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Abstract⎯Extended finite state machines (EFSMs) are widely used when deriving tests for checking
the functional requirements for software implementations. However, the fault coverage of EFSM-
based tests covering appropriate paths, variables, etc., remains rather obscure. Furthermore, these
tests are known be incapable of detecting many functional faults frequently occurring in EFSM-based
implementations. In this paper, an approach is proposed for deriving complete tests with the help of a
proper Java EFSM implementation. Since the software is based on a template, the faults turn directly
into EFSM faults. The method proposed here makes it possible to derive test suites that can detect
functional faults. In the first step, the EFSM-based test suite derived by a well-known method is
checked for completeness with respect to the faults generated by the μJava tool. Then, each undetected
fault is easily mapped into an EFSM mutant. In the next step, some FSM abstraction is used to derive
a distinguishing sequence for two finite-state machines (if such a sequence exists), which is added to
the current test suite. The test derived in this way is complete with respect to the faults generated by
μJava. If the corresponding FSM derived by EFSM modeling is too complex or no such FSM can be
derived, the resulting test suite can be incomplete. However, the experiments performed by us clearly
show that the original test suite extended by distinguishing sequences can detect many functional faults
in software implementations when the given EFSM is used as a specification for the system.
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INTRODUCTION
Software implementations, including those used in critical systems, have become more sophisticated,

and the completeness of their testing without the use of mathematical models is almost impossible. To
derive tests with guaranteed fault coverage, researchers actively use models with a finite number of tran-
sitions [1, 2], for example, the model of an extended finite state machine (EFSM), which is sufficiently
close to the software implementation in a high-level language. Despite the large number of publications
on the automatic construction of this model, the examples described in these studies are usually limited
to small programs, and often such EFSMs are built by test engineers manually from informal requirements
for the software under test. Accordingly, it is almost impossible to compare the faults in the constructed
model (the completeness of the test is to be guaranteed with respect to these faults) with the faults in the
source program; therefore, to generate a test sequence detecting such a functional fault, one has to com-
pare the specification software with the mutant program for constructing the corresponding distinguish-
ing sequence [3, 4]. In this paper, we propose an EFSM-based method for deriving a set of test sequences
that can detect many functional faults in the template implementation of the EFSM in Java.

An EFSM [5] extends the classical Finite State Machine (FSM) by internal (context) variables and
input and output parameters. The EFSM-based tests are known to be sufficiently qualitative; however,
there remain many functional faults in the tested software implementations that are not detected by the
tests [4, 6]. Correspondingly, we propose to enhance the completeness of EFSM-based tests by consider-
ing the most common faults in software implementations on the basis of a “template” implementation of
the EFSM in Java. Using the μJava tool [7], one can generate many mutants for a “template” software
implementation; the initial test suite is applied to these mutants. The initial test can be derived by one of
the existing methods, including a set of randomly generated sequences. If a mutant is not detected by the
test, the corresponding fault is easily transformed into a fault in the EFSM, and thus the distinguishing
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sequence is constructed not for two software implementations which is known to be rather complicated
[4] but for two EFSMs which is simpler [8]. The results obtained using this approach were partially pub-
lished in [9]; in the current paper, we discuss the usability of the proposed approach for detecting func-
tional faults in EFSMs.

The paper is organized as follows. Section 1 introduces the necessary definitions and notations. Sec-
tion 2 discusses the techniques for deriving distinguishing sequences for two EFSMs (in our case, for an
EFSM–specification and a mutant of interest). A proposed method for deriving the test is described in
Section 3. Section 4 considers an example of testing the software implementation of the Simple Connec-
tion Protocol (SCP); we use this to illustrate the proposed approach. In conclusion, we briefly discuss
possible directions for future research.

1. DEFINITIONS AND NOTATIONS
A finite state machine (FSM) is a quintuple S = (S, I, O, TS, s0), where S is a nonempty finite set of

