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Abstract—New algorithms for determining the sign of a modular number and comparing numbers in
a residue number system (RNS) have been developed using the Chinese remainder theorem with frac-
tional values. These algorithms are based on calculations of approximate values of fractional values deter-
mined by moduli of the system. Instrumental implementations of the new algorithms are proposed and
examples of their applications are given. Modeling these developments on Xilinx Kintex 7 FPGA showed
that the proposed methods of decrease computational complexity of determining signs and comparing
numbers in the RNS compared to that in well-known architectures based on the Chinese remainder
theorem with generalized positional notation.
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1. INTRODUCTION

Residue number systems (RNSs) are among promising directions of investigation in the field of com-
puter science, which is confirmed by increasing interest of many researchers in these systems. RNSs are
structures that provide parallel representation and processing of data [1—4]. Large number of publications
devoted to the practical implementation of RNSs in digital filtration [5], image processing systems [6],
neurocomputers [7], wireless communication networks [8], cloud computing [9] and other applications
demonstrate the efficiency and usefulness of this approach.

RNS is essentially a nonpositional notation system that allows numbers of large size to be divided into
several orders and accelerate computations by making them in parallel. In particular, RNSs offer the
advantage of faster summation and multiplication as compared to all other notations, which accounts for
the interest in using these systems in information and communication technologies that involve large vol-
umes of computations. In addition, the use low-order numbers in RNS-based computations provides a
significant reduction in energy consumption of computers [10]. This makes RNSs useful in designing
computational facilities with parallel structures based on FPGAs and ASICs.

However, some operations, including inverse conversion to a positional notation form, sign determi-
nation, and the comparison and division of numbers in RNSs, encounter computational difficulties [11,
12]. The search for more effective algorithms of accomplishing these operations would provide new prom-
ising fields of practical RNS applications [13—16]. The present work proposes a new approach to accom-
plishing operations of determining sign and comparing numbers in RNSs, which is based on the modified
Chinese reminder theorem (CRT) with fractional values.

2. INTRODUCTION TO RESIDUAL NUMBER SYSTEMS
For a fixed set of positive integers p,, p,,..., p, called moduli, an RNS is an nonpositional notation in

which any positive integer (natural number) A is represented by a set of residues obtained upon dividing
the given number by these moduli: 4 = (o}, at,,...,a, ), Where o, are the minimum nonnegative residues
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COMPARISON OF MODULAR NUMBERS 355

with respect to moduli p,, p,,..., p,. Digits a; in this representation for the selected moduli are determined
as follows:

a, = res + A(mod p,) = A—{ﬁ]pi, (Vi ell,n]), (D

Di

where [é} are the integer divisors, and p; are the moduli (relative primes). In the theory of numbers, the
Di
CRT ascertains that, if Vi = j(p,, p j) = ], then representation (is single-valued provided that 0 < A < P,

where P = p\p,...p, = H: p; is the numerical representation range. In other words, there is a single
number A €0, P), for which

A=a,(modp); A=a,(modp,);...; A=a,(modp,). (2)

For numbers in the range [0, P), presented in the form of A4 = (a;, a5, ..., @, ), the arithmetic operations

of addition, subtraction, and multiplication are performed with mutually independent residues o; accord-
ing to the following simple rules as:

A+ B=(ja xb, ..o+ b, ), 3)

n’

AxB=(|a1><bl| ...,|ak><bk|pk). “4)

n’
Equations (3) and (4) reveal the parallel nature of RNS that is free of inter-order transitions. Based on the
CRT, any number X can be reconstructed from its residues {x;, x,,..., x,} as follows [4]:

X:

F
Pi

k
> e
i Xi
Di .
i=0

where P, = £. Element ‘Pf‘ is the denoted multiplicative inverse of P, with respect to p;.
Di Pi

Advantages of the representation and processing of numbers in RNSs include the order of residues,
which makes it possible to effectively use the table-based methods of data processing in RNSs. RNS-based
computational systems are characterized by high efficiency and reliability. However, serious complications
arise in the realization of nonpositional procedures, such as finding the residue of a number; determining
its sign (in RNS, the sign is only implicitly defined); comparing modular numbers; detecting overflow; and
operations of division, scaling, expansion, correcting errors, etc. The time of carrying out these operations
can be reduced to the time required for carrying out the multiplication (along with addition, subtraction,
and multiplication) and scaling (along with expansion).

