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Abstract⎯The control of second order system with uncertain parameters and single unknown control
coefficient was investigated to solve the synchronization problem of Rikitake chaotic with reduced
number of active inputs. In addition, a kind of adaptive strategy was hybrid with sliding mode method,
where the adaptive strategy was used to cope with uncertain parameters produced in the process of
sliding mode controller design. At last, detailed numerical simulations with both second order systems
and synchronous chaotic system were done to testify the rightness of the proposed method and also
multi-time random simulations were done to testify the robustness of the controller. In addition, the
main conclusion is that the sliding mode control has very good consistency since the strategy forma-
tion is almost the same as the controller for system with known control coefficient, and high gain is
necessary for system with single uncertain control coefficient.
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1. INTRODUCTION
The theory of synchronization [1–3] is a recent research area extensively investigated by researchers

from many countries in many fields including communication, mechanical systems, robotics, chemical
reactions and biological systems. Especially chaos synchronization [4–7] has attracted a lot of attention
from theoretical and practical viewpoints and several approaches had been proposed [8–11]. Application
of chaos synchronization in secure communication is certainly the main reason why it attracted so many
scholars not only in civilian and in army. But in the past, most research works were focused on synchro-
nization of chaotic systems with different structure or systems with all kinds of uncertainties [12–14], or
new synchronization strategies. Only a few researchers thought using less active inputs to realized syn-
chronization, in fact this new format is not only make synchronization more difficult to be realized, but
also make it more safe and more difficult to be deciphered in secure communication. So in this paper, a
kind synchronization of Rikitake system with reduced number of active inputs was investigated And to
make the design can be applied to a more widely range of other kind of chaotic systems, the design process
was based on a control strategy of general second order system [15–17] since the synchronization problem
can be changed to be a control problem of special second order system, so the stability of the whole chaotic
synchronous system should be analyzed in the design process.

Stability is a main problem [18–21] that affect a control method to be meaningful or not, but robust-
ness [22–26] is a key problem that affect a control method can be applied in real control engineering or
not. To solve system uncertainties, many kinds of nonlinear control methods [27–29] were proposed and
applied in many control examples. Sliding mode control strategy is loved and applied by many engineers
for its strong robustness. In fact, the strong robustness [30–32] was achieved by the easily setting of high
gain in the controller. So many papers shows the strong robustness but the essential reason of robustness

1 The article is published in the original.
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is not revealed. Why it has strong robustness? It is an interesting problem. In this paper, a kind of adaptive
sliding mode controller was designed for a second order system and synchronous chaotic systems with sin-
gle unknown control coefficient. Moreover, what is most important is that it pointed out that the high
robustness, which is showed in the final part of multi-time random simulation, and simulation of chaotic
synchronous system, still depended on the using of high gain feedback in the control law design.

2. MODEL DESCRIPTION
A novel Rikitake chaotic system can be described as

(1)

where   and  are system state variables, and   and  The above chaotic sys-
tem was supposed to be driven system, and the response chaotic system was also chosen as the same cha-
otic system as

(2)

In the next sections, we will research on the synchronous problem between driven chaotic system and
response chaotic system with only two synchronous inputs.

3. MODEL TRANSFORMATION
In order to realize the synchronization between above chaotic systems, which is very useful and can be

applied in secure communication, we set the system (1), to be the driven system and set the system (2) to
be the response system; and by adding active inputs the response system can be modified as

(3)

where   are active control items which are used to set the control law to make the synchronization
realized, and  is a unknown control coefficient. The main innovation point of this paper is that we just
use two active control items to realize the synchronization of two three order chaotic systems. Then the
error system can be written as

(4)

where errors are defined as   
Then the above system can be divided into two systems. The first system is a second order system,

which can be written as follows:

(5)

where   and the second system can be written as a first order system

(6)

where 
To make it is easy to understand for readers of this paper, we first do not consider  then the synchro-

nous law design for  is simpler than the original system. But to make the discussion has a more universal
and general application, we discuss the control problem of below second order system with single input
coefficients first, then the synchronous law designed can be applied to any other kind of chaotic system.
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4. PROBLEM DESCRIPTION
The second-order system with a single unknown control direction is a special situation in all of second-

order systems. The control direction is the coefficient of the model input u, which is also called control
coefficient. The model discussed in this paper can be written as:

(7)

where    where  is an unknown constant. The parameters of model is

unknown, the objective of adaptive sliding mode control is to design an adaptive sliding mode controller
such that the system state x1 can trace the expected value 

5. ASSUMPTION

Assumption 1:  ≠ 0, its direction is known, without loss of generality, assume  > 0.

