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Abstract⎯In this paper, we consider a mathematical model of synaptic interaction between two pulse
neuron elements. Each of the neurons is modeled by a singularly perturbed difference-differential
equation with delay. Coupling is assumed to be at the threshold with the time delay being taken into
account. The problems of existence and stability of relaxation periodic movements for the systems
derived are considered. It turns out that the critical parameter is the ratio between the delay caused by
internal factors in the single-neuron model and the delay in the coupling link between the oscillators.
The existence and stability of a uniform cycle for the problem are proved in the case where the delay
in the link is less than the period of a single oscillator, which depends on the internal delay. As the delay
grows, the in-phase regime becomes more complex; specifically, it is shown that, by choosing an ade-
quate delay, we can obtain more complex relaxation oscillations and, during a period, the system can
exhibit more than one high-amplitude splash. This means that the bursting effect can appear in a sys-
tem of two synaptically coupled neuron-type oscillators due to the delay in the coupling link.

Keywords: neural models, differential-difference equations, relaxation oscillations, asymptotic behavior,
stability, synaptic coupling
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1. FORMULATION OF THE PROBLEM
In this paper, we consider a new approach to chemical synapse modeling that was formulated in [1]. In

terms of asymptotic analysis methods, this work continues the studies initiated in [2–6] and devoted to
relaxation self-oscillations in neural systems with delay.

Our approach is based on a modification of the idea of fast threshold modulation (FTM). This phe-
nomenon, which was described for the first time in [7, 8], is a specific way of coupling dynamic systems.
It is characterized by abrupt changes in the right-hand sides of the corresponding differential equations
when certain control variables exceed their thresholds. In neural systems, the FTM is generally imple-
mented as follows.

Suppose that the voltage  and the current intensity  in a single neural cell satisfy the
system of differential equations

(1)

Here,  is a small parameter and the standard constraints [9] are imposed on the right-hand sides
 to ensure the existence of a stable relaxation cycle. A typical example of model (1) is the well-

known FitzHugh–Nagumo model [10].
Now, consider the simplest network consisting of two synaptically coupled neurons. In this case,

according to the current views (see, for example, [11]), the electrical variables   corre-
sponding to these neurons satisfy the system of equations
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(2)

Here, b is a positive parameter characterizing the maximum conductivity of a synapse,  is the resting
potential (also known as the Nernst potential), and the functions   are the postsynaptic con-
ductivities that depend on the presynaptic potentials 

It should be noted that there are several different ways of selecting the functions  which are described
in [11]. In this work, following the idea of FTM, we use the simplest of them. Thus, we assume that

(3)

where  is a threshold exceeding which one cell begins to influence another. For example, if 
then the first neuron does not affect the second one, but if  then it does.

Here, our primary objective is to adapt the chemical synapse modeling technique described above to
difference-differential equations of the Volterra type. For this purpose, it is assumed that a single neuron
is modeled by the equation

(4)

for the membrane potential  The parameter  which characterizes the rate of the electri-
cal processes in the system, is assumed to be large, and the function  
possesses the following properties:

(5)

where  An example of this function is

(6)

Equation (4), which is a certain modification of Hutchinson’s equation [12], was proposed and inves-
tigated in [13]. In [13], it was shown that, for all  this equation allows an exponentially orbitally stable
relaxation cycle  of the period  that satisfies the limit relations
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(7)

where    =  and the -periodic function  is defined as

(8)

Figure 1 shows the relaxation behavior of this cycle on the plane (t, u) for the case of (4) and (6) at 
and 

Now, suppose that two neurons synaptically interact with each other and this interaction is delayed in
time (see also [14, 15]). In this case, according to the technique described above, we can shift from Eq. (4)
to the following system similar to (2):

(9)

where the functions  and  are given by equalities (3) and the positive parameter h is responsible for
delay in the coupling link between oscillators.

Moreover, in this case, we can reject the generally accepted view (see [1]) and, as a mathematical
model of the neural network under study, take a slightly different system

(10)

in which    and the function  is such that

(11)

The reasons for selecting system (10) in [1] were as follows. First, when transferring from (9) to (10),
the general qualitative character of synaptic coupling is preserved because, in both cases, the correspond-
ing coupling summands   and 

 change their sign from “+” to “–” as the potentials   grow and exceed the
critical value  Second, and most importantly, we have managed to correctly identify the limit object for
system (10), which proves to be a certain relay system with delay.

