATION

A formal semantics for the component-based system with interpreted primitive operations and guarded
reconfigurations can be obtained by enriching the configurations with more precise memory states and the
effect of these actions upon memory.

5.1. GROOVE-based Interpreted Model

Let us consider a set (infinite, in general)  of shared global memory states, and a set (infinite,

in general)  of memory states local to a given component. These memory states are read and mod-

ified by the primitive and non-primitive reconfigurations, and also by actions implementing . Formally, all

the actions  are interpreted as mappings  from  into itself. In addition, there are some

actions specific to the implementation, , as  in Section 4. We say that

 is an interpretation of the underlying . Let 

denote the class of all interpretations, with  the underlying  interpretation.

Interpreted configurations. In addition to already interpreted parameters and interfaces (cf. [2] for
more detail), the state of components can be described more precisely by using local memory states. The

set of the interpreted states of components is the least set  s.t. if  are elements in 9,

8 There is exactly one more state than the number of transitions, which shows that the graph transition system is an actual linear path.
9 Viewed as a relation.

10ic = 11ic =

s0 s8 s16
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s23 s41

11ic = s8 s16

s8 s10 s16→ → s8 s11 s16→ →

11ic = 42 82
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run
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Table 4. Install code generation principle
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 are local memory states, then  is in . Then, the set of the inter-

preted configurations  is defined by .

Interpreted transitions. Our basic assumption is that all primitive actions have a deterministic effect
upon the local and global memory, always terminate (either normally or exceptionally), and are effective.

For the  in Section 4, each graph represents an interpreted configuration corresponding to a
configuration in Def. 1, whereas, transitions between configurations are performed using graph rules.

For each primitive reconfiguration operation , the corresponding graph rule, denoted by , has
equivalent or stronger preconditions. For example, for the add primitive reconfiguration operation, pre-
conditions (3) and (4) of Table 2 are encoded by, respectively, the LHS and NAC graphs (Figs. 4a, 4b) of
the corresponding graph rule, whereas, the postcondition (1) is depicted Fig. 4c. Preconditions (2) and

(5) are implicitly defined by the typing of the graph rule that contains a node of type Component10 (resp.

Composite) corresponding to the component  (resp. ) of Table 2. Because both nodes involved
in the graph rule inherit from the Component type, the precondition (2) holds. Furthermore, the fact that

the node corresponding to  is typed as composite, ensures that it does not contain any parameters,
thus satisfying precondition (5).

Moreover, we can notice, Fig. 4b, in addition to the edge labelled  satisfying precondition (4),

another edge labelled  ensuring that the node typed Composite is not the parent of the other node,

i.e., . This is not a precondition in Table 2 because of a set-based specification.

10Since this type is abstract, a node typed component is either primitive or composite.

1 n… LM, , ∈v v 1 1(( ) ( ))n ns … s, , , ,v v State(
(# GM State× (

GROOVE(

ope ope

1comp 2comp

2comp

*Parent
Parent

1 2( )comp comp Parent, ∈/

Fig. 8. Managed LAMP Server (ic = 11).
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In the GROOVE implementation, however, without this NAC , we may end up
with two edges labelled Parent between the node typed as Component and the one typed as Composite,
which would produce a graph that would not fit within the specification of Def. 1.

Finally, all constructs now behave deterministically, and a non-determinstic global behavior is pro-
duced by the arbitrary interleaving of components. This construction leads to the following definition.

Definition 4 (Implementation semantics). The operational semantics of the implementation is defined
by the labelled transition system , where  is a set of configurations together

with their memory states,  is a set of initial configurations, ,
 is the reconfiguration relation obeying graph rules, and  is a total

interpretation function.

It can be established that, by construction, we have . Moreover, in the interpreted

model, if  and there is a transition of label  from  to  then .

5.2. Sound Implementations and Consistency Preservation

There exist some strong links between the interpreted model and the specification model. In this sec-
tion we aim to establish that our GROOVE implementation behaves accordingly to the specification.

Let  be a set of operations, where  is in a finite set of guarded

reconfigurations built using primitive graph rules instantiated wrt. the implementation of the system under

consideration. For the GROOVE implementation, we consider , where  represents

operations to evaluate the guards used in GROOVE, that do not alter the current graph, like “chk_pre-
sent_appServerPC” in Fig. 7, for control f low purpose.

