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Abstract⎯A modification of the well-known FitzHugh–Nagumo model from neuroscience has been
proposed. This model is a singularly perturbed system of ordinary differential equations with a fast
variable and a slow variable. The existence and stability of a nonclassical relaxation cycle in this system
have been studied. The slow component of the cycle is asymptotically close to a discontinuous func-
tion, while the fast component is a -like function. A one-dimensional circle of unidirectionally cou-
pled neurons has been considered. The existence of an arbitrarily large number of traveling waves for
this chain has been shown. In order to illustrate the increase in the number of stable traveling waves,
numerical methods were involved.
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1. MAIN RESULT
The suggested method of simulating neuron activity is based on idea from [1, 2] about the replacement

of a biological neuron with an equivalent generator of electric oscillations. Namely, let us consider a self-
generator, the block design of which is shown in Fig. 1. Assume that this generator uses some virtual non-
linear element N, the volt-ampere characteristics i = f(u) is shown in Fig. 2. Two points are essential here.
First, in contrast to the tunnel diode characteristic, the function f(u) now has only one extremum (maxi-
mum) and approximates to a finite positive limit as . Second, all intersection points of diagrams
of functions i = f(u) and i = (E – u)/R (the set of these points is definitely not empty) belong to the inci-
dent region of the characteristic i = f(u).

In order to derive the mathematical model of our generator, let us refer to the Ohm and Kirchhoff laws,
which imply the following correlations for voltages u0, u1 and current i (see Fig. 1):

(1)

Then, excluding variable u0 from (1) and assuming that u1 = u, we get the following system for components u, i:

(2)

Finally, in the assumption of the smallness of , after normalizing , v = Ri and redes-
ignations a = E, g(u) = Rf(u), system of equations (2) is transformed into

(3)

where , a = const > 0.

Let us consider the properties of function  from (3) separately. According to the require-
ments on characteristic i = f(u) described above, we will assume that it satisfies the following restrictions.

δ
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Condition 1.1. There is  such that

(4)

Condition 1.2. Assume that, as , the asymptotic representation

(5)

takes place, which remains true during differentiation by u any number of times.
An approximate diagram of the function g(u) has the same shape as for case of f(u) (see Fig. 2); the

following representation can be taken as a specific one:

(6)

It can be easily seen here that condition 1.2 is not fulfilled; at the same time, in expansion (5), coefficient
 equals to c2 and all the rest ,  are zero. Further value  taking place in (4) is set by equality

 and requirement  is equivalent to condition

(7)

on parameters a, c1, c2.
Suggested system (3) represents some modification of the well-known FiztHugh–Nagumo model [3]

which is denoted as

(8)

where ; a, b = const > 0; . Disadvantages of system (8) include the circumstance
that oscillations of component u = u(t) in it do not quite correspond to oscillations of the membrane
potential of a real neuron. Actually, the latter are characterized by the presence of short-term and quite
high splashes (spikes) that alternate with regions of a slow change in the membrane potential. In the case
of system (8), as  and at suitable selection of parameters a, b, and c, the so-called classical relaxation
oscillation [4], which does not possess the required properties, is realized.

= >∗ 0u u

∗

= , > ∈ −∞, , < ∈ , +∞ ,∗ ∗
= , < , − − > .∗∗ ∗

(0) 0 '( ) 0 at ( ) '( ) 0 at ( )

'( ) 0 ''( ) 0 ( ) 0

g g u u u g u u u

g u g u a u g u

→ +∞u
∞

=

α= α + , α > ,∑0 0

1

( ) 0k
k

k

g u
u

= − + − − , , = > .1 2 1 2( ) exp( ) (1 exp( )) const 0g u c u u c u c c

α0 αk ≥ 1k ∗u
= +∗ 2 11u c c − − >∗∗ ( ) 0a u g u

= +− − − − − − | >
2 11 2 1[ exp( ) (1 exp( ))] 0u c ca u c u u c u

ε = + − + , = − − ,� �v v v3 3u u u c a u b

< ε !0 1 = ∈ �constc

ε → 0

Fig. 1. 

R

E

L

CN

i

u1u0

Fig. 2. 

0

i

u

i = f(u)

i = (E – u)/R



AUTOMATIC CONTROL AND COMPUTER SCIENCES  Vol. 50  No. 7  2016

NONCLASSICAL RELAXATION OSCILLATIONS IN NEURODYNAMICS 573

New system (3) is free of the pointed disadvantage, since it accepts a stable nonclassical relaxation cycle
or pulse type cycle. According to the terminology accepted in [5], we will call this cycle

 of this system of period , the component of which  converges point
by point to some discontinuous function,  approximates to finite limit  and component 
changes over time as a -like function.

