
ISSN 0146�4116, Automatic Control and Computer Sciences, 2015, Vol. 49, No. 6, pp. 354–365. © Allerton Press, Inc., 2015.
Original Russian Text © N.I. Chervyakov, A.S. Molahosseini, P.A. Lyakhov, M.G. Babenko, I.N. Lavrinenko, A.V. Lavrinenko, 2015, published in Avtomatika i Vychislitel’naya
Tekhnika, 2015, No. 6, pp. 47–62.

354

1. INTRODUCTION 

Residue number systems (RNSs) are among promising directions of investigation in the field of com�
puter science, which is confirmed by increasing interest of many researchers in these systems. RNSs are
structures that provide parallel representation and processing of data [1–4]. Large number of publications
devoted to the practical implementation of RNSs in digital filtration [5], image processing systems [6],
neurocomputers [7], wireless communication networks [8], cloud computing [9] and other applications
demonstrate the efficiency and usefulness of this approach. 

RNS is essentially a nonpositional notation system that allows numbers of large size to be divided into
several orders and accelerate computations by making them in parallel. In particular, RNSs offer the
advantage of faster summation and multiplication as compared to all other notations, which accounts for
the interest in using these systems in information and communication technologies that involve large vol�
umes of computations. In addition, the use low�order numbers in RNS�based computations provides a
significant reduction in energy consumption of computers [10]. This makes RNSs useful in designing
computational facilities with parallel structures based on FPGAs and ASICs. 

However, some operations, including inverse conversion to a positional notation form, sign determi�
nation, and the comparison and division of numbers in RNSs, encounter computational difficulties [11,
12]. The search for more effective algorithms of accomplishing these operations would provide new prom�
ising fields of practical RNS applications [13–16]. The present work proposes a new approach to accom�
plishing operations of determining sign and comparing numbers in RNSs, which is based on the modified
Chinese reminder theorem (CRT) with fractional values. 

2. INTRODUCTION TO RESIDUAL NUMBER SYSTEMS 

For a fixed set of positive integers  called moduli, an RNS is an nonpositional notation in
which any positive integer (natural number) A is represented by a set of residues obtained upon dividing
the given number by these moduli:  where  are the minimum nonnegative residues

1 2, ,..., np p p

( )= α α α1 2, ,..., ,nA αi

Comparison of Modular Numbers Based on the Chinese 
Remainder Theorem with Fractional Values 

N. I. Chervyakova, A. S. Molahosseinib, P. A. Lyakhova, M. G. Babenkoa,
I. N. Lavrinenkoa, and A. V. Lavrinenkoa 

aNorth Caucasus Federal University, Stavropol, 355009 Russia 
bDepartment of Computer Engineering, Kerman Branch, Islamic Azad University, Kerman, Iran

e�mail: k�fmf�primath@stavsu.ru 
Received April 4, 2014

Abstract—New algorithms for determining the sign of a modular number and comparing numbers in
a residue number system (RNS) have been developed using the Chinese remainder theorem with frac�
tional values. These algorithms are based on calculations of approximate values of fractional values deter�
mined by moduli of the system. Instrumental implementations of the new algorithms are proposed and
examples of their applications are given. Modeling these developments on Xilinx Kintex 7 FPGA showed
that the proposed methods of decrease computational complexity of determining signs and comparing
numbers in the RNS compared to that in well�known architectures based on the Chinese remainder
theorem with generalized positional notation. 

Keywords: residue number system, Chinese remainder theorem, modular arithmetic, positional char�
acteristic, fractional values, approximate method, generalized positional notation

DOI: 10.3103/S0146411615060048



AUTOMATIC CONTROL AND COMPUTER SCIENCES  Vol. 49  No. 6  2015

COMPARISON OF MODULAR NUMBERS 355

with respect to moduli  Digits  in this representation for the selected moduli are determined
as follows: 

(1)

where  are the integer divisors, and pi are the moduli (relative primes). In the theory of numbers, the

CRT ascertains that, if  then representation (is single�valued provided that 

where  is the numerical representation range. In other words, there is a single

number  for which

 (2)

For numbers in the range  presented in the form of  the arithmetic operations
of addition, subtraction, and multiplication are performed with mutually independent residues  accord�
ing to the following simple rules as:

 (3)

(4)

Equations (3) and (4) reveal the parallel nature of RNS that is free of inter�order transitions. Based on the
CRT, any number X can be reconstructed from its residues  as follows [4]:

(5)

where  Element  is the denoted multiplicative inverse of  with respect to pi.

Advantages of the representation and processing of numbers in RNSs include the order of residues,
which makes it possible to effectively use the table�based methods of data processing in RNSs. RNS�based
computational systems are characterized by high efficiency and reliability. However, serious complications
arise in the realization of nonpositional procedures, such as finding the residue of a number; determining
its sign (in RNS, the sign is only implicitly defined); comparing modular numbers; detecting overflow; and
operations of division, scaling, expansion, correcting errors, etc. The time of carrying out these operations
can be reduced to the time required for carrying out the multiplication (along with addition, subtraction,
and multiplication) and scaling (along with expansion). 