Indeed, upon transferring to new variables  ( ), system (10) is rewritten as

(12)

where   and  Note that, due to the properties of (5)
and (11), the following limit equalities hold:

(13)

where H(x) is the function that appears in (3). Hence, for  system (12) turns into a relay system

(14)

The presence of limit object (14) significantly facilitates the search for attractors of system (12) and
allows one to apply the general results [16] on the correspondence between stable cycles of relay and relax-
ation systems.

Let us now find the simplest relaxation regimes of system (12).
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2. FINDING A UNIFORM SOLUTION WITH ONE SPLASH PER PERIOD

First of all, note that system (12) has a synchronous solution  Therefore, we can transfer from (12)
to the equation

(15)

A solution of system (12) such that  where x(t) is a solution of Eq. (15) is hereinafter referred
to as uniform.

Let us find out whether relaxation periodic regime exists for auxiliary equation (15). For this purpose,
based on the properties of (13), we first move from (15) to the corresponding relay equation

(16)
This equation is analyzed under the additional conditions

(17)

where the parameters  and  are the same as in (7) and (8). These constraints are explained below.
As in [2–6, 17, 18], the concept of a solution to Eq. (16) is defined constructively. For this purpose, we

fix a sufficiently small  (the upper estimate on  is refined below) and consider a set of functions

(18)

In addition, we denote a solution of Eq. (16) with arbitrary initial condition from class (18) by 

When integrating Eq. (16), it is important that the functions  and  on its right-hand
side are piecewise-constant and vary only if  or  changes its sign. In particular, due to (17) and
(18), for  we have  and  simultaneously. That is why, on the given
interval, the function  is a solution of the Cauchy problem

and, therefore, is given by the formula

(19)

Moreover, equality (19) can be “stretched” over t as long as the conditions  and  hold.
Therefore, it a priori holds on the time interval 

For  the above considerations imply that  and, hence,  There-
fore, on this time interval, the solution  satisfies the equation

(20)
As for Eq. (20), its properties were analyzed in [13], where it was shows that any solution  of this equation
such that  for  and  for all  coincides with the function  (see (8)).

Returning to the original equation (16) and taking into account all of the above considerations, we
arrive at the equality

(21)

The further analysis concerns the time interval  where  is the instant that appears in (8).
For  formula (21) and the properties of the function  imply an estimate 
and, therefore,  Moreover, we a priori assume that

(22)

By uniting relations (8), (21), and (22) with conditions (17), we find that  for 
and, therefore, for the given values of t, the solution  satisfies the Cauchy problem

A simple analysis of this problem leads us to the equality
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It should be recalled, however, that formula (23) is derived under a priori assumption (22) whose valid-
ity is equivalent to the condition

(24)

which hereinafter is assumed to be satisfied.
For  due to (8), (21), and (22), we have   Therefore, in

this case, the solution  is found from the Cauchy problem

and is given by the equality

(25)

Note also that formula (25) is preserved for  such that  and  simultane-
ously. Hence, this formula is a priori applicable for 

Let us now select the free parameter  (see (18)). Below, we assume that the following condition is
satisfied:

(26)

which ensures that the function   belongs to set (18). Moreover, (26) implies
that, on the interval  the equation  has exactly two roots  
(which is required to substantiate a theorem below).

Thus, under condition (26) on the parameter  the solution  on the time intervals
 ( ) is constructed cyclically. This means that, for  any

solution  with initial condition (18) coincides with the -periodic function
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Figure 2 shows function (27) for    and 
Let us turn our attention to the relationship between the periodic solutions of Eqs. (15) and (16). The

following statement is valid.
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Theorem 1. Suppose that conditions (17), (24), and (26) on the parameters a, b, c, h, and  are satisfied.
Then there is a sufficiently small  such that, for all  Eq. (15) allows a single exponentially
orbitally stable cycle   of the period  that satisfies the limit equalities

(28)

The proof of this theorem is omitted as it is similar to that of the corresponding statement in [1].