Well-known algorithms of comparing modular numbers in RNSs are realized using a Mixed Radix
Conversion (MRC). Number X < P has the form of {x|, x5,...,x;}, 0 < x; < p, in MRC provided that

, (&)
P

n—1
X =x] +x3p +X3p1py + ...+ XLHPI', (6)
i=l

where x; € [0, p;) are digits of X'in MRC such that
x; =X mod y48
X5 = (x; — x;)e;, mod p,,
x3 = ((x3 = Xp)ep3 — X3)ep3 mod ps, @)
x;z = (((X,, - xl')cln - x'Z)CZn T T x;t—l)cn—i,n mod D

and c; constants are multiplicative inverse elements for p; with respect to module p; forall1 <i< j<n
(i.e., ¢;p; = 1mod p; for 1 <i < n) and can be calculated, e.g., using the Euclidean algorithm.
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3. APPROXIMATE CALCULATION OF THE RELATIVE MODULAR NUMBER
AS RECONSTRUCTED FROM RESIDUES

In order to simplify the comparison of modular numbers, let us consider the approximate method [15]
based on taking the ratio of absolute values of these numbers to the total RNS range. Upon dividing the
left and right sides of Eq. (5) by constant P corresponding to this range, we obtain an approximate value of

Flay=l4 - Z":‘B‘l‘p,- S g
—‘;‘ = — o = Z i (8)
i=1

N P

5

1 1
-1

P,

where k; = ——2% are constants of the selected set, o; are the orders of the number as represented in the
Di

RNS, and F(4) =

the maximum possible difference between adjacent numbers. For the correct comparison of numbers 4

and B, it is necessary to find F (4) and F (E) by summing #n fractional values, each one of

%{ € [0,1). The number of orders in the fractional part of the number is determined by
1

[log2 (P(—nJrZ:’;1 p,»)ﬂ bits, where p, are the RNS moduli, » is the number of these moduli, and

P = p,p,...p, is the RNS range [6, 12]. The obtained approximate values of F (%) and F (%) based on the

RNS with fractional values will be used for correct comparison of the modular numbers, provided that the
fractional vales are sufficiently accurate.

Let us assume that the RNS contains » moduli and there are » modular processors operating simulta-
neously in parallel (to perform summation per unit time), each module representing a residue of
b; =[log p; — 1] bits. In order to increase the efficiency of the algorithm and convenience of the analysis of
complexity, let us assume that the sizes of moduli are approximately the same, which implies that b, = b.

The procedure of comparison employs LUT tables with dimensions O(n2" 1og n) bit and temporal dura-
tion O(log n). For comparison, it should be noted that the conversion in MRC requires a table with dimen-

sions 0(n22b) and temporal duration O(n). The LUT tables contain some fractional values x rounded to the
—tth bit, which will be denoted [x]z,, . The exact number is determined by inequalities

[x]f <x< [x]f +27". Every operation of the determining sign and comparing numbers takes a time of
O log(n) for the summation of x bit values.

4. ALGORITHM FOR COMPARING MODULAR NUMBERS

Let numbers 4 = (a,Q5,...,0,) and B =(B,,B,,...,B,) be set in the RNS with respect to moduli

Pis Pas---» D, TO compare these numbers, it is necessary to determine the weighted value by some means
from their residues. The comparison can be either exact or approximate. A straightforward comparison of
modular numbers based on the passage from residues to weighted representation and the subsequent usual
comparison is expensive [3, 4].