states with the designated initial state s0, I is a nonempty finite set of inputs (the input alphabet), O is a
nonempty finite set of outputs (the output alphabet), and  I × S × S × O is the transition relation [8].
An extended finite state machine (EFSM) extends an FSM with context (internal) variables, input and
output parameters, and conditions that enable the transition. Formally [5], an EFSM M is the 6-tuple
M = (S, , X, Y, T, V), where S is a nonempty finite set of states, X is a nonempty finite set of inputs, Y is
a nonempty finite set of outputs, V is a finite (possibly empty) set of context variables, and T is the set of
transitions between states of S. Each transition in an EFSM is a 7-tuple (s, x, P, , y, , ), where s
and  are the initial and final transition states; x  X is an input and  denotes the set of input vectors
the components of which are the values of the parameters that correspond to the input x (hereafter, input
parameters); y  Y is an output and  denotes the set of output vectors the components of which are the
values of the parameters that correspond to the output y (hereafter, output parameters); and P, , and  are
functions defined over input parameters and context variables of V. The predicate P:  ×   {0, 1},
where  is the set of context vectors (i.e., the vectors the components of which are the values of context vari-
ables), describes the conditions under which this transition can occur. The function :     
describes the values of the output parameters as the result of the transition. The function :  ×   
describes the values of the context variables as the result of the transition.

Each pair (state, vector of values of context variables) is called a configuration, and the pairs (input, vec-
tor of values of input parameters) and (output, vector of values of output parameters) are called parame-
terized input and output, respectively. The initial configuration of an EFSM is usually assumed to be
known. A transition in an EFSM can be executed if only the corresponding predicate takes the true value
in this configuration for the given parameterized input. Thus, unlike classical systems with a finite number
of states, not every transition in an EFSM can be executed in the current state (this is the well-known
problem of the executability of a sequence of transitions in an EFSM). Quite possibly, the execution of a
specific transition will require first the execution of a number of other transitions (for example, to reach a
required value of the variable–counter) before the required transition can be executed.

By functional faults in an EFSM, we mean the faults of transitions/outputs, assignment of values to
variables, errors in predicates, etc. The existing methods for deriving EFSM-based tests are focused on the
coverage of paths, variables, conditions, etc. [4, 6]; however, S. Nica has showed in her thesis [4] that the
completeness of these tests with respect to functional faults is very low (not exceeding 70%). Computer
experiments with different protocol implementations [6] have revealed that the completeness of suffi-
ciently long random tests with respect to functional faults is almost the same as the completeness of the
tests constructed when covering the sets of different EFSM transitions.

As an example, we consider an EFSM describing the Simple Connection Protocol (SCP) [10, 11]. The
EFSM (Fig. 1) has three states, which, generally speaking, describe different functioning modes. State S1
describes the mode of waiting for a connection request, S2 corresponds to the state of connection setup,
and state S3 corresponds to data transmission. The inputs describe the standard protocol commands: Req
(request), Conn (connection), Data (data transmission), and Reset (reset). In addition, we use the input
parameter Support, which equals 1 if the QoS level connection is ready and 0 otherwise. The input param-
eter SysAvail equals 1 if the system is free for connection and 0 if busy. The output parameters are Nosup-
port, Error, Abort, Support, Refuse, Accept, and Ack. The context variable TryCount corresponds to the
counter of failed attempts to establish a connection. Although this is a somewhat “toy” protocol, it
demonstrates rather well many aspects of protocol implementations.
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It should be noted that, compared to distinguishing sequences for software mutants, the EFSM-based
distinguishing sequences are derived in a much simpler way; in the next section, we briefly discuss the
existing methods for deriving a distinguishing sequence for two EFSMs on the basis of different FSM
abstractions, pointing out which abstractions are most suitable for which functional faults.

2. CONSTRUCTION OF DISTINGUISHING SEQUENCES FOR EFSMs

In this section, we discuss the methods for deriving a distinguishing sequence for two EFSMs. The
general method described in [5], which guarantees the construction of a distinguishing sequence for two
nonequivalent deterministic EFSMs, is rather cumbersome; moreover, the authors do not address the
executability problem. All other methods developed for deriving distinguishing sequences for EFSMs are
rather efficient heuristics based on FSM abstractions [11–15], for which executability is not an issue and
a distinguishing sequence can be derived rather simply from the intersection of two FSMs (deterministic
or nondeterministic, partial or complete).