3. STABILITY OF A UNIFORM SOLUTION
Let us now address the problem of stability of the uniform solution to system (12). Suppose that the

original functions of relay system (14) are selected in such a way that one of them is negative for  on
a delay interval  and is zero at the zero point, while another is zero at a point  and is negative
for  on this interval. The value of Δ is selected to be sufficiently small. In this case, relay system (14)
is easily integrated step by step and the instants at which the functions  and  have a second con-
secutive zero for  can be calculated. By analyzing the distance between the roots, we can find out
whether the solutions approach each other and, therefore, judge on the stability of the uniform solution.
As in the previous section, system (14) is analyzed under conditions (17). When integrating system (14),
we use the piecewise constancy of the functions  and  which vary only if 
or   change their sign. In particular, due to (17) and the negativeness of   for

 we have  for  Hence, on the given interval, the functions  are a solu-
tion of the Cauchy problem

and are given by the formulas

(29)

Taking into account that the summand containing  remains zero for  it is easy to
see that, on the given interval,  and 

On the interval  the equation for  preserves its form; therefore, the equality
 holds and the second equation in system (14) takes the form

Hence, on this interval, we have

(30)

On the next interval  the Cauchy problem, which defines the solution of relay system (14),
is written as

with the first component of its solution being

(31)

and the second one being calculated by formula (30).
On the next interval  of finding the solution to relay system (14),  is also

negative and, therefore,  becomes zero. This leads us to the original Cauchy problem

The first component of the solution to this problem is calculated by formula (31), while the second one
has the form
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Consider the last interval  for relay system (14). On this interval, we have the Cauchy
problem

whose second component has the form of (32) and whose first component is

(33)

Using formulas (32) and (33), it is easy to find points  and  such that  and
 By the difference  we can assess the stability of the uniform solution to relay

system (14). Taking into account that

(34)

for all parameter values ensuring the existence of the uniform solution  (the value of  is less
than unity in the modulus), we can conclude that this solution is stable. This, together with the theorem
proved, allows us to assert that if the conditions of this theorem hold, then the uniform cycle

 is an exponentially orbitally stable solution to system (12).
In summary, it should be noted that system (10), which models the synaptic interaction between pulse

neurons provided an adequate selection of the delay h in the coupling link, contains a uniform cycle whose
structure is more complex than that in the problem without interaction.

4. CONCLUSIONS
The results of this work have been obtained under severe constraints on the delay h, which must satisfy

inequalities (17). Taking into account that parameter h models the delay in the coupling link and can have
large values, it is interesting to analyze the relaxation oscillations in system (10) with increasing h when its
value is close to several periods of the solution of a single oscillator ( ). In this case, equation (15) with
two delays can have a periodic solution with several positive intervals, which corresponds to the same
number of high-amplitude splashes per period of a uniform cycle for system (10). It is well-known that
self-oscillations in real neural systems are characterized by the alternation of pulse packets (sets of several
consecutive high-amplitude splashes) and relatively smooth intervals of change in the membrane poten-
tial; this phenomenon is referred to as the bursting effect (bursting behavior). There are many works
devoted to investigation of the bursting effect [19–23]. Generally, the mathematical model of this effect
uses singularly perturbed systems of ordinary differential equations with two fast and one slow variables;
under certain conditions, these systems can contain stable bursting cycles (periodic movements with the
bursting effect). In [17], we proposed another approach to solve this problem that implies introducing sev-
eral time delays into a pulse neuron model.

The structure of equation (15) with two delays is close to that of the model equation for a pulse neuron
from [17]. Specifically, when solving relay equation (16) for all  the problem is reduced to the
same equation

as in [17]. This means that the selection of the parameter h in accordance with the constraints

(35)

gives rise to a uniform cycle with n splashes per period in original system (10); all that is left to do is to select
the other parameters of the problem in such a way that, after these splashes on an interval exceeding h, the solu-
tion is asymptotically small.

The solution of this problem and the determination of the parameter values that guarantee the exis-
tence and stability of a uniform cycle with a predefined number of splashes per period allow us to conclude
that the bursting effect in a system of two synaptically coupled neuron-type oscillators can be caused by
delay in the coupling link.
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