Many algorithms that can be used for an exact comparison are based on the methods employing
orthogonal basis sets, the estimation of number intervals using the Euler function, universal positional
characteristics represented by MRC coefficients, rank functions, number kernels, etc. These methods
have been considered in [1—4], where it is shown that the necessary information is extracted in all cases
from residue representation, which leads to both temporal and instrumental complexity of computing.

In traditional computers, a comparison of the absolute values of two numbers, 4 and B, is performed
by computing the value of 4 — Band determining the sign of this difference. In the RNS, it is not sufficient

to determine the sign as |A - B| » because the values of A — B can fall outside the interval [—g,g - 1), which

will lead to erroneous result.

Let us consider examples of correct and incorrect comparisons of modular numbers.
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Example 1. Consider a set of moduli p, =2, p, =3, p; =5 p, =7 with the dynamic range
P =2x3x5x7 =210 and assume that this RNS will represent only positive numbers. The corresponding

partial products are P, = P_ 105, P, = P _ 70, P, = P _ 42,and P, = i 30. Let us compare two inte-

P P> P3 Py
gers, A = 25 and B = 30, as represented in RNS with moduli p,, p,, p;, p4 as follows: A= (1, 1,0, 4), B=

P
(0, 0, 0, 2). For this purpose, let us determine the constants k; = ‘ “’ . To simplify the analysis, calcula-
Di
tions will be performed in the decimal notation
1 1 1 1
=100 L5 g, =0 _1ig3333 &, =¥As_3_g¢ &, - 2 ~4 505714,
2 2 3 3 5 5 7
Formula (8) yields

F(%) ~[1x0.5+1x0.3333+0x0.6+4x0.5714], ~0.1189,
F(%) ~[0%0.5+0x0.3333+0x0.6+2x0.5714], ~0.1428.

Since F(%) > F(%), or 0.1428 > 0.1189, then B> A; indeed, 30 > 25.

Now let us consider the case where the total working range is subdivided into two intervals, i.e., [O, g)

for positive numbers and |:_§ g - 1) for negative numbers.

Example 2. This is a variant of an incorrect comparison of modular numbers based on the sign determina-
tion. Let 4 = g and B = —B, so that obviously 4 > B. Let us use (8) to determine F 4 and F (E for RNS
with the same moduli as in Example 1. Then, using additional code, we obtain 4 = (0, 1, 0, 0), B=(0, 2, 0, 0),
and

F(%) ~1x0.3333 = 0.3333: F(%) ~2x0.3333 = 0.6666.

It follows from this that B > A, but the result is incorrect since number B falls into the negative interval

[—g,g - 1) Therefore, this comparison yielded the incorrect result A < B.

For the guaranteed correct comparison, it is necessary first to check for the signs of A and B, so the
algorithm of comparison is as follows:

(1) Determine the signs of 4 and B.

(2) If both A and B are deprived of signs, then the positive value of the difference of relative values indi-
cates the greater number.

A B

(3) If A and B are of the same sign, then check for » 7

(4) If A and B have opposite signs, then
A_B é—é{ <1 ford>B.
1 P Pl

Thus, a correct comparison of numbers with signs requires a preliminary analysis of signs of the num-
bers to be compared.

As is known [1—4], the negative part of the dynamic range in the case of encrypting with additional
code occurs near the upper boundary of the total dynamic range. Positive numbers of the dynamic range

P+1)

0<‘ <0.5forA<Band 0.5 <

are mapped onto region [0 for odd P and onto region [ 2) for even P. Figure 1 shows mapping the

dynamic range onto the corresponding region for an excessive RNS code.
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0 P—-1

Fig. 1. Diagram of positive and negative numbers mapped onto the range of excessive RNS code.

Fig. 2. Scheme of RNS polarity shift.

This circumstance can lead to errors of the comparison (as in the above example), since negative num-
bers fall onto the upper part of the total range and, hence all these numbers would produce errors because
of expansion of the dynamic range. In order to eliminate this difficulty, it is necessary to shift the negative
region by rotating the residue circle to a position indicated in Fig. 2 (where dash curve shows the region
that was shifted). As a result, negative numbers will be mapped onto the beginning of the total dynamic
range.

The rotation depicted in Fig. 2 is also known as a polarity shift, and can be implemented by adding con-

stant quantity C = % (forodd P)or C = g (foreven P) toeach 4 e [0, P) prior to the comparison.

IfC, = |C|;_ , then the polarity shift within the RNS turns out to be a simple residue that is determined

by formula o, =|o; + c,-|;_ , where a,, denotes residue digits upon the shift.

5. DETERMINING THE SIGN OF A MODULAR NUMBER

As is known [1—4, 16], the sign of a modular number is determined using the numbers of intervals in
which the given number falls, which allows this number to be estimated to within the interval size. The
interval P can be divided into p; subintervals as follows:

[jﬁ,(jﬂ)f} j=12....p, )
Di Di

The second computer zero (machine epsilon) is set at the point %ﬂ Numbers falling in the sub-
P

intervals [0,%5) and {p—ﬂﬁ, ] are considered as having different (opposite) signs.
P

For a given representation (oc,, az,...,oc,,), the sign of this number is determined by establishing to which
interval it belongs. In the case of p; = 2, it is sufficient to check whether the this number belongs to the first

[O,g) or second [g , P) half of the total range [O, P). This task is solved by comparing the given representa-

tion to that of g, provided that p, = 2. All of the known methods implement this algorithm based on the

absolute values; however, here, we prefer to use relative values. This approach significantly simplifies
transformations while retaining the main functional possibilities.

Figure 3 shows a scheme of determining the sign of a modular number represented by residues with
respect to moduli p, =2, p, = 3, p; =5, and p, = 7. This scheme comprises input registers RG;, Vi =[1...4]
for the temporal storage of the corresponding residues, relatively small look-up tables LUT;, Vi =|1...4]
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Fig. 3. Scheme of determining the sign of a number.

-1
—— a;, and a parallel adder. The look-up tables (LUTs) are introduced in
pily,
order to accelerate the multiplication operations.

The process of interval determination can be reduced to checking whether a given number belongs to

for the storage of products

one of two halves of the total range [0, P), i.e., first [O, g) or second [g, P) , where g is treated as zero. This

task is solved by comparing the relative value of % to that of % _P_ % The initial number is classified

positive for 4 < 1 and negative for 4 > l.
P 2 P 2

The scheme operates as follows. The code of number A4, for which the interval, i.e., the sign, has to be
determined, enters input registers RG; in binary code (each RNS digit is binary coded for the bus width
flog2 p,-—| bits). The output signals enter the inputs of LUTs in which products of constants k; and residues

A | | N | |
o, (i.e., —% a,;) in the form of natural binary fractions are stored in additional code with the bus width

[log2 (P(Z:ll Di— n))—‘ bits, where p;,i=1, 2, ...,nare RNS moduliand P = p,p,...p, isthe RNS dynamic

range. In the case of Example 1, the binary fraction format is [log2 210(211 Di— 4)—’ =12. The bus width

with this format provides guaranteed and correct sign determination and a comparison of numbers in the
RNS |6, 12].

Finally, the input signals of LUTs in the additional binary code enter the adder, in which constant 0.5
is written during initial setup (the additional code is used in order to replace the operation of subtraction
by addition). The result of addition determines the interval (first vs. second) and, hence, the sign of the
given number.

Example 3. Consider a set of moduli p, =2, p, =3, p; =5, and p, = 7 with P =210. The corresponding

constants k; are k; = 0.5, k, = 0.3333, k; = 0.6, and k, = 0.5714, respectively. The given number is 4 =
(1, 1, 2, 0), and the task is to determine its sign.

Solution. The input registers are set as RG, =1, RG, =1, RG; =2, RG, = 0. The register outputs are
addressed at LUT storage elements that take the following values:

LUT, =0.5, LUT,=0.3333x1=0.3333, LUT; = |0.6>< 2|1 = |1.2|l =0.2, LUT, =0,
which enter the adder inputs. Summation of these signals yields
F(%) = |0.5 +0.333 + 0.2|1 = |0.033|1 ,
which implies F X\ _ F 4) =0.5-0.033 = 0.467. This difference is positive, so that 4 < }E)’ number A

falls into the first interval and, hence, is positive.

AUTOMATIC CONTROL AND COMPUTER SCIENCES  Wl. 49 No. 6 2015
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Fig. 4. Scheme of a comparator of modular numbers.

The determination of the sign requires O(n) adding operations, where # is the number of RNS moduli.
In order to reduce the temporal complexity to O(logn), the summation can be realized using the tree
(recursive doubling) principle. For comparison, the procedure of sign determination using the Tanaka
algorithm has a temporal complexity of O(n?). Therefore, the proposed scheme of sign determination
reduces the instrumental and temporal complexity compared to well-known MRC systems.

6. CARRYING OUT A COMPARISON OF MODULAR NUMBERS

A comparison of two modular numbers, 4 and B, is aimed at determining which one is greater (smaller)
or whether they are equal. The numbers of intervals in which these numbers fall can be determined by var-
ious methods [1—4]. Let number 4 occur in interval j;, while number B occurs in interval j,. Then, the
operation of comparison in the case of j, # j, can be realized by simply comparing the numbers of inter-
vals: if j, > j,,thenA> B;if j, < j,, then A< B. An exception is presented by the case of j, = j,. Here, finding
the greater number requires determining the number j; of the interval in which the difference 4 — B occurs; if

0<j;< %, the difference is negative and, hence, A < B; if % < j; < p,, the difference is positive and,
hence, A > B.

In the case of A — B = 0, the two numbers are equal in magnitude and have the same sign. The existing
methods of determining intervals have been considered in [1, 2, 16]. All of these methods are based on
exact calculations, encounter considerable computational difficulties, and are time consuming.

Let us consider the implementation of the proposed method of comparing numbers in RNSs based on
the use of their relative values. Figure 4 shows a scheme of the modular comparison of numbers that com-
prises input registers RGA and RGB for storing numbers A and B to be compared, a scheme of determining
signs of numbers 4 and B (SDS, and SDS}), an “exclusive or” operator, schemes of polarity shift (SPS,
and SPSj), memory look-up tables (LUT, A and LUT, B, i = [1..n]), an adder of LUT output signals, and
a difference sign comparator (analyzer) for forming s1gnals A=B,A<B,and 4> B.

Initial numbers in b-bit RNS representation with respect to moduli p,, p,, ..., p, enter the input regis-
ters RGA and RGB. The corresponding output signals enter the schemes of sign determination (SDS, and
SDS ). The output signals of these schemes are fed into the “excluding OR” operator. For different signs
of numbers A and B, the output signal of this logical element (assigned value ¢; ) is fed into schemes of

polarity shift (SPS, and SPSj), the outputs of which are addressed at the inputs of the LUTS (LUT, A and
2,
tay, k=

Di

LUT, B). The LUT memory elements store constants k; = B;, where a; = Amod p;,

Di
B, = Bmod p;,, Vi €]l, 4]. The output signals of LUT,A and LUT,B are fed into the adder for the

weighted summation of % and ; and the formation of a signal of the sign of difference A — B, which is
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analyzed in the comparator to yield the result (4 = B, A< B, or A> B). Below, we consider an example of
a comparison of modular numbers in this scheme.

