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Abstract⎯The clustering system based on the evolving general regression neural network and self-
organizing map of T.Kohonen, is proposed in the paper. The tuning of system is based on “lazy” learn-
ing and self-learning using the principle “Winner takes more” at the same time as neighborhood func-
tion the output signal of the hybrid network is used. The system’ implementation is characterized by
numerical simplicity. The evolving neural network processes data in an online mode and doesn’t suffer
from the curse of dimensionality.
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1. INTRODUCTION
Nowadays, systems and methods of computational intelligence [1–4] are widely used in solving various

problems of Data Mining [5, 6], such as forecasting, classification, clustering, etc. The solving of cluster-
ing task is based on self-learning paradigm that essentially complicates the process of decision making [7–
9]. Here the most popular systems designed for data processing in batch mode are BSB- and ART-neural
networks. T.Kohonen’s self-organizing maps (SOM) [10] were designed for sequential data clustering,
due to their implementation simplicity and computational possibilities of sequential data processing in
on-line mode, that allow to use them in tasks of Dynamic Data Mining and Data Stream Mining [11]. It’s
supposed too that the recovered classes aren’t mutually overlap and have a convex shape, i.e. in the self-
adjustment recovering process separating hyperplanes have hardly to distinct different clusters.

In situations, when classes have arbitrary shape, the so-called kernel self-organizing maps (KSOM)
[12–14] may be used to solve the problems of clustering. These systems are built using the J. Mercer’s ker-
nels [15] and based on minimization of empirical risk criterion [16] that takes place in so-called support
vector machines (SVM) [17] introduced by V.N. Vapnik. SVM-neural networks are really effective means
for solving many problems of Data Mining including clustering. However, because the number of neurons
in this network is determined by the volume of the processed dataset, it’s clearly that it doesn’t appropriate
for the problems associated with on-line analysis of the information that is fed into the system.

Here it must be noted that in [18] modifications SVM-networks for large data sets were introduced, but
their learning is possible only in batch mode. In this regard instead of the conventional approach to SVM-kernel
systems in clustering systems it is possible to use the ideas associated with the E. Parzen’s estimates [19],
D. Specht’s general regression neural networks (GRNN) [20] and T. Cover’s theorem of linear classes
separability in spaces of higher dimensions [21]. Thus, the main requirements to the synthesized hybrid
neural network are the simplicity and speed of the self-learning process in the problem of on-line cluster-
ing vector stream of observations that are fed into the system.

2. ARCHITECTURE OF KERNEL SELF-ORGANIZING MAP BASED 
ON GENERAL REGRESSION NEURAL NETWORK

The architecture of the considered kernel self-organizing map based on general regression neural net-
work is shown on Fig. 1.

1 The article is published in the original.
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Input information for the network is set (may be increasing) of vector observations
 that has to be divided

into m clusters of arbitrary shape, while k may be an observation number or the current time point. Obser-
vation vectors  are sequentially fed to the first layer of radial-basis functions (R-neurons), which has
identical structure with the first layer (pattern layer) of the standard D. Specht’s general regression net-
work and formed by bell-shaped kernel activation functions  by means of which increasing
of the input space dimensionality is realized.

As activation, functions traditionally Gaussians are usually used and the tuning of this layer is provided
by a “lazy” learning based on the concept “neurons in the data points” [22]. At the same time as centers
of activation functions processed vectors-patterns are used.

So, when any non-classified pattern  is fed to the input of neural network, outputs of R-neurons pro-
duce the signals

,

(here  is the receptive field parameter of bell-shaped function), and at the output of GRNN in general – the
signal

, (1)

appears (here  – reference signal corresponding to the pattern ). It is clear that the clustering
problem hasn’t reference signal, and GRNN itself in the main case is focused on solving interpolation
problems rather than clustering.

The second hidden layer of a considered network – a normalization layer that provides elementary
transformation

here  that is necessary for output layer data processing and coincides with
clustering T. Kohonen’s neural network, tuning of which parameters is based on competitive self-learning.
In this output layer, the task of patterns sequence partitioning of increased dimension

 to the m clusters with prototypes-centroids  is solved.
Despite its apparent simplicity, in the implementation of this approach significant computational

problems with a large volume  of processed dataset can arise, because the network that contains  neu-
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Fig. 1. The architecture of kernel self-organizing map based on general regression neural network.
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rons becomes too bulky. In this regard, it seems appropriate instead of the traditional procedures for train-
ing GRNN to introduce a method that allows not only adjusting the parameters of network, but also sig-
nificantly reducing the number of its R-neurons.