Deriving a distinguishing sequence from the intersection of two EFSMs. The authors of [5] consider the
problem of deriving a distinguishing sequence for two different EFSMs (in our case, a specification and a
mutant). To describe all possible distinguishing sequences, a distinguishing FSM is constructed with a
designated fail state that represents all sequences that can distinguish the initial configurations of an
EFSM-specification and an EFSM-mutant undistinguishable with the specification by the test already
derived. Since the distinguishability of two EFSMs is considered, where the sets of context variables do
not intersect, the context variables of the mutant must be renamed. In this case, all distinguishing
sequences are represented by the special state fail, and thus the derivation of a distinguishing sequence is
reduced to the well-known problem of reachability. From the practical point of view, this distinguishing
EFSM has some disadvantages. Firstly, only deterministic fully defined specifications are covered, which
are not always available (especially, for protocol specifications). Secondly, not every sequence of transi-
tions taking a distinguishing EFSM into the fail state is executable; i.e., the problem of executability is not
addressed in the study. Thirdly, there remains the question of the equality of parameterized outputs when
these symbols are even simple functions, rather than merely assigned to be equal to some constant. Thus,
despite the generality of the proposed approach, the use of a distinguishing intersection–EFSM for deriv-
ing distinguishing sequences for two EFSMs is rather cumbersome.

Fig. 1. EFSM for SCP.

T9: Conn, (TryCount >= 2)/
Abort TryCount:=0; ConnQoS:=0; 
DataCount:=0;
T10: Reset/Abort
TryCount:=0; ConnQoS:=0;
DataCount:=0;

T5: Req(QoS)/support (QoSOut)
ConnQoS:=QoS
QoSOut:=ConnQoS

T11: Conn. If (TryCount < 2) & (SysAvail == l)
/Accept (QoSOv ut)

T12: Data (size, value)/Ack (DataCountOut) 
DataC ount+=size;
DataCountOut:=DataCount;
T13: Req/Error 
T14: Conn/Error

T15: Reset/Abort 
TryCount :=0; 
ConnQoS:=0; 
DataCount:=0;

T6:Conn.

If (TryCount < 2) & (SysAvail == 0)/refuse 
TryCount++;
T7: Req/Error 
T8: Data/Error

T1: Req(QoS)/Nosupport(QoS)
T2: Conn/Error 
T3: Data/Error 
T4: Reset/Abort

S1 S2

S3
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Deriving a distinguishing sequence from FSM abstractions of two EFSMs. The best-known FSM
abstractions for EFSMs are the following two. In the first case, the behavior of the EFSM in the initial
configuration is simulated on input parameterized sequences until a given number of states is reached in
the FSM or on all sequences of length of l or less. If the transition at which the FSM-specification and the
FSM-mutant differ is known, the next transition can be chosen at each simulation step using some
“greedy” algorithm, approaching as close as possible to the mutated transition. The experiments show that
under the condition that the two EFSMs differ in a small number of transitions (one or two mutated tran-
sitions per specification), l = 2 or l = 3 will normally be sufficient to construct a distinguishing sequence.
In addition, when the number of states is limited rather strongly, the traversal of the transition graph of
the corresponding FSM reveals single errors in the predicates and functions for context variables and out-
put parameters [13].

In the second case, all the predicates, input and output parameters, and corresponding functions are
simply removed from the EFSM. In this case, the (adaptive) distinguishing sequence is constructed for
two nondeterministic (possibly nonobservable) FSMs [14]. There are methods for deriving distinguishing
sequences for these EFSMs [14, 15]; the experiments show that although the upper bounds on the length
of these sequences are generally exponential, their length is mostly close to the number of FSM states.
Further, the adaptive distinguishing sequences exist more often and are usually shorter; however, in this
case, the tests should also be adaptive. Since all the predicates, context variables, and input and output
parameters are removed, this abstraction can be effectively used only to derive distinguishing sequences
for output and transition faults. For example, for the EFSM shown in Fig. 1, the error in the final state of
transition T5 (state S2 instead of S1) is immediately detected with the input Req.

Deriving a distinguishing sequence from predicate abstractions of two EFSMs. Nondeterministic FSMs
also appear for predicate abstractions of EFSMs [16]; for distinguishing sequences, these abstractions are
proven to be most efficient when there are no input parameters.

Let β be the set of k predicates defined with respect to the context variables and input parameters of the
EFSM M. If S is the set of states of the EFSM and DW is the set of all configurations and parameterized input

vectors, the predicate β-abstraction is defined as : , where  = ,
. By definition, bi = 1 if and only if the predicate Bi(w) takes the “true”

value. For a chosen set Px of (parameterized) inputs, the set of inputs of the predicate abstraction contains
pairs  and all nonparameterized inputs. For each configuration , input , and
predicate P of the transition  from state s, such that (v, px) turns P into truth and ,
the set of transitions of the predicate abstraction involves the transition  = 
and  = . As an example, we consider the predicate abstraction for the EFSM shown in Fig. 1 with
respect to the set of predicates (TryCount < 2) and (SysAvail = 0). If there is an error in the condition
(SysAvail = 0), the predicate abstraction does not remain in state S2 and goes from S2 to state S3, which
can be easily detected with input Data.