Let us introduce some designations before formulating a strict result about the existence and stability
of pulse type cycle. For this purpose, we assume that

(9)

where ,  is the only root of equation g(u) = v from the interval . It is neces-

sary to note that, below, due to the properties (4), (5), inequalities , ,  take place
and, additionally, knowingly the positive magnitude

(10)

Besides constants in (9), (10), below, we will need functions , , where  and
 is defined from the Cauchy problem

(11)

It can be seen that, as a continuation of the segment  to the whole axis t, by the -periodicity
law, these functions turn out to be discontinuous at points , 

Theorem 1.1. Assume that conditions 1.1, 1.2 are fulfilled. Then, there exist a small enough  such
that, for all , system (3) has an exponentially orbital stable relaxation cycle

(12)

of period . At the same time,  The limit equalities are true for this cycle as follows:

(13)

(14)

(15)

Here  is the first positive root of equation  and constants  are
randomly fixed.

Figure 3 presents a visual comprehension of the properties of the relaxation cycle of the pulse type,
which shows the dependences of its components on time. The aforeentioned diagrams were obtained by
numeric integration of system (3) in case (6), (7) at , a = 12, c1 = 10, c2 = 3 (a solid line shows a
diagram of , dashed line, diagram of , where  – some phase shift).

 The proof of theorem 1.1 presented in the next chapter is based on some additional constructions. In
order to describe them, let us randomly fix segment , which belongs to the set  such that

 is an internal point of . Below, we introduce the family of solutions 
 of system (3) with the initial conditions

(16)

and designate the first and second positive roots of the equation
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(17)

as  and , correspondingly (if they exist). Finally, let us set the Poincare succession mapping
 using the equality

(18)

The further plan is as follows. First of all, we will show that mapping (18) transforms segment  into
itself and is a contracting segment. Then, we will make sure that the stable periodic solution (12) of system (3),
which corresponds to the only stable point of mapping  possesses the required asymptotic properties (13)–
(15), where constants    and functions   are set by equalities (9)–(11).

2. PROOF OF THEOREM 1.1
Let us consider the curve

(19)

where ,  are the components of the solution of the Cauchy problem (3), (16). Our near-
est goal is to obtain the asymptotic representations for it in different segments of t.

We will start analyzing curve (19) from region  corresponding to values  where
 is the first positive root of the equation

(20)

Since the moment of time  is asymptotically small and in the considered interval of the change in
the t component  monotonously grows from  to , we will call region  as the takeoff
segment. Figure 4 shows approximate shape of .

In the statement formulated below, the variable  is taken instead of time t as the param-
eter in .

Lemma 2.1. Takeoff segment  is set by the equality

(21)
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where the function  as  accepts the following asymptotic representations uniform by 
 

(22)

(23)

(24)

Proof. Obviously (3), (16) imply that, on curve  variable v as a function of u must satisfy the Cauchy
problem

(25)

with the right-hand side

(26)

Let us perform some preliminary discussion in order to define asymptotic properties of this problem.

Let us fix segment  which includes segment . Properties (4), (5) imply that, in
this case,

(27)

Then, let us consider the set

(28)

Based on explicit view (26) of function F and correlations (4), (5), (27), it can easily be seen that

(29)

Here and below, M, M1, M2, etc. stand for various universal positive constants whose precise values are not
essential. In particular constants M1, M2, M3, in (29) do not depend on u, v, , but do depend on selection
of segment  from (28).
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Besides set (28) we will also need Banach space X. Its elements are represented by functions v(u, v0),

which are continuous by  including partial derivative . The norm in X is
set by the equality

Let us refer directly to Cauchy problem (25) and will seek its solution  as a stationary
point of operator

(30)

defined in a set of functions

(31)

and taking values in X. A simple check shows that, for any elements v(u, v0), v1(u, v0), v2(u, v0) from defi-
nition domain (31) of operator (30), the following estimations are true:

where M1, M2, M3 are constants from (29). This obviously implies the following facts that take place for all
small enough .

First, operator  transforms set (31) into itself and is a contracting operator (with contraction constant
of order about ). Second, the following asymptotic representations are uniform by 
and  are true for its stationary point , the existence and singleness of which are guaranteed
by the principle of contracting mappings as follows:

(32)

Finally, let us refer to the equality

(33)

as well as to equalities obtained from (33) based on differentiation by u, v0. Then, let us substitute them
into right parts of equations (32) and repeatedly expand the obtained expressions by . As a result, we get
the required asymptotic representations (22)–(24). Lemma 2.1 has been proved.

Finalizing the consideration of the takeoff segment, it is necessary to note that values 
correspond to it, where  is the first positive root of Eq. (20). Formulas (22)–(24) imply that the
following asymptotic representation, which is uniform by , is true for this root:
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(34)

Now let us consider another segment  of curve (19) that corresponds to values
, where  is the second positive root of Eq. (20). This segment is character-

ized by the fact that it lies entirely in semi-plane  and, when moving by it for about time
, point (u, v) first leaves line , then returns back to it again (see Fig. 4). In connection with this,

we will call this segment a turn segment and take variable v as a parameter on it.
Lemma 2.2. The following equality takes place for turn segment  as follows:

(35)
where

(36)

In addition, as , the following asymptotic representations uniform by  are true for the functions
 :

(37)

(38)

and representations uniform by   for the function :
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where 
Proof. First of all, it is necessary to note that the function  in (35) is defined using the

equalities
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where  is the function from (21). As for formulas (38), they are obtained from (41) after the sub-
stitution of correlations (22), (23) and repeated expansion by .
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(46)

Properties (46) indicate that problem (42) represents a regular perturbation of the system

In this way, the solution  to this problem at values  for which

(47)
accepts asymptotic representations

(48)

(49)

Formula (48) should be explained in more detail. Actually, properties (46) directly imply that

Further substituting the obtained equality into the right-hand side of the integral equation

and taking estimations (46) into account again, we obtained the specified asymptotic representation (48).
It is necessary to note that correlations (48), (49) are transformed to the required form (39), (40). In

order to confirm this, one should substitute already established asymptotic formulas for  (see (38))
into (48), (49) and repeatedly expand the results by .
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in the interval  as follows:
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fillment of this condition on the whole segment J. In this way at  both equalities (39), (40) and
derived correlations (37), (50) gain validity. Lemma 2.2 is proved.
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we finally get

(53)

The next segment  of curve (19) corresponds to values of t from the time interval ,
where  is the first positive root of Eq. (17) (its existence should also be proved). Then, it will be
shown that the length of this segment is asymptotically small and, at the same time component ,
monotonously decreases from  to value  (see Fig. 4). In this way, segment  can be called a
return segment. As in the case with , we will take variable u to be a parameter in it.

Lemma 2.3. Representation similar to (21) is true for return segment 

(54)

Here, function  is such that, first,

(55)

second, as , the following asymptotic equalities that are uniform by ,  take place:

(56)

Proof. Since the proof of lemma 2.3 is mostly similar to that of lemma 2.1, let us omit some technical
details.

In this case, function  in (54), (55) is defined from the similar Cauchy problem (25)

(57)

where F(u, v) is function (26). To study it, we need the set

(58)

similar to (28), where  is the image of segment  under the influence of mapping .
Correlations (4), (5) imply that inequalities ,  similar to (27) take place on set (58)
and consequently estimations in the form (29) hold true.

The following discussion repeats corresponding part of proof for lemma 2.1. Namely, in this case, the
following operator is considered instead of (30) in the same Banach space X:

Based on estimates (29) and formulas (37), we make sure that, first, this operator maps a similar set of
functions (30)

into itself and is a contracting operator. Second, the following asymptotic equalities uniform by ,
 take place for its stationary point 
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which imply the required formulas (56) due to (37). Lemma 2.3 is proved.
In addition to the established lemma, it is necessary to note that, as , the first positive root

 of Eq. (17) accepts an asymptotic representation uniform by  due to (53), (56) as follows:

(59)

We will call the remaining segment  of curve (19), which completely belongs to the semi-plane
 (see Fig. 4), a segment of classical relaxation oscillations. This name is motivated by the

circumstance that its asymptotics is well known and is thoroughly described in monographs [4, 5], the
results of which have already become classical. Thus, here, we will consider only minimal required infor-
mation about asymptotic behavior of components ,  of the solution of the Cauchy prob-
lem (3), (16) at .

At the beginning, a fall to a stable segment of slow motions curve  takes place during a time of
about . Meanwhile, point , which moves in an asymptotically small

neighborhood (about ) of the segment , which gets into

the -neighborhood of point  (here,  is the function from (9), (11)).
After falling, the so-called slow motion phase begins, which lasts during a time of about 1. More pre-

cisely on any segment , where

(60)

and the limit equality

(61)

is fulfilled.
Here, , аnd  is the solution of the Cauchy problem similar to (11)
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At the end of the slow motion segment phase point  gets into an asymptot-
ically small (about ) neighborhood of the segment . The time of pass-
ing this segment is asymptotically small.

Combining lemmas 2.1–2.3 with results from [4, 5] brief ly described above, we come to the following
conclusions. First, the second positive root  of Eq. (17) exists and accepts an asymptotic that
is uniform by 
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where T(v0) is a function from (60). Second, to map (18), we have
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Let us make an intermediate conclusion. Estimate (64) attests that mapping (18) transfers segment 
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which, in initial system (3), corresponds to exponentially orbital stable cycle (12) of the period

(66)

As for limit equalities (13), (15) and second limit correlation from (14), they are obvious consequences
of formulas (35), (39), (60)–(66).

In order to finalize the proof of theorem 1.1, one must make sure that the limit equality from (14) is
true. In connection with this, we need the following statement.

Lemma 2.4. As , the following asymptotic representation is uniformly fulfilled by :

(67)

Proof. Let us designate integrals of function  by time intervals ,
 and  as , k = 1, 2, 3, correspondingly. According to

formulas (21)–(24), for the first one we have

(68)

Further correlations (35)–(40) lead to the equalities

(69)

and formulas (54)–(56) imply that

(70)

Finally, combining obtained correlations (68)–(70), we get the required asymptotic representation (67).
Lemma 2.4 has been proved.

Returning to proof of theorem 1.1, it is necessary to note that moment of time  in (14) is set by for-

mula  and, due to (59), (65), it is on the order of  As for the first limit equality
(14), it is an evident result of formulas (65), (67). Theorem 1.1 has been completely proved.

3. SELF-OSCILLATIONS IN A CONTINUAL RING CHAIN
OF UNIDIRECTIONALLY COUPLED NEURONS

Let us firstly consider a discrete ring chain of unidirectionally coupled neurons assuming that each sep-
arate neuron is described by system (3). As a result we have system
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(72)

which represents a mathematical model of continual ring chain of unidirectionally coupled neurons.
We will consider special periodic solutions of problem (72), where the so-called running waves are

denoted as

(73)

Here ,  and -periodic by  functions ,  satisfy system

(74)

Established theorem 1.1 allows one to deal with the issue of the existence of running waves (73), (74).
For this purpose, let us consider the auxiliary system

(75)

assuming that  and parameter  is of order of unit and changes within a finite segment.
Applying the mentioned theorem to system (75), we make sure that, for all fairly small values of , it
accepts the periodic solution
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of period . At the same time,
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where  is constant (10). In turn, asymptotic representation (77) implies that equation
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for defining frequency  has at least one solution

It is necessary to add that the triplet of functions , , , where

is the sought value; i.e., it turns correlations (74) into correct equalities.
The analysis performed above leads to the following statement.
Theorem 3.1. By any natural N small enough values ,  can be found such that, at any

,  boundary value problem (72) accepts running waves (73), (74) with numbers n = 1, …, N.
It is worth noting that, in the case

, (79)

boundary problem (72) may also have running waves in the form
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Here, as earlier , , and -periodic by  functions ,  are defined from the
system similar to (74)
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Functions , ,  from (80) are defined by the same scheme as described above.
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(82)

where parameters  are on the order of unit and are coupled by the inequality . Theorem 1.1
guarantees the existence of a periodic solution of system (82) similar to (76)

(83)

of period

(84)

at any small enough value of .
Then, (84) apparently implies that the equation , which is similar to (78), has at least one

solution as follows:

(85)

As for functions ,  in (80), (81), they are obtained from (83) after the substitution of correla-
tion (85). In this way, the following statement is established.

Theorem 3.2. Assume that at some natural N inequality  is fulfilled. Then at condition (79) and at
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A study of the arrangement of Eigen values of  in problem (86), as well as a similar boundary value
problem for running waves (80), (81), represents a separate and still unsolved problem. Therefore, we will
confine with results of numeric analysis of boundary value problem (72), which show the principal possi-
bility of the existence of stable running waves.Fig. 5–15
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plane (u1, u18) (the first seven images correspond to cycles and the remaining four correspond to invari-
ant tori).

In conclusion, it is necessary to note that the suggested new mathematical model of the functioning of
a separate neuron is quite substantial. In fact, its basic idea of nonclassical relaxation oscillations allows
one to achieve the required shape of the oscillations of the membrane potential, which is typical for a real
biological object. In addition, boundary value problem (72), which corresponds to system (3), demon-
strates nontrivial dynamics and namely buffering phenomenon. In connection with this, it is necessary to

Fig. 5. Fig. 6. Fig. 7.

Fig. 8. Fig. 9. Fig. 10.

Fig. 11. Fig. 12. Fig. 13.

Fig. 14. Fig. 15.
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mention that buffering (coexistence of any predefined number of attractors) is typical for neuron systems,
which is indicated by the results of works [6–9].
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