3. THE LEARNING OF KERNEL SELF-ORGANIZING MAP BASED 
ON GENERAL REGRESSION NEURAL NETWORK

In order to form the first layer of the considered hybrid neural network the ideas that underlie evolving
systems of computational intelligence [23–26], adapted to the on-line data processing [27], can be used.
The implementation of this approach in the form of the following steps sequence has the following form:

Step 0: to set the threshold of vectors centers of activation functions difference , the maximal possible
number of neurons in the first layer  and the width parameter of the receptive field 

Step 1: when the first observation  is fed, the first center  is formed and activation function
itself

.

Step 2: when observation  is fed, the condition is checked

(2)

and if this inequality is true, the observation  doesn’t form new center and automatically it belongs to
the same cluster as the observation , if condition

is true, then  is corrected according to the T. Kohonen’s self-learning rule (WTA) [10] in the form

(  – learning rate parameter), if

,

then the second activation function is formed

.

Step N: If  activation functions are formed in the process of k of N-th vector-pattern and condi-
tion (2) is executed, the process of increasing of R-neurons number of the first layer finishes and further
the structure of this layer stays unchanged.

To estimate the functioning quality of the first layer it’s possible by using the expression (1), which for
 takes the form

, (3)

and after that to introduce the recovery error of input pattern

(4)

However, in the forming process of first layer with approach described above, some of the centers of
activation functions don’t match with vector-patterns; usage of the expression (3) correct for the “classi-
cal” GRNN, in our case may be unlawful. In this situation, it’s possible to use the modified GRNN [28, 29],
whose architecture is shown in Fig. 2.
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This network is similar to the three-layer perceptron, which consists of three layers of information pro-
cessing, however, as the activation functions, uses radial basis structures in the first hidden layer. The sec-
ond hidden layer contains  nodes, n of which are adaptive linear associators, and (n + 1)-th is stan-
dard element of summation  The output of the network is formed by n units of dividing .

Learning of such network is a combined process of centers radial basis functions installation on the
basis of evolving systems approach and methods for supervised learning of linear associator synaptic
weights. Thus, as reference signal here input signal itself is used, i.e. network is tuned in auto-associative
mode.

The second hidden layer of network is tuned similarly to the process of radial basis function neural net-
works learning. Thus at the outputs of n adaptive linear associators the signals

are formed, and at the outputs of adders  sum  appears.

The output layer provides normalization of output signal similarly to normalized radial- basis function
network (NRBFN) such that

(5)

or

, (6)
where

 

 – matrix of synaptic weights, that has to be tuned during the learning process.
For matrix of synaptic weights  tuning it’s possible to use recurrent least squares method that is

time-optimal Gaussian-Newtonian optimization procedure:
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Fig. 2. Modified general regression neural network.
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Thus it’s possible to evaluate the quality of the first layer, using instead of the standard equation (3) the
expression (4) and estimates (5) and (6).

The output signal of synthesized first layer in the form of -vector 
in the second hidden layer is transformed in the form

i.e. projected on -dimensional hyper-sphere of unit radius after that in the form of sequence
 is fed to input of Kohonen’s self-organizing map.

Tuning of Kohonen’s neural map that is formed by m adaptive linear associators is based on WTM-
self-learning rule («Winner takes more») and connects with the partition of sequence of normed vector-
patterns  to m clusters; each of them is characterized by prototype-centroid 

, which is tuned when every pattern of higher dimension  is fed to the system.
The process of self-learning starts with initialization of synaptic weights of output layer that are set arbi-

trarily in the form of the prototypes  such that

.

When the signal  is fed to the third layer,  distances are calculated in the form

,

after that neuron-winner for which

is determined.
After that the first step of weights-centroids tuning is realized using the procedure

Similarly, it’s possible to write the rule of self-learning for k-th vector-pattern.