In the general case, a predicate abstraction is a nondeterministic FSM where the degree of nondeter-
minism essentially depends on the chosen set of predicates and the set of parameterized inputs. Simplify-
ing the proposition given in [16] for the case when the initial configurations of two EFSMs are distinguish-
able, we obtain that the two EFSMs are distinguishable by an (adaptive) input sequence α if the initial
states of the corresponding predicate abstractions are separable by α (adaptively distinguishable); i.e., the
sets of output responses to α in these states do not intersect (there exists an adaptive distinguishing test
case [15]). Paper [16] discusses the choice of predicates for constructing a predicate abstraction in order
to reduce the nondeterminism and increase the probability of the existence of a separating sequence. In
addition, one can derive an adaptive distinguishing sequence; i.e., the two EFSMs can be adaptively dis-
tinguishable. As far as we know, there have been no studies of adaptive distinguishing sequences for
EFSMs.

It should be noted that the construction of a predicate abstraction is rather cumbersome because the
EFSM configurations are analyzed. However, if there is an error for only one transition (this is the case
with µJava), one can simply mark the transition with the error in the predicate abstraction of the specifi-
cation; i.e., there is no need to construct a new predicate abstraction for the FSM-mutant.

Deriving a distinguishing sequence from different slices of two EFSMs. A detailed discussion of this
problem can be found in [13, 17]. The experiments conducted by the authors revealed that the tests con-
structed as transition tours of these slices can properly detect single functional faults, such as transition
and output faults, as well as errors of assigning an incorrect value to a context variable/output parameter
or the replacement of some arithmetic/logical operation.
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3. METHOD FOR CONSTRUCTING A TEST USING THE µJAVA TOOL

The verification tests derived from an EFSM with the help of known (sufficiently simple) methods are
supplemented with distinguishing sequences for the corresponding mutants, which are constructed using
the special tool µJava. This tool has wide functionality and, according to the documentation, can generate
34 types of software code mutations, primarily the traditional faults (such as replacement of mathematical,
logical, and comparison operators) and faults of object-oriented programming (such as inheritance and
polymorphism faults), which fit sufficiently well with the software functional faults. The latter dictates the
choice of this approach for increasing the completeness of tests derived from an EFSM. Single faults are
known to be the most difficult in terms of detection; therefore, exactly these mutants of software imple-
mentations are considered. The mutations can be generated by running the µJava GUI and selecting the
program project and the types of mutations to be generated. As a result, the directory Results includes all
the mutants generated in subdirectories with their names corresponding to the mutation type and number.
Using the unit-testing library JUnit [18], the test can be applied to all mutants simultaneously to deter-
mine which mutants cannot be detected by the test. Thus, the EFSM-based test suite with µJava consists
of the following steps.

Step 1. The initial verification test suite TS is derived by one of the well-known methods on the basis
of EFSM-specification M. One can use transition tour of the corresponding EFSM, a number of methods
for covering the paths, variables, conditions, etc., as well as randomly generated tests of a certain length.

Step 2. Using a predefined template, we construct a software implementation of the EFSM-specifica-
tion in such a way that the software implementation errors can be strictly linked to EFSM faults. Specifi-
cally, in the software implementation, the EFSM states are used as labels for describing the corresponding
operation mode. The context variables and input and output parameters correspond to those in the soft-
ware implementation. The predicates describe the conditions for the execution of instructions.

Step 3. The test suite TS is checked for completeness for the template software implementation using
the errors introduced by the µJava generator. The undetected errors are introduced into the EFSM and
the set Mut of EFSM-mutants undetected by TS is constructed.

Step 4. For each EFSM Imp from the set Mut, an appropriate FSM abstraction is constructed and a
sequence is determined that distinguishes the FSM abstractions of the two EFSMs, the EFSM-specifica-
tion, and the EFSM Imp. If it exists, this sequence is added to the TS; if there is no such sequence, the
current mutant and the specification are concluded to be indistinguishable.

Proposition 1. If there exist deterministic FSMs modeling the behavior of the EFSM-specification and
each constructed mutant, the algorithm consisting of the above-described steps returns a complete test
with respect to quasi-equivalence; i.e., the constructed test suite detects any mutant with its behavior dif-
fering from the specification in some (parameterized) input sequence defined in the specification.

In some cases, for an EFSM-specification or a mutant, it is impossible to derive an FSM of this kind
due to computational problems or, for example, an infinite set of admissible values for a context variable
or input parameter. Accordingly, we cannot guarantee the distinguishability of a mutant and a specifica-
tion if no distinguishing sequence is found; however, the experiments conducted with a number of EFSMs
describing the behavior of protocols and technical systems revealed that these cases are sufficiently rare.
If the resulting FSMs are nondeterministic, the completeness of the derived test is determined with
respect to nonseparability or adaptive nondistinguishability (when an adaptive distinguishing sequence is
used), rather than with respect to equivalence. It should be emphasized that for arbitrary EFSMs there are
no necessary and sufficient conditions for checking the equivalence, reduction, separability, and adaptive
distinguishability of two FSMs. In our experiments, we considered rather simple EFSMs; therefore, we
used only sufficient conditions to check these relations. One of these conditions is the injection of an error
leading to an additional connectivity component in the reference EFSM; in this case, no changes occur
in the original connectivity component.

4. ANALYSIS OF THE EXPERIMENTS FOR THE CASE OF SCP

The experiments were conducted with EFSMs describing the protocols such as SCP, “Time,” SMTP,
POP3, TFTP, calculator, and Audio CD player. In almost all cases, except for the simplest protocols, we
had to supplement the initial transition tour of the EFSM by distinguishing sequences. We illustrate the
process in more detail for the simple connection protocol (SCP). For this protocol, we developed a soft-
ware implementation of the EFSM and used the transition tour as the initial test suite. The µJava tool
allowed us to generate 245 traditional (arithmetic) mutants and 7 object-type mutants (see the Table 1).
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The initial test suite TS run on these mutants showed that 62 mutants (24.6%) were identical to the orig-
inal program. The use of FSM abstractions revealed that 9 (3.6%) of them are not equivalent to the specifi-
cation. The remaining 53 (21%) mutants introduced no changes to the behavior of the EFSM-specification.
Further, the return to the EFSM made it possible to identify the transitions where nonequivalent mutations
had occurred. Due to this, the test suite was supplemented by adding three distinguishing parameterized
input sequences of a total length of 11. Thus, the test length increased from 18 to 29 inputs. The test rerun
distinguished 9 nonequivalent mutants from the specification. Thus, only 53 equivalent mutants remained
undistinguished. As a result, the test completeness increased from 75.4 to 100% (with respect to the mutants
generated by µJava).

5. CONCLUSIONS

In this study, we have proposed a method for increasing the completeness of EFSM-based tests
through the use of mutation testing for the software implementation based on a special template. The tests
constructed as a transition tour of the specification have proven to be incomplete with respect to the faults
introduced by µJava; i.e., there were functional faults undetected by the test. This is primarily caused by
the fact that the EFSM-specification is derived most often from some informally described requirements
for the software implementation, rather than directly from the software implementation. To fully detect
the faults introduced by µJava, the test suite was supplemented by different sequences for FSM abstrac-
tions of the specification and its mutant. The experiments show that this approach on the basis of FSM
abstractions has made it possible to identify the mutants that were equivalent to the specifications, as well
as to complete the verification test with distinguishing sequences for the nonequivalent mutants. It is of
interest to analyze whether it is possible to use observability for context variables on the basis of this
approach. If some mutations of the context variables are not detected with FSM abstractions, it is reason-
able to make these variables observable during debugging, i.e., to declare them as output parameters. The
construction of distinguishing sequences makes it possible to minimize the list of these observable vari-
ables. It is of special interest to derive distinguishing sequences for FSMs of special classes, such as tree
and timed FSMs. Another direction of our future activities is the use of the results obtained in this study
not only to detect, but also to localize the faults in software implementations.
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Table 1. Generated mutants

Name Mutant description Number of mutants

AOIS Increment/decrement of random variable 96

AOIU Negation of variable 5

LOI Bitwise negation 24

ROR Rational operator replacement 91

>, <, =, <=, >=, ==

COR Conditional operator replacement 4

^, ||, &&, &, |&

COI Conditional operator insertion 17

!(true), !(false)

ASRS Assignment operator replacement (short-cut) 8

+=, /=, -=, %=

JSI Insert static modifier 7

Total 252
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