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1 1. INTRODUCTION

Many technological processes contain sequentially performed operations. Supply chains are an exam�
ple of this kind, and they have been the subjects of many investigations [2, 6]. This interpretation will be
used for visualization in this paper.

A supply chain consists of sequential links of supply, which will be called a stage. Let us denote c as the
number of stages (links). The stages are performed sequentially; a new stage begins after the successful
ending of the previous stage. Let Wη be the time of the ηth stage, η = 1, …, c,    the corre�
sponding density and cumulative distribution functions. It is supposed that the ηth distribution concen�
trates on the finite interval  The random variables W1, W2, …, Wn are independent.

The supply chain operates in the so�called external random environment, which is described [3] by the
continuous�time Markov chain J(t), t > 0, with the finite space of states E = {1, 2, …, k}. Let λi, j be the
transition intensity from state i to state j, i, j ∈ E, λi, i = 0. We denote a corresponding matrix by (λi, j) and

transition intensity from state i by Λi = 

This is the modulating process [4] for the random sequence W1, W2, …, Wn. If the external environ�
ment J(t) is in the state i and the ηth link is performed, then a fatal failure arises with the intensity 
The supply chain performs successfully if all c links are performed without failures. It is necessary to cal�
culate the corresponding probability, i.e., the probability of successful performance of all stages, and a dis�
tribution of the corresponding time.

The paper is organized as follows. We derive a system of differential equations for transition probabili�
ties of chain states in the next section. Section no. 3 contains a procedure of a polynomial approximation
for these probabilities. Survival function of one link is considered in Section no. 4. The chain reliability
and performance time distribution are considered in Sections 5 and 6. Section no. 7 contains a numerical
example. Section no. 8 ends the paper with final remarks. 

2. DIFFERENTIAL EQUATIONS FOR STATE PROBABILITIES 

First, we consider only one link that allows us to omit index η in failure intensity  Only two states
take place, i.e., the working link and disturbed (absorbing) link. Let A(t) be an event that the link continues
to work (survive) at time moment t. Since early Λi is the failure intensity at the time t for state i ∈ E of mod�
ulating process J(t). We denote  the following probability: 

1 The article was translated by the authors.
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Let us calculate these probabilities. It allows us to calculate the probability that there is no failure until
time moment t as shown below:

 (1)

We have 

It gives the following system of the linear differential equations:

(2)

The solution of this system will be performed via an approximation.

3. APPROXIMATION PROCEDURE 

We use the following polynomial approximation [1] of the transition probabilities of interest:

 (3)

Obviously, 

 (4)

where  is the Kroneker symbol:  = 1 for i = j and equals 0 otherwise.

We suppose that the failure intensity also accepts a polynomial approximation as follows:

(5)

The values n, m < n and  in (3) and (5) are known, but values  must be determined.

The substitution (3) and (5) in (2) gives

Temporally we omit the index of the initial state i, which gives the following system of linear algebraic
equations with respect to 

(6)

Let us introduce the following vector�matrix designations:
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Therefore,

and so on, recurrently.
The obtained solution allows one to calculate the probability of interest (3) for the partial ηth stage.

4. SURVIVAL FUNCTION OF THE STAGE

Now, we can consider a survival function (1) of the ηth link by the condition that the initial state i of
the external environment is fixed:

(7)

where  is calculated by formula (3) for the ηth link.

Let  be the probability that the ηth link will be ended successfully in the state j of the exter�
nal environment, given the initial state i. Obviously, if the performance time of the ηth link is constant bη

then  If one is a random variable, then let   be its cumulative distribution function. 

Both cases can be united rewritten using the Lebesque integral

(8)

If the approximation coefficients of formula (3) are calculated, then the last expression can be written as

 (9)

where  is the νth initial moment for the performance time of the ηth link:

(10)

5. RELIABILITY OF THE CHAIN

Now we need to calculate the reliability of the whole chain. Let  be the probability (reli�
ability) that the first η links will be ended successfully and j be the last state of the external environment
given the initial state i. These probabilities are calculated sequentially: 

(11)

Obviously, the reliability of the whole chain is calculated as

 (12)

The last formula allows one to calculate the probability of the successful performance of the supply
chain without restrictions on the duration of the performance of the partial stages. Now, we consider a case
when this restriction takes place.
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6. DISTRIBUTION OF THE PERFOFMANCE TIME

Let  be the time of successful of the ηth stage calculated under the condition that the initial state of
the random environment is i. Note that this random variable is a degenerate one: probability

 can be less than 1 because a failure can take place.

Below, we use decomposition  for various final states j of random environment

 The distribution function of  has the form

(13)

Analogously to formula (9), we have

 (14)

Below, we dilate our reasoning to many stages. Let  be a successful performing time of the
first η link calculating under the condition that initial state of the random environment is i and as earlier

 is the considered decomposition. The corresponding distribution functions are calculated
recurrently:

 (15)

Finally, the performance time of the supply chain T(1, c) has the following distribution function:

 (16)

A defect of this distribution is equal to 1 – Ri. Therefore, a conditional distribution function of success�
ful performance time Tsucc given the successful performance takes place is calculated as

(17)

The conditional mean of the performance time is calculated as

where 

7. NUMERICAL EXAMPLE

Let us consider the following initial data. The external random environment has three states (k = 3)
with the following matrix of transition intensities:

The initial state of the random environment (at time t = 0) is the first one, i0 = 1.