Example 4. Let us use the RNS with set of moduli p, =2, p, =3, p; =5, and p, = 7 to compare mod-
ular numbers 4 = (1, 2, 2, 3) and B= (1, 2, 1, 2). The initial numbers are stored in registers RGA and RGB,
from which they enter the schemes of determining signs (SDS, and SDSp) for comparison with constant

g. Without losing generality, the calculations are assumed to be carried out in decimal notation.

The sign of number A is determined by the following calculations:

F(;—‘;)zvqx1+k2x2+k3x2+k4x3|1 = |0.5%1+0.3333x2+0.6 x2+0.5714x 3|, ~ 0.0808,

F(K) _ F(é) =0.5-0.0808 = 0.4192.
P P

The difference of these values is positive, which implies that F (%) <F (%) and A < K, so that number A

falls into the first interval and, hence, is positive.
Analogous calculations determine the sign of B as follows:

F(%)z|k1><1+k2><2+k3><1+k4><2|1 =10.5%1+0.3333x2+0.6x1+0.5714x 2, ~ 0.9094;

F(K) —F| B |20.5-0.9094 = —0.4094.
P P/2

The difference between these values is negative, which implies that number B falls into the second
interval and, hence, is negative.

The results of determining the signs of numbers 4 and B are fed into the “excluding OR” element, the
output signal of which enters the schemes of polarity shift (SPS, and SPS}), the outputs of which yield
the values

A=(1,2,2,3)+(1,0,0,0)=(0,2,2,3) and B=(1,2,1,2)+(1,0,0,0)=(0,2,1,2),
respectively. The output signals of the polarity shift schemes are addressed at the inputs of LUTS (LUT, A

l)i—l

and LUT, B), which select the constants k; = JOL ;. For the given example, the corresponding values
Di

are as follows:

LUT, A: (0;0.3333x2;0.6x2;0.5714 x 3);
LUT, B: (0;0.3333x2;0.6x1;0.5714 x2).
The output signals of LUT, A and LUT, B enter the adder and are summed to yield:

F(%)—F(%) ~[0+0.3333x2+0.6x2+0.5714x 3, —[0+0.3333x2+0.6x 1 +0.5714 x 2|, = 0.1724.

The difference is positive, which implies that A > B, which is in agreement with the fact that A =17 and
B=-19.

The results of adding are analyzed in the comparator, which yields the decisions that:

—If the difference is 0, then A = B,

—If the difference is positive, then 4 > B,

—If the difference is negative, then A < B.

7. SIMULATION OF THE PROPOSED SCHEME OF MODULAR COMPARISON

The proposed scheme of comparison was simulated using algorithms for reconstructing the weighted
values of modular numbers based on (i) the Chinese remainder theorem with a classical orthogonal basis
set (CRTcl), (ii) the Mixed Radix Conversion (MRC), and (iii) the Chinese remainder theorem with frac-
tional quantities (CRTfr).

AUTOMATIC CONTROL AND COMPUTER SCIENCES  Wl. 49 No. 6 2015
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Table 1. Kintex 7 XC7K70T packaging

Slice logic items Available
Number of Slice Registers 82000
Number of Slice LUTs 41000
Number of Slices 10250
Number of [OBs 300
Number of DSP48E1s 240

Table 2. FPGA board performance necessary for realization of the proposed algorithms at a fixed number of moduli
(n=4)

Range bit count 19 40 60 80
Modulusssize (bit) 5 10 15 20

Slices | DSP48E1| Slices |DSP48E1| Slices | DSP48E1| Slices | DSP48E1
CRTfr 13 7 77 29 118 42 236 69
CRTel 92 4 352 16 706 20 1133 32
MRC 54 9 224 13 576 17 1108 24

Table 3. FPGA board performance necessary for realization of the proposed algorithms with various numbers of 6-bit
moduli