(7)

where  – so-called neighborhood function that determines local area of topologi-

cal neighborhood, in which not only neuron-winner is tuned , but also its entourage, wherein neurons

close to the winner are catching to the input vector  more than far from  centroids .
As neighborhood function here, all the same Gaussian is used

where  determines the size of the neighborhood area, wherein in the learning process this parameter
must monotonically to decrease.

For learning of self-organizing map, it is proposed not to determine the winner and as neighborhood
function output signal of every neuron to use
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(8)
In this case, the rule (7) can be rewritten as

. (9)

Noting that

it is easy to define that expression (8) is cosine of the angle between input pattern  and vector-centroid
, i.е. . Taking into consideration the non-negativity of neighborhood function

we can rewrite the self-learning rule as

(10)

where  is projector onto positive ortant.
The process of clustering finishes the expiration of sampling, which contains  observations, or it is

realized continuously if data are fed in the form of stream in on-line mode.

4. EXPERIMENTAL MODELING
Efficiency of proposed kernel self-organizing map based on general regression neural network that is

shown in Fig. 1, has been investigated on data sets from the UCI repository [30] and compared with the
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Table 1. Comparison of different data sets clustering accuracy

Investigated 
architectures

Iris Wine WDBC

avg max min avg max min avg max min

SOM 87 96 60 68 74 54 83 91 66
FCM with β = 2 70 72 33 69 74 33 86 87 86
GRNN 72 63 66 68 70 27 87 93 63
KSOM-GRNN 72 96 68 63 75 66 90 91 88

Fig. 3. The average clustering accuracy of the architectures.
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Fuzzy C-Means algorithm (FCM), the standard T. Kohonen’s self-organizing map (SOM) and generalized
regression neural network in three experimental series. For the first experimental series, three marked data sets
of observations were taken. Data set “Iris” consists of 150 observations that are divided into 3 classes; each of
all observations has 4 features. Data set “Wine” consists of 178 observations that are divided into 3 classes;
each of all observations has 13 features. Data set “Wisconsin Diagnostic Breast Cancer” (WDBC) consists
of 569 observations that are divided into 2 classes; each of all observations has 30 features. Because for
each data set mark of correct classification exists, clustering efficiency was measured in percent of accu-
racy relative to a reference value. The working results of the standard T. Kohonen’s self-organizing map
(SOM), the Fuzzy C-Means algorithm (FCM) for β = 2, the generalized regression neural network were
compared with the kernel self-organizing map based on general regression neural network with different
values of their parameters. The average, minimum and maximum results for a series of 50 experiments are
shown in Table 1.

Efficiency of KSOM-GRNN higher and more stable than SOM, FCM and GRNN is shown by exper-
imental series. Because the accuracy of the clustering quality of architectures that were discussed above is
identical to their batch analogs, the most interesting for experimental research is the learning rate of the
system. In conducted experiment series the time in which the system reaches the target clustering accuracy
has been test. Standard data set “Wine” was used for testing of architectures (178 13-dimentional obser-
vations, divided into 3 classes). For all methods and architectures that were mentioned above, series of
50 experiments have been made. At the beginning, experiment is randomly initialized, the system was
tested on the training data set that included 66% of data set. After that, clustering accuracy was measured
on whole data set. The average clustering accuracy of the architecture depending on the number of passes
in the data set is shown in Fig. 3 on the graphs. By abbreviations denote architecture: standard
T. Kohonen’s self-organizing map (SOM), the Fuzzy C-Means algorithm (FCM) for β = 2, the general-
ized regression neural network (GRNN) and the kernel self-organizing map based on general regression
neural network (KSOM-GRNN) that are shown in Fig. 3.

The first three steps of centroids learning procedures are demonstrated in Table 2.

5. CONCLUSION
The architecture of hybrid neural network and method of its self-learning that are intended for the f low

of observations kernel clustering that sequentially are fed the online mode is proposed. The proposed sys-
tem is built on the basis of evolving general regression neural network and self-organizing map of
T. Kohonen. The tuning of system is based on “lazy” learning and self-learning using the principle “Win-
ner takes more” at the same time as neighborhood function the output signal of the hybrid network is
used. The proposed system doesn’t suffer from the curse of dimensionality, is easy to implement, and is
not critical to the arbitrary clusters shapes.
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