Well�known algorithms of comparing modular numbers in RNSs are realized using a Mixed Radix

Conversion (MRC). Number X < P has the form of   in MRC provided that

(6)

where  are digits of X in MRC such that

(7)

and  constants are multiplicative inverse elements for  with respect to module  for all 
(i.e.,  for ) and can be calculated, e.g., using the Euclidean algorithm.

1 2, ,..., .np p p αi

⎡ ⎤
= + = − ∀ ∈⎢ ⎥

⎣ ⎦
(mod ) , ( [1, ]),i i i

i

Aa res A p A p i n
p

⎡ ⎤
⎢ ⎥
⎣ ⎦i

A
p

( )∀ ≠ =, 1,i ji j p p ≤ <0 ,A P

=

= =∏1 2 1
...

n

n ii
P p p p p

[ )∈ 0, ,A P

( ) ( ) ( )≡ α ≡ α ≡ α1 1 2 2mod ; mod ; ... ; mod .n nA p A p A p

[ )0, ,P ( )= α α α1 2, ,..., ,nA
αi

( )± = ± ±
1

1 1 ,..., ,
k

k kp p
A B a b a b

( )× = × ×
1

1 1 ,..., .
k

k kp p
A B a b a b

{ }1 2, ,..., kx x x

−

=

= ∑ 1

0

,
i i

k

i i i
p p

i P

X P x P

= .i
i

PP
p

−1

i
i

p
P iP

1 2' ' '{ , ,..., },kx x x < ≤'0 i ix p
−

=

= + + + + ∏
1

1 2 1 3 1 2

1

' ' ' '... ,
n

n i

i

X x x p x p p x p

[ )∈' 0,i ix p

− −

=

= −

= − −

= − − − −

1 1 1

2 2 1 12 2

3 3 1 13 2 23 3

1 1 2 2 1 ,

' mod ,

' '( ) mod ,

' ' '(( ) ) mod ,

...,

' ' ' '(...(( ) ) ... ) modn n n n n n i n n

x x p

x x x c p

x x x c x c p

x x x c x c x c p

ijc ip jp ≤ ≤ ≤1 i j n

= 1modij i jc p p ≤ ≤1 i n



356

AUTOMATIC CONTROL AND COMPUTER SCIENCES  Vol. 49  No. 6  2015

CHERVYAKOV et al.

3. APPROXIMATE CALCULATION OF THE RELATIVE MODULAR NUMBER
AS RECONSTRUCTED FROM RESIDUES

In order to simplify the comparison of modular numbers, let us consider the approximate method [15]
based on taking the ratio of absolute values of these numbers to the total RNS range. Upon dividing the
left and right sides of Eq. (5) by constant P corresponding to this range, we obtain an approximate value of 

(8)

where  are constants of the selected set,  are the orders of the number as represented in the

RNS, and  The number of orders in the fractional part of the number is determined by

the maximum possible difference between adjacent numbers. For the correct comparison of numbers A

and B, it is necessary to find  and  by summing n fractional values, each one of

 bits, where  are the RNS moduli, n is the number of these moduli, and

 is the RNS range [6, 12]. The obtained approximate values of  and  based on the

RNS with fractional values will be used for correct comparison of the modular numbers, provided that the
fractional vales are sufficiently accurate. 

Let us assume that the RNS contains n moduli and there are n modular processors operating simulta�
neously in parallel (to perform summation per unit time), each module representing a residue of

 bits. In order to increase the efficiency of the algorithm and convenience of the analysis of
complexity, let us assume that the sizes of moduli are approximately the same, which implies that 

The procedure of comparison employs LUT tables with dimensions  bit and temporal dura�
tion  For comparison, it should be noted that the conversion in MRC requires a table with dimen�

sions  and temporal duration  The LUT tables contain some fractional values x rounded to the
–tth bit, which will be denoted  The exact number is determined by inequalities

 Every operation of the determining sign and comparing numbers takes a time of
 for the summation of x bit values.

4. ALGORITHM FOR COMPARING MODULAR NUMBERS

Let numbers  and  be set in the RNS with respect to moduli
 To compare these numbers, it is necessary to determine the weighted value by some means

from their residues. The comparison can be either exact or approximate. A straightforward comparison of
modular numbers based on the passage from residues to weighted representation and the subsequent usual
comparison is expensive [3, 4]. 

Many algorithms that can be used for an exact comparison are based on the methods employing
orthogonal basis sets, the estimation of number intervals using the Euler function, universal positional
characteristics represented by MRC coefficients, rank functions, number kernels, etc. These methods
have been considered in [1–4], where it is shown that the necessary information is extracted in all cases
from residue representation, which leads to both temporal and instrumental complexity of computing. 

In traditional computers, a comparison of the absolute values of two numbers, A and B, is performed
by computing the value of A – B and determining the sign of this difference. In the RNS, it is not sufficient

to determine the sign as  because the values of A – B can fall outside the interval  which

will lead to erroneous result. 

Let us consider examples of correct and incorrect comparisons of modular numbers. 

( )

−

= =

= = α ≈ α∑ ∑
1

1
1 1 11

,i

n n
i

p
i i i

ii i

P
AF A k
P p

−

=

1

i
i

p
i

i

P
k

p
αi

( ) [ )= ∈

1
0,1 .AF A

P

( )AF
P ( )BF

P

( )( )
=

⎡ ⎤− +
⎢ ⎥∑2 1
log

n

ii
P n p ip

= 1 2... nP p p p ( )AF
P ( )BF

P

= −[log 1]i ib p
= .ib b

( 2 log )bO n n
(log ).O n

2( 2 )bO n ( ).O n

[ ] −2
.tx

[ ] [ ]− −

−

≤ ≤ +
2 2

2 .t t
tx x x

log( )O n

( )= α α α1 2, ,..., nA ( )= β β β1 2, ,..., nB

1 2, ,..., .np p p

−

P
A B )⎡− −

⎢⎣
, 1 ,

2 2
P P



AUTOMATIC CONTROL AND COMPUTER SCIENCES  Vol. 49  No. 6  2015

COMPARISON OF MODULAR NUMBERS 357

Example 1. Consider a set of moduli     with the dynamic range
 and assume that this RNS will represent only positive numbers. The corresponding

partial products are    and  Let us compare two inte�

gers,  and  as represented in RNS with moduli p1, p2, p3, p4 as follows: A = (1, 1, 0, 4), B =

(0, 0, 0, 2). For this purpose, let us determine the constants  To simplify the analysis, calcula�

tions will be performed in the decimal notation

Formula (8) yields

Since  or  then B > A; indeed, 

Now let us consider the case where the total working range is subdivided into two intervals, i.e., 

for positive numbers and  for negative numbers.

Example 2. This is a variant of an incorrect comparison of modular numbers based on the sign determina�

tion. Let  and  so that obviously A > B. Let us use (8) to determine  and  for RNS

with the same moduli as in Example 1. Then, using additional code, we obtain A = (0, 1, 0, 0), B = (0, 2, 0, 0),
and 

It follows from this that B > A, but the result is incorrect since number B falls into the negative interval

 Therefore, this comparison yielded the incorrect result A < B. 

For the guaranteed correct comparison, it is necessary first to check for the signs of A and B, so the
algorithm of comparison is as follows:

(1) Determine the signs of A and B.
(2) If both A and B are deprived of signs, then the positive value of the difference of relative values indi�

cates the greater number.

(3) If A and B are of the same sign, then check for 

(4) If A and B have opposite signs, then 

 for A < B and  for A > B.

Thus, a correct comparison of numbers with signs requires a preliminary analysis of signs of the num�
bers to be compared. 

As is known [1–4], the negative part of the dynamic range in the case of encrypting with additional
code occurs near the upper boundary of the total dynamic range. Positive numbers of the dynamic range

are mapped onto region  for odd P and onto region  for even P. Figure 1 shows mapping the

dynamic range onto the corresponding region for an excessive RNS code. 

=1 2,p =2 3,p =3 5,p =4 7p
= × × × =2 3 5 7 210P

= =1
1

105,PP
p

= =2
2

70,PP
p

= =3
3

42,PP
p

= =4
4

30.PP
p

= 25A = 30,B
−

=

1

.i
i

p
i

i

P
k

p

= = =

2
1

1
1105 0.5;

2 2
k = = ≈

3
2

1
170 0.3333;

3 3
k = = =

5
3

1
342 0.6;

5 5
k = = ≈

7
4

1
430 0.5714.

7 7
k

( ) ≈ × + × + × + × ≈
1

1 0.5 1 0.3333 0 0.6 4 0.5714 0.1189,AF
P

( ) ≈ × + × + × + × ≈
1

0 0.5 0 0.3333 0 0.6 2 0.5714 0.1428.BF
P

( ) ( )> ,B AF F
P P

>0.1428 0.1189, >30 25.

)⎡
⎢⎣
0,

2
P

)⎡− −
⎢⎣

, 1
2 2
P P

=

3
PA = − ,

3
PB ( )AF

P ( )BF
P

( ) ≈ × =1 0.3333 0.3333;AF
P ( ) ≈ × =2 0.3333 0.6666.BF

P

)⎡− −
⎢⎣

, 1 .
2 2
P P

−

1
.A B

P P

≤ − <

1
0 0.5A B

P P
≤ − <

1
0.5 1A B

P P

)+⎡
⎢⎣

10,
2

P )⎡
⎢⎣
0,

2
P



358

AUTOMATIC CONTROL AND COMPUTER SCIENCES  Vol. 49  No. 6  2015

CHERVYAKOV et al.

This circumstance can lead to errors of the comparison (as in the above example), since negative num�
bers fall onto the upper part of the total range and, hence all these numbers would produce errors because
of expansion of the dynamic range. In order to eliminate this difficulty, it is necessary to shift the negative
region by rotating the residue circle to a position indicated in Fig. 2 (where dash curve shows the region
that was shifted). As a result, negative numbers will be mapped onto the beginning of the total dynamic
range.

The rotation depicted in Fig. 2 is also known as a polarity shift, and can be implemented by adding con�

stant quantity  (for odd P) or  (for even P) to each  prior to the comparison.

If  then the polarity shift within the RNS turns out to be a simple residue that is determined

by formula  where  denotes residue digits upon the shift.

5. DETERMINING THE SIGN OF A MODULAR NUMBER 

As is known [1–4, 16], the sign of a modular number is determined using the numbers of intervals in
which the given number falls, which allows this number to be estimated to within the interval size. The
interval P can be divided into pi subintervals as follows: 

(9)

The second computer zero (machine epsilon) is set at the point  Numbers falling in the sub�

intervals  and  are considered as having different (opposite) signs. 

For a given representation  the sign of this number is determined by establishing to which
interval it belongs. In the case of pi = 2, it is sufficient to check whether the this number belongs to the first

 or second  half of the total range  This task is solved by comparing the given representa�

tion to that of  provided that  All of the known methods implement this algorithm based on the

absolute values; however, here, we prefer to use relative values. This approach significantly simplifies
transformations while retaining the main functional possibilities. 

Figure 3 shows a scheme of determining the sign of a modular number represented by residues with
respect to moduli p1 = 2, p2 = 3, p3 = 5, and p4 = 7. This scheme comprises input registers  
for the temporal storage of the corresponding residues, relatively small look�up tables  

−

=

1
2

PC =

2
PC [ )∈ 0,A P

+

≡ ,
i

i p
C C

+

α = α + ,
i

ic i i p
c α ic

( )
⎡ ⎤

+⎢ ⎥
⎣ ⎦

, 1 ,
i i

P Pj j
p p

= 1,2,..., .ij p

+1 .
2
n

n

p P
p

)+⎡
⎢⎣

10,
2 2
np P ⎡ ⎞+

⎟⎢
⎣ ⎠

1
,

2 n

p P P
p

( )α α α1 2, ,..., ,n

)⎡
⎢⎣
0,

2
P )⎡

⎢⎣
,

2
P P [ )0, .P

,
2
P

=1 2.p

,iRG ∀ = [1...4]i
,iLUT ∀ = [1...4]i

+ –

0 P – 1

Fig. 1. Diagram of positive and negative numbers mapped onto the range of excessive RNS code. 

+ –

0 P – 1

–

Fig. 2. Scheme of RNS polarity shift. 



AUTOMATIC CONTROL AND COMPUTER SCIENCES  Vol. 49  No. 6  2015

COMPARISON OF MODULAR NUMBERS 359

for the storage of products  and a parallel adder. The look�up tables (LUTs) are introduced in

order to accelerate the multiplication operations.
The process of interval determination can be reduced to checking whether a given number belongs to

one of two halves of the total range [0, P), i.e., first  or second  where  is treated as zero. This

task is solved by comparing the relative value of  to that of  The initial number is classified

positive for  and negative for 

The scheme operates as follows. The code of number A, for which the interval, i.e., the sign, has to be
determined, enters input registers  in binary code (each RNS digit is binary coded for the bus width

 bits). The output signals enter the inputs of LUTs in which products of constants ki and residues

 (i.e., ) in the form of natural binary fractions are stored in additional code with the bus width

 bits, where pi, i = 1, 2, …, n are RNS moduli and  is the RNS dynamic

range. In the case of Example 1, the binary fraction format is  The bus width

with this format provides guaranteed and correct sign determination and a comparison of numbers in the
RNS [6, 12]. 

Finally, the input signals of LUTs in the additional binary code enter the adder, in which constant 0.5
is written during initial setup (the additional code is used in order to replace the operation of subtraction
by addition). The result of addition determines the interval (first vs. second) and, hence, the sign of the
given number. 

Example 3. Consider a set of moduli p1 = 2, p2 = 3, p3 = 5, and p4 = 7 with P = 210. The corresponding
constants  are    and  respectively. The given number is A =
(1, 1, 2, 0), and the task is to determine its sign. 

Solution. The input registers are set as     The register outputs are
addressed at LUT storage elements that take the following values: 

which enter the adder inputs. Summation of these signals yields 

which implies  This difference is positive, so that  number A

falls into the first interval and, hence, is positive. 

−

α

1

,
i

i
i

i p

P

p

)⎡
⎢⎣
0,

2
P )⎡

⎢⎣
, ,

2
P P

2
P

A
P

= =

1.
2 2

K P
P P

<
1
2

A
P

≥
1.
2

A
P

iRG

⎡ ⎤⎢ ⎥2log ip

αi

−

α

1

i
i

p
i

i

P

p

( )( )
=

⎡ ⎤−
⎢ ⎥∑2 1
log

n

ii
P p n = 1 2... nP p p p

( )
=

⎡ ⎤− =
⎢ ⎥∑

4

2 1
log 210 4 12.ii

p

ik =1 0.5,k ≈2 0.3333,k =3 0.6,k ≈4 0.5714,k

=1 1,RG =2 1,RG =3 2,RG =4 0.RG

=1 0.5,LUT = × =2 0.3333 1 0.3333,LUT = × = =3 1 1
0.6 2 1.2 0.2,LUT =4 0,LUT

( ) = + + =

1 1
0.5 0.333 0.2 0.033 ,AF

P

( ) ( )− = − =0.5 0.033 0.467.K AF F
P P

< ,
2
PA

∑

LUT1 LUT2 LUT3 LUT4

RG1 RG2 RG3 RG4

α1 α2 α3 α4

b1 b2 b3 b4

t t t t

Sign of number
1
2
��

Fig. 3. Scheme of determining the sign of a number. 



360

AUTOMATIC CONTROL AND COMPUTER SCIENCES  Vol. 49  No. 6  2015

CHERVYAKOV et al.

The determination of the sign requires O(n) adding operations, where n is the number of RNS moduli.
In order to reduce the temporal complexity to O(logn), the summation can be realized using the tree
(recursive doubling) principle. For comparison, the procedure of sign determination using the Tanaka
algorithm has a temporal complexity of O(n2). Therefore, the proposed scheme of sign determination
reduces the instrumental and temporal complexity compared to well�known MRC systems. 

6. CARRYING OUT A COMPARISON OF MODULAR NUMBERS

A comparison of two modular numbers, A and B, is aimed at determining which one is greater (smaller)
or whether they are equal. The numbers of intervals in which these numbers fall can be determined by var�
ious methods [1–4]. Let number A occur in interval j1, while number B occurs in interval j2. Then, the
operation of comparison in the case of  can be realized by simply comparing the numbers of inter�
vals: if  then A > B; if  then A < B. An exception is presented by the case of  Here, finding
the greater number requires determining the number j3 of the interval in which the difference A – B occurs; if

 the difference is negative and, hence, A < B; if  the difference is positive and,

hence, A > B. 

In the case of A – B = 0, the two numbers are equal in magnitude and have the same sign. The existing
methods of determining intervals have been considered in [1, 2, 16]. All of these methods are based on
exact calculations, encounter considerable computational difficulties, and are time consuming. 

Let us consider the implementation of the proposed method of comparing numbers in RNSs based on
the use of their relative values. Figure 4 shows a scheme of the modular comparison of numbers that com�
prises input registers RGA and RGB for storing numbers A and B to be compared, a scheme of determining
signs of numbers A and B (SDSA and SDSB), an “exclusive or” operator, schemes of polarity shift (SPSA

and SPSB), memory look�up tables (  and  i = [1..n]), an adder of LUT output signals, and
a difference sign comparator (analyzer) for forming signals A = B, A < B, and A > B.

Initial numbers in b�bit RNS representation with respect to moduli p1, p2, …, pn  enter the input regis�
ters RGA and RGB. The corresponding output signals enter the schemes of sign determination (SDSA and
SDSB). The output signals of these schemes are fed into the “excluding OR” operator. For different signs
of numbers A and B, the output signal of this logical element (assigned value ci ) is fed into schemes of
polarity shift (SPSA and SPSB), the outputs of which are addressed at the inputs of the LUTs (  and

). The LUT memory elements store constants   where 

  The output signals of  and  are fed into the adder for the

weighted summation of  and  and the formation of a signal of the sign of difference A – B, which is

≠1 2j j
>1 2,j j <1 2,j j =1 2.j j

+
≤ <

1
30 ,

2
np

j +
≤ <

1
3 ,

2
n

n
p

j p

ipLUT A ,
ipLUT B

ipLUT A

ipLUT B

−

= α

1

,i
i

p
i i

i

P
k

p

−

= β

1

,i
i

p
i i

i

P
k

p
α ≡ mod ,i iA p

β ≡ mod ,i iB p ∀ ∈ [1, 4].i
ipLUT A

ipLUT B
A
P

B
P

…

RGp1

RGp2

RGpn

RGA

N
u

m
be

r 
A

SDSA = OR SDSB

SPSA

LUTp1A

LUTp2A

LUTpnA
…

RGp1

RGp2

RGpn

RGB

SPSB

LUTp1B

LUTp2B

LUTpnB

… …

∑

b b

N
u

m
ber B

Analyzer

A > B A < B A = B

Fig. 4. Scheme of a comparator of modular numbers. 