Assumption 2: the expected  is a constant, then  = 0.
Assumption 3: the sign of control coefficient is known, without loss of generality, assume 
Assumption 4: the amplitude of control coefficient is unknown and it is a constant, so 

6. ADAPTIVE SLIDING MODE CONTROLLER DESIGN
FOR UNCERTAIN SECOND ORDER SYSTEM

WITH SINGLE UNKNOWN CONSTANT CONTROL COEFFICIENT
Consider the following the first order subsystem:

(8)

Define an error variable as  then:

(9)
Then the second order derivative of error can be written as

(10)
and the sliding mode surface can be written as

(11)

To make the sliding mode surface meaningful and stable, it is necessary to set parameters  
such that the differential equation is stable when the sliding mode surface is converged to 0.

So the derivative of the sliding mode surface can be written as

(12)

Then it holds

(13)

and it can be arranged as

(14)

Define
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(17)

Then the control law can be designed as

(18)

and define variables as

(19)

(20)

(21)
Then it holds

(22)

and it can be transformed as

(23)

Then it also can be expressed as

(24)

Design the adjusting law of unknown parameters as

(25)

(26)

(27)

Choose a Lyapunov function as

(28)

Solve its derivative as

(29)
Choose another Lyapunov function as

(30)

Then its derivative can be commuted as

(31)

Choose a big Lyapunov function for the whole system as

(32)
Solve its derivative as

(33)
So the system is stable with the proposed adaptive sliding mode control law, and what is worthy point-

ing out is that the gain of the system is not necessary to be very big, which is very different from other back-
stepping methods.
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Note 1: The design of adaptive sliding mode control law for system with uncertain control coefficient
situation is almost the same as the situation of systems with unknown control direction, but there is one
control item has different coefficient.

7. NUMERICAL SIMULATION

The simulation was done with the below second order system with single unknown control coefficient:

where unknown parameters are set as      and the control law
is designed as

where  

Choose   

Assume all initial states are, and choose the expect value as  and set parameters for controller as

The simulation results can be shown as following figures: Fig. 1 and Fig. 2.
Choose ten groups of random parameter to do the numerical simulation, and results can see the below

Figs. 3, 4.
According to the above simulation result, the proposed method achieved good control performance,

especially; the output is not affected by the change of random model parameters greatly. So it means that
the control law is effective and has strong control ability for uncertainties, which is the main advantage of
sliding mode control.
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8. SYNCHRONOUS CONTROL LAW DESIGN FOR ERROR SYSTEM
According to above control analysis, we first design the synchronous law for the first subsystem of error

system with consideration of  Define  where  then design the sliding mode surface
 is defined as

(34)

Then the synchronous law can be designed as

(35)

where

For the second subsystem of error system, we can design a simple feedback control law to realize the
synchronization since it is a simple first order system. The feedback control law can be written as

(36)

Then
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So

(38)

and if we choose a Lyapunov function as

(39)

then solve its derivative, and it can be written as

(40)

So according to Lyapunov stability theorem, it is easy to prove that  so it means that the syn-
chronization can be realized.
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9. SIMULATION RESULT OF SYNCHRONIZATION
OF TWO CHAOTIC SYSTEMS

To show the free movement of Rossler system, we use Matlab language to write a program to do the
simulation with the proposed controller design method, and the simulation result is as bellows. The below
Figs. 5 and 6 shows the free movement of chaotic system with different initial values by running above program.

By using the synchronous method proposed in section 6, we wrote a Matlab program to do the numer-
ical simulation and set  the simulation result of synchronization can see Figs. 7, 8 and 9. The syn-
chronous error between driven chaotic system and response chaotic system was shown in Figs. 10, 11 and 12,
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and it is clear that only two active inputs realized synchronization of three chaotic states. So we can make
a conclusion that the proposed method is effective.

If we change  the synchronization can also be realized, and simulation result can see below
Figs. 13–18. We can find from simulation figures that the synchronization error is obviously increased as
input coefficient decrease and the convergence of synchronous error is also become slower than previous
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one. It means the accuracy of synchronization is related with the input coefficient and control gain. So we
can choose a proper gain to control the accuracy of synchronization such that it can satisfy the requirement.

10. CONCLUSION
A new synchronization controller for Rikitake chaotic systems with reduced number of active inputs

was designed by transforming it to be a control problem of special kind of second order systems with single
control coefficient. It is obvious that the constructing of sliding mode control law for single unknown con-
stant control coefficient situation can be the same as the situation with a known control coefficient. So
the sliding mode control has very good consistency, which is very different from backstepping control
method. In addition, the adopting of adaptive control item make the sliding mode control method is not
necessary to use a high gain, but according to the simulation result of random parameters, it is still need
to choose a big enough gain to fit all random situations, which will make the control law to be universal to
cope with all kinds of disturbance or uncertainties. Generally speaking, control gain still needs to be big
enough for sliding mode control to cope with all kinds of uncertainties. This conclusion was also testified
in the final detailed simulation of second order system and complex synchronization of chaotic systems.
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