Set of moduli 47, 53,59, 61 41, 43, 47, 53, 59, 61 31, 37,41,43,47, 53, 59, 61
Range bit count 24 34 45
Number of moduli 4 6 8
Slices DSP48E1 Slices DSP48E1 Slices DSP48E1
CRTfr 17 10 46 30 129 43
CRTcl 117 4 213 12 285 32
MRC 75 11 164 16 191 45

The modeling was performed using Xilinx Kintex 7 XC7K70T FPGA (Table 1) based on ISE Design
Suit 4.7 WebPack. The main criteria used to assess the quality of algorithms were device utilization and the
final total delay of the algorithm. The device utilization was characterized by the number of slices that rep-
resent the base computing units of Xilinx Series 7 devices. In addition, we have studied variants of algo-
rithm realization with and without using DSP48E]1 slices intended for optimizing special-structure algo-
rithms.

The results of simulations are summarized in Tables 2 and 3 and illustrated in Figs. 5 and 6. A compar-
ison of the well-known classical reconstruction methods based on CRTcl and MRC shows that MRC
favors higher device utilization and requires a smaller chip area, while CRTcl ensures lower delay. The
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Fig. 5. Plots of the total delay of algorithm vs. modulus Fig. 6. Plots of the total delay of algorithm vs. number
bit count for DSP48E]1 slices with four moduli. of 6-bit moduli in DSP48E] slices.

MRC-based method involves a greater number of small-digit operations. A longer pathway of the signal
from input to output, related to the greater number of operations, makes this method the slowest in this
comparative simulation. Compared to CRTcl and MRC based methods, the proposed CRTfr exhibited
both the lowest area requirements for the chip and shortest delay.

Let us also consider the issue of minimal RNS moduli sets necessary to cover the ranges of computing
devices using maximum eight-bit buses. Table 4 presents different variants of RNS moduli sets that allow
covering 8-, 16-, and 32-bit ranges.

Figure 7 shows the total delay and device utilization for all algorithms under comparison with moduli
sets from Table 4. Note that the proposed method exhibits the best results despite the fact that computa-
tions exceed the range bit count. For example, in the 32-bit range, the exact calculation of a positional
number will require computing up to 42-bit numbers.

The use of DSP48E 1digital signal processing slices on the board allows the useful area occupied by the
algorithm to be significantly reduced (Fig. 8b), but this is accompanied by a decrease in the speed of algo-
rithm operation (Fig. 8a). In different practical situations, this circumstance can be used to optimize the
desired process characteristic.

The experimental data show the efficiency of the proposed method from the standpoint of algorithm
operation speed, which is achieved due to the absence of calculations of the residues of division and a small
number of operations. In addition, for all sets of RNS moduli, this method requires a minimum amount
of computational resources as compared to the two well-known methods.

8. CONCLUSIONS

We have proposed a procedure for representing and processing modular numbers using relative frac-
tional values, which are used to determine the signs of modular numbers and comparing them in the RNS.
The basic operation in comparing numbers is their weighted representation and summation of fractional
values, which allows the instrumental and temporal complexity to be reduced as compared the well-

Table 4. Minimal RNS moduli sets covering computer ranges

Computer range Set of moduli RNS range Fractional number size (bit)
2% =256 7,37 259 14
21 ~ 65536 11, 59, 101 65549 24
232 = 4294967296 19, 67, 89, 167, 227 4294975973 42
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Fig. 7. Comparison of (a) total delay and (b) device utilization for algorithms with moduli sets from Table 4 (without using
DSP48E1 slices).
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Fig. 8. Comparison of (a) total delay and (b) device utilization for the proposed approximate method with moduli sets
from Table 4 (with and without using DSP48EI1 slices).

known solutions, such as those using MRC. The results of simulation showed the high efficiency of the
proposed architecture of comparing modular numbers.

Subsequent investigations will be aimed at adapting the proposed algorithms for particular applica-

tions, using special sets of RN'S moduli, and increasing the stability of modular structures.
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