To establish links between the interpreted model and the specification model, we propose to use a ver-

sion of the classical -simulation quasi-ordering [16], while relabeling the operations in  by . For

all , we write  when there are  such that .

Definition 5 ( -simulation). Let  and  be two models over . A binary relation
 is a -simulation iff, for all  in ,  implies whenever , then there

exists  such that  and .

We say that  and  are -similar, written , if there is a -simulation linking their initial
states.

Let us consider interpreted reconfiguration operations in  and the corresponding non-inter-

preted counterpart, when relabeling the operations in  by , we can state the following theorem.

Theorem 1 (Simulation). .
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Table 5. Number of states and transitions per install code

Unmanaged Managed

states transitions states transitions

0 3 2 1 7 6

2 7 6 3 17 16

4 7 6 5 17 16

6 46 155 7 62 171

8 7 6 9 17 16

10 26 66 11 42 82

12 26 66 13 42 82

14 265 1456 15 288 1479
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Proof (sketch). Let  be in . By construction, it is associated with a non-interpreted configuration

. There are two cases for . As ’s covering operations in  are introduced

to evaluate guards of sequences of guarded reconfigurations, they do not form infinite cycles composed

only of -transitions. So, there always must be a way out of these cycles, if any, by a transition of label .

Afterwards, it can be established that every primitive reconfiguration operation of the implementation
has preconditions equivalent to or stronger than its counterpart in the specification model. This way, by
using hypothesis on weakest preconditions in [3], it can be proved that guarded reconfigurations com-

posed of primitive statements of the form  with , have preconditions equivalent to

or stronger than the corresponding statement , as illustrated below.

Consequently, starting from any initial configurations in , for any , if  there

is  s.t. , and if a guarded reconfiguration  is applied to  there exists a guard

, s.t.  and  applies to . Moreover, the consistent target configurations  and  are in

 too because of their guards.

If no  can be performed in  after having tested some guards covered by ,  is not consis-

tent, and consequently neither is . At this step, only several primitive reconfigurations can be

applied, as their preconditions are equivalent, no  can be performed in  either.

This result shows that the specification model is a correct approximation of the more realistic inter-

preted model. As the reachability properties are compatible with  and there is no infinite cycles com-
posed only of -transitions, this leads us, consequently, to:

Proposition 2. If configuration  is reachable in , its non-interpreted counterpart  is reachable in .
Conversely, if configuration  is not reachable in , the corresponding interpreted configuration is not reach-
able in any .

We can state, as a consequence of Theorem 1 and Propositions 1 and 2, the following result:

Proposition 3. Let  be the interpreted model and  the

specification model. Given , if  then  implies .

6. RELATED WORK AND CONCLUSION

6.1. Related Work
Self-adaptation is an important and active research field with applications in various domains [1].

Primitive reconfigurations being, as described in [17], the basis of runtime adaptation using temporal
properties over architectural relations and external events, component-based system models described, as
in this paper, in terms of graph transformations can benefit of (self) adaptation at runtime via temporal
properties. Unlike [17], the present paper uses not only sequences of primitive operations but also the
alternative and the repetitive constructs to compose reconfigurations. Thus, a given reconfiguration may
have different outcomes, depending on the context, or due to non-deterministic mechanisms. It is not
only a static sequence of reconfiguration instructions (as it is the case in [5, 7, 17, 18]), but a truly dynamic
reconfiguration.

Version consistency was introduced in [18] to minimise the interruption of service (disruption) and the
delay with which component-based (distributed) systems are updated (timeliness) by mean of reconfigu-
rations. It qualifies a state where transactions within the system are such that a given reconfiguration may
not disrupt the system, and occurs in bounded time; version consistency was inspired by quiescence [19]
and tranquility [20] with the intent to gather the best of both notions. Unlike [18–20], we only consider
architectural constraints as preconditions to apply guarded reconfigurations; this way, by considering
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components as black boxes, the separation of concerns principle is respected. The applicative consistency
(related to transactions within the system or external events) can be maintained at runtime using adapta-
tion policies mechanisms as described in [17] for centralised systems and [21] for decentralised or distrib-
uted systems.

Differently from [22], we do not assume that the reconfigurations always lead the component assembly
to evolve from one consistent architecture to another consistent architecture. Unlike [23], we use exclu-
sively first order logic to define consistency constraints, which makes the consistency propagation of
guarded reconfiguration fully applicable to our operational semantics. Following [13], our notion of con-
sistency can be viewed as a specific architecture style. Nevertheless, when using graph transformations, we
represent interfaces, parameters and interfaces types of the component-based systems by specific graph
nodes, whereas edges represent relations between these elements. We also consider that the parameters,
viewed as the public variables in [13], can be modified via reconfigurations. As a consequence, thanks to
these new features, we can monitor (temporal) properties at the interface level, similarly to [24]. Further-
more, similarly to the coordinator in [13], we perform adaptations using controllers, as for example in [21].
This can also be described in terms of graph transformations.

6.2. Conclusion

The roadmap in [1] emphasises an important challenge consisting in bridging the gap between the
design and the implementation of self-adaptive systems. We have shown that the GROOVE framework can
help bridge that gap.

Inspired by [3] and following [23], a grammar for guarded reconfigurations allowed us to build reconfigura-
tions based on primitive reconfiguration operations using sequences of reconfigurations as well as the alterna-
tive and the repetitive constructs. The ability to determine weakest preconditions for the application of recon-
figurations enabled us to prove that these guarded reconfigurations preserve configuration consistency.

We also, as a practical contribution, implemented our model using the GROOVE graph transformation
tool [4], where component-based systems are represented as graphs, elements (e.g., components, inter-

face, parameters, etc.) consist of nodes, and relations between elements (e.g., , , etc.) are
showed as edges. This implementation, used to experiment with our running example (Managed/Unman-
aged Cloud Environment), permits to model reconfigurations as graph rules based on LHS, RHS, and
NAC graphs. When different outcomes can occur for each reconfiguration, the set of possible executions can
be displayed as a LTS graph using our implementation under GROOVE; possible states, i.e., configurations
of the system under scrutiny, are shown as nodes and reconfigurations between them as edges. We have also
been able to prove the correctness of interpreted systems, using graph transformations to perform reconfig-
urations, wrt. our reconfiguration model, which demonstrates the correctness of our implementation.

As future work, we intend to analyse aforementioned LTS graphs, to detect or prevent the formation of
cycles within reconfigurations. We are also planning to implement dynamic reconfigurations based on
graph transformations to be able to apply adaptation policies at runtime.

A. Proof of Proposition 3.2 for Constructs Based on Primitive Statements

Let us consider a guarded reconfiguration set  based on guarded reconfigurations containing
guarded lists made only of primitive statements. This reconfiguration set,  denotes

, with  being a boolean and , where  represent the

number of primitive statements ( ) of the guarded list , and  (resp. ) represents

the precondition (postcondition) of , for  and  (resp. ).

Since  is the precondition of  and we suppose the configuration before the application of  to be

consistent, we rewrite  as , with . We also define

, as well as, the sets  and .
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By definition, . We established before that, for  being a

sequence of primitive statement, ; then, by definition

. This means that ,

which can be enough to prove that consistency is preserves by the alternative construct.

It is possible, however, to establish a stronger postcondition, , for the alternative con-

struct by considering that each term of the conjunction  is part of the postcondition of a guarded

list eligible for execution.

Then,  =  because, by definition,

.

Therefore:

As an example, we can denote by  a particular case, written ,

of the alternative construct which weakest precondition is  =

, where  and  are, respectively, the precondition and postcondition of .

A.2. Repetitive Construct

Let  denote . Let be , and for , let be

, where  denotes the same guarded configuration enclosed by

“ ”. Then, by definition, we have .

This means that the weakest precondition of this construct guarantees proper termination after at most

 selections of a guarded list, leaving the system in a state satisfying . Let us consider , such that,

for ,  and  as the ordered sequence of statements selected during the dura-

tion of the construct until its termination. We proved before that such a sequence preserve consistency.

Therefore  is a valid postcondition and, since , we have

.

We established before that, for  being a sequence of primitive statement, ;

then .

Therefore:
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This proves that the repetitive construct, applied to a guarded reconfiguration set based on guarded
reconfigurations containing guarded lists made only of primitive statements, preserves consistency. It also
provides stronger preconditions and postconditions that are used to conclude the full proof of Prop 1.
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