AUTOMATIC CONTROL AND COMPUTER SCIENCES  Vol. 49  No. 6  2015

COMPARISON OF MODULAR NUMBERS 361

analyzed in the comparator to yield the result (A = B, A < B, or A > B). Below, we consider an example of
a comparison of modular numbers in this scheme. 

Example 4. Let us use the RNS with set of moduli    and  to compare mod�
ular numbers A = (1, 2, 2, 3) and B = (1, 2, 1, 2). The initial numbers are stored in registers RGA and RGB,
from which they enter the schemes of determining signs (SDSA and SDSB) for comparison with constant

 Without losing generality, the calculations are assumed to be carried out in decimal notation. 

The sign of number A is determined by the following calculations:

The difference of these values is positive, which implies that  and  so that number A

falls into the first interval and, hence, is positive. 
Analogous calculations determine the sign of B as follows:

The difference between these values is negative, which implies that number B falls into the second
interval and, hence, is negative. 

The results of determining the signs of numbers A and B are fed into the “excluding OR” element, the
output signal of which enters the schemes of polarity shift (  and ), the outputs of which yield
the values 

A = (1, 2, 2, 3) + (1, 0, 0, 0) = (0, 2, 2, 3) and B = (1, 2, 1, 2) + (1, 0, 0, 0) = (0, 2, 1, 2), 

respectively. The output signals of the polarity shift schemes are addressed at the inputs of LUTs (

and ), which select the constants  For the given example, the corresponding values

are as follows: 

The output signals of  and  enter the adder and are summed to yield:

The difference is positive, which implies that A > B, which is in agreement with the fact that A = 17 and
B = –19.

The results of adding are analyzed in the comparator, which yields the decisions that:
⎯If the difference is 0, then A = B,
⎯If the difference is positive, then A > B,
⎯If the difference is negative, then A < B.

7. SIMULATION OF THE PROPOSED SCHEME OF MODULAR COMPARISON

The proposed scheme of comparison was simulated using algorithms for reconstructing the weighted
values of modular numbers based on (i) the Chinese remainder theorem with a classical orthogonal basis
set (CRTcl), (ii) the Mixed Radix Conversion (MRC), and (iii) the Chinese remainder theorem with frac�
tional quantities (CRTfr). 

=1 2,p =2 3,p =3 5,p =4 7p

.
2
P

( ) ≈ × + × + × + × = × + × + × + × ≈1 2 3 4 1 1
1 2 2 3 0.5 1 0.3333 2 0.6 2 0.5714 3 0.0808;AF k k k k

P

( ) ( )− = − =0.5 0.0808 0.4192.K AF F
P P

( ) ( )<
A KF F
P P

< ,A K

( ) ≈ × + × + × + × = × + × + × + × ≈1 2 3 4 1 1
1 2 1 2 0.5 1 0.3333 2 0.6 1 0.5714 2 0.9094;BF k k k k

P

( ) ⎛ ⎞
− = − = −⎜ ⎟

⎝ ⎠
0.5 0.9094 0.4094.

2
K BF F
P P

ASPS BSPS

ipLUT A

ipLUT B

−

= α

1

.i
i

p
i i

i

P
k

p

:
ipLUT A ( )× × ×0;0.3333 2;0.6 2;0.5714 3 ;

:
ipLUT B ( )× × ×0;0.3333 2;0.6 1;0.5714 2 .

ipLUT A
ipLUT B

( ) ( )− ≈ + × + × + × − + × + × + × =

1 1
0 0.3333 2 0.6 2 0.5714 3 0 0.3333 2 0.6 1 0.5714 2 0.1724.i iA B

F F
P P



362

AUTOMATIC CONTROL AND COMPUTER SCIENCES  Vol. 49  No. 6  2015

CHERVYAKOV et al.

The modeling was performed using Xilinx Kintex 7 XC7K70T FPGA (Table 1) based on ISE Design
Suit 4.7 WebPack. The main criteria used to assess the quality of algorithms were device utilization and the
final total delay of the algorithm. The device utilization was characterized by the number of slices that rep�
resent the base computing units of Xilinx Series 7 devices. In addition, we have studied variants of algo�
rithm realization with and without using DSP48E1 slices intended for optimizing special�structure algo�
rithms. 

The results of simulations are summarized in Tables 2 and 3 and illustrated in Figs. 5 and 6. A compar�
ison of the well�known classical reconstruction methods based on CRTcl and MRC shows that MRC
favors higher device utilization and requires a smaller chip area, while CRTcl ensures lower delay. The

Table 2. FPGA board performance necessary for realization of the proposed algorithms at a fixed number of moduli
(n = 4)

Set of moduli 19, 23, 29, 31 1009, 1013,
1019, 1021

32713, 32717, 
32719, 32749

1048549, 1048559, 
1048571, 1048573

Range bit count 19 40 60 80

Modulus size (bit)  5 10 15 20

Slices DSP48E1 Slices DSP48E1 Slices DSP48E1 Slices DSP48E1

CRTfr 13 7 77 29 118 42 236 69

CRTcl 92 4 352 16 706 20 1133 32

MRC 54 9 224 13 576 17 1108 24

Table 3. FPGA board performance necessary for realization of the proposed algorithms with various numbers of 6�bit
moduli 

Set of moduli 47, 53, 59, 61 41, 43, 47, 53, 59, 61 31, 37, 41, 43, 47, 53, 59, 61

Range bit count 24 34 45

Number of moduli   4   6   8

Slices DSP48E1 Slices DSP48E1 Slices DSP48E1

CRTfr 17 10 46 30 129 43

CRTcl 117 4 213 12 285 32

MRC 75 11 164 16 191 45

 
Table 1. Kintex 7 XC7K70T packaging

Slice logic items Available

Number of Slice Registers 82000

Number of Slice LUTs 41000

Number of Slices 10250

Number of IOBs 300

Number of DSP48E1s 240



AUTOMATIC CONTROL AND COMPUTER SCIENCES  Vol. 49  No. 6  2015

COMPARISON OF MODULAR NUMBERS 363

MRC�based method involves a greater number of small�digit operations. A longer pathway of the signal
from input to output, related to the greater number of operations, makes this method the slowest in this
comparative simulation. Compared to CRTcl and MRC based methods, the proposed CRTfr exhibited
both the lowest area requirements for the chip and shortest delay. 

Let us also consider the issue of minimal RNS moduli sets necessary to cover the ranges of computing
devices using maximum eight�bit buses. Table 4 presents different variants of RNS moduli sets that allow
covering 8�, 16�, and 32�bit ranges. 

Figure 7 shows the total delay and device utilization for all algorithms under comparison with moduli
sets from Table 4. Note that the proposed method exhibits the best results despite the fact that computa�
tions exceed the range bit count. For example, in the 32�bit range, the exact calculation of a positional
number will require computing up to 42�bit numbers. 

The use of DSP48E1digital signal processing slices on the board allows the useful area occupied by the
algorithm to be significantly reduced (Fig. 8b), but this is accompanied by a decrease in the speed of algo�
rithm operation (Fig. 8a). In different practical situations, this circumstance can be used to optimize the
desired process characteristic. 

The experimental data show the efficiency of the proposed method from the standpoint of algorithm
operation speed, which is achieved due to the absence of calculations of the residues of division and a small
number of operations. In addition, for all sets of RNS moduli, this method requires a minimum amount
of computational resources as compared to the two well�known methods. 

8. CONCLUSIONS

We have proposed a procedure for representing and processing modular numbers using relative frac�
tional values, which are used to determine the signs of modular numbers and comparing them in the RNS.
The basic operation in comparing numbers is their weighted representation and summation of fractional
values, which allows the instrumental and temporal complexity to be reduced as compared the well�

 
Table 4. Minimal RNS moduli sets covering computer ranges

Computer range Set of moduli RNS range Fractional number size (bit)

7, 37 259 14

11, 59, 101 65549 24

19, 67, 89, 167, 227 4294975973 42

=

82 256

= 65536162

= 4294967296322

CRT with fractions CRT MRC

250

200

150

100

50

0
804019 60

T
o

ta
l d

el
ay

, 
n

s

Dynamic bit’s count

Fig. 5. Plots of the total delay of algorithm vs. modulus
bit count for DSP48E1 slices with four moduli. 

120

100

80

40

20

0
84 6

T
o

ta
l d

el
ay

, 
n

s

Modul’s count

60

CRT with fractions CRT MRC

Fig. 6. Plots of the total delay of algorithm vs. number
of 6�bit moduli in DSP48E1 slices.



364

AUTOMATIC CONTROL AND COMPUTER SCIENCES  Vol. 49  No. 6  2015

CHERVYAKOV et al.

known solutions, such as those using MRC. The results of simulation showed the high efficiency of the
proposed architecture of comparing modular numbers. 

Subsequent investigations will be aimed at adapting the proposed algorithms for particular applica�
tions, using special sets of RNS moduli, and increasing the stability of modular structures. 

ACKNOWLEDGMENTS

This work was supported by the Russian Foundation for Basic Research, project no. 14�07�31004�mol�a. 

REFERENCES

1. Chervyakov, N.I., Sakhnyuk, P.A., Shaposhnikov, A.V., and Makokha, A.N., Neirokomp’yutery v ostatochnykh
klassakh. Uchebnoe posobie dlya vuzov (Neurocomputers in Residual Classes. Textbook for High Schools), Mos�
cow: Radiotekhnika, 2003.

2. Chervyakov, N.I., Sakhnyuk, P.A., Shaposhnikov, A.V., and Ryadnov, S.A., Modulyarnye parallel’nye vychisli�
tel’nye struktury neiroprotsessornykh system (Modular Parallel Computing Structures of Neuroprocessor Sys�
tems), Moscow: Fizmatlit, 2003.

3. Szabo, N.S. and Tanaka, R.I., Residue Arithmetic and Its Application to Computer Technology, McGraw�Hill,
1967.

4. Omondi, A. and Premkumar, B., Residue Number Systems. Theory and Implementation, London: Imperial Col�
lege Press, 2007.

5. Reddy, K.S., Akshit, S., and Sahoo, S.K., A new approach for high performance RNS�FIR filter using the mod�
uli set, Proc. IEEE Symp. on Computer Applications and Industrial Electronics (ISCAIE), Penang, Malaysia, 2014,
pp. 136–140.

(a) (b)
25

20

10

5

0
328 16

T
o

ta
l t

im
e,

 n
s

Dynamic range bit’s count

15

Using DSP48E1

Without using DSP48E1

N
u

m
be

r 
o

f 
o

cc
u

p
ie

d
sl

ic
es

30

200

100

50

0
328 16

Dynamic range bit’s count

150

Using DSP48E1

Without using DSP48E1

250

Fig. 8. Comparison of (a) total delay and (b) device utilization for the proposed approximate method with moduli sets
from Table 4 (with and without using DSP48E1 slices).

100

80

40

20

0
328 16

T
o

ta
l t

im
e,

 n
s

Dynamic range bit’s count

60

CRT with fractions
CRT
MRC

400

200

100

0
328 16N

u
m

be
r 

o
f 

o
cc

u
p

ie
d

Dynamic range bit’s count

300

CRT with fractions
CRT
MRC

sl
ic

es

(a) (b)

Fig. 7. Comparison of (a) total delay and (b) device utilization for algorithms with moduli sets from Table 4 (without using
DSP48E1 slices).



AUTOMATIC CONTROL AND COMPUTER SCIENCES  Vol. 49  No. 6  2015

COMPARISON OF MODULAR NUMBERS 365

6. Chervyakov, N.I., Lyakhov, P.A., and Babenko, M.G., Digital filtering of images in a residue number system
using finite�field wavelets, Autom. Control Comput. Sci., 2014, vol. 48, no. 3, pp. 180–189.

7. Alia, G. and Martinelli, E., NEUROM: A ROM based RNS digital neuron, Neuron Networks, 2005, no. 18,
pp. 179–189.

8. Yatskiv, V., Su, J., Yatskiv, N., Sachenko, A., and Osolinskiy, O., Multilevel method of data coding in WSN, Proc.
IEEE 6th Int. Conf. on Intelligent Data Acquisition and Advanced Computing Systems (IDAACS), 2011, pp. 863–
866.

9. Gomathisankaran, M., Tyagi, A., and Namuduri, K., HORNS: A homomorphic encryption scheme for cloud
computing using residue number system, Proc. IEEE 45th Annual Conference on Information Sciences and Sys�
tems (CISS), 2011, pp. 1–5.

10. Akkal, M. and Siy, P., A new mixed radix conversion algorithm MRC�II, J. Syst. Archit., 2007, vol. 53, no. 9,
pp. 577–586.

11. Navi, K., Esmaeildoust, M., and Molahosseini, A.S., A general reverse converter architecture with low com�
plexity and high performance, IEICE Trans. Inf. Syst., 2011, vol. E94�D, no. 2, pp. 264–273.

12. Chervyakov, N.I., Babenko, M.G., Lyakhov, P.A., and Lavrinenko, I.N., An approximate method for compar�
ing modular numbers and its application to the division of numbers in residue number systems, Cybern. Syst.
Anal., 2014, vol. 50, no. 6, pp. 977–984.

13. Molahosseini, A.S., Sorouri, S., and Zarandi, A.A.E., Research challenges in next�generation residue number
system architectures, Proc. IEEE 7th International Conference on Computer Science & Education (ICCSE), 2012,
pp. 1658–1661.

14. Gbolagade, K.A. and Cotofana, S.D., An O(n) residue number system to mixed radix technique, Proc. IEEE
Int. Symp. on Circuits and Systems (ISCAS 2009), 2009, pp. 521–524.

15. Hung, C.Y. and Parhami, B., An approximate sign detection method for residue numbers and its application to
RNS division, Comput. Math. Appl., 1994, vol. 27, no. 4, pp. 23–25.

16. Chervyakov, N.I., Methods and principles of modular neural computers, in “50 let modulyarnoi arifmetike”.
Sbornik nauchnykh trudov (50 Years of Modular Arithmetic. Collection of Scientific Papers), Moscow: OAO
Angstrem, MIET, 2005.

Translated by P. Pozdeev


		2015-12-25T17:22:55+0300
	Preflight Ticket Signature