The supply chain includes c = 5 stages (links). The failure intensities  for the ηth stage are the
same for all stages and have linear dependences (m = 1) on the stage performance time t as follows:

 Corresponding matrices of the coefficients  are as follows: 
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The performance time of the first and the last links are constants: W1 = 2, W5 = 3. The distributions of
the performance time of other links are presented in Table 1. In particular, the β distribution, which is less
known, has the following density [5, 7]:

where u and v are the form parameters (u > 0, v > 0), α and β bonds of the possible values (α < β), B(u, v) is
the β function

It is known that, for the integer positive u and v, 
The maximal possible value of the considered random variables are the following: b1 = 2, b2 = 2, b3 =

2.9, b4 = 1.5, b5 = 3. Therefore  The minimum value of the performance
time is 6.5. 

Formula (10) contains the νth initial moments  of the random variables {Wη}. They are calculated
as follows [4, 6]:

1. The exponential distribution with parameter θ, concentrated in interval (0, b) as follows:

2. The β�distribution with parameters u, v, α, β:

where  is the binomial coefficient.

3. The uniform distribution on interval (a, b):

Below, we will consider and discuss some results. In addition the order n of the approximation (3) will
be changed to investigate its influence on the accuracy of the calculations. 

Firstly, let us consider one link. Let Z(n) be the matrix of approximation coefficients

 in (3), calculated with respect to formula (6) recurrently. It is presented in
Table 2 for i0 = 1 and n = 8.

Now, we can calculate the survival function of the ηth stage  using formulas (3) and (7).
Table 3 contains corresponding values for the second stage and for various orders n of the approximation
polynomial (3).
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Table 1. Distributions of the random variables {Wη}

Random variable Distribution Parameters

W2 Exponential, truncated at point b θ = 1, b = 2

W3 β�distribution u = 1, v = 3, α = 1, β = 2.9

W4 Uniform a = 0.5, b = 1.5
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Here, we can determine the necessary order of the approximation. We must increase one until a further
increasing will not change the results of calculations. Because the first stage is performed at a constant
time of 2, n = 20 is fully sufficient for the considered case.

Probabilities (reliabilities)  that the first η stages will be ended successfully and j is the
last state of the external environment, are presented in Table 4. Here η = 0, 1, …, 5, where η = 0 corre�
sponds to the initial distribution of environment states. Presented data have been calculated using formu�
las (11). Note that the initial distribution of states for the given stage coincide with the final distribution
for the previous stage. The last row of the table contains reliability (12), i.e., the sum of given probabilities
over all final states j.

Now, we consider the distributions of successful performance times  First, we consider the first
two stages only. The initial state of the random environment for the second stage is the state after perform�
ing the first link. It can be seen from Table 4 that the corresponding probabilities are as follows:

 Table 5 contains distributions  for  calculated with respect to
formulas (14) and (15) and Table 2. The last column of this Table 2 presents the reliabilities of the first
links. We see that one coincides with the corresponding values from the second column of Table 4.

The distributions of the performance time of all supply chain  are calculated by formulas (15)
and (16). As before, j = 1, 2, 3 is the final state of the chain. The corresponding results are represented in
the Table 6. Let us remark that the reliability of whole supply chain, presented in the last columns of Tables 4
and 6, coincide in fact; i.e., the difference is less then 1%.
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Table 2. Matrix Z(8) = 

ν 0 1 2 3 4 5 6 7 8

j = 1  1 –0.6 0.255 –0.067 9.267 × 10–3 1.09 × 10–4 –3.614 × 10–4 9.215 × 10–5 –1.42 × 10–5

j = 2  0 0.5 –0.370 0.151 –0.042 8.275 × 10–3 –1.162 × 10–3 1.055  × 10–4 3.081 × 10–6

j = 3  0 0.0 0.125 –0.097 0.037 –9.171 × 10–3 1.553 × 10–3 –1.799 × 10–4 1.211 × 10–5

z1 j ν, ,

1( )
( )3 9×

Table 3. Survival function 

t 0 1 2 3 4 5 6 7

n = 5  1 0.901 0.785 0.626  0.321 –0.400 –2.072 –5.590

n = 8  1 0.901 0.788 0.653  0.398 –0.553 –4.560 –17.171 

n = 20  1 0.901 0.788 0.655  0.542  0.429 0.332 0.254

n = 40  1 0.901 0.788 0.655  0.542  0.429 0.332 0.250

n = 50  1 0.901 0.788 0.655  0.542  0.429 0.332 0.250

S1
2( )

t( )

Table 4. Reliabilities functions 

η 0  1  2  3  4  5

j = 1 1  0.420  0.360  0.277  0.240  0.158

j = 2 0  0.262  0.248  0.206  0.182  0.113

j = 3 0  0.106  0.120  0.121  0.113  0.069

R1 1  0.788  0.728  0.604  0.535  0.340

R1 j,
η( )
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8. CONCLUSIONS

A new approach to the reliability analysis of the supply chain has been suggested that takes into account
the existence of a random environment. The latter is described as a continuous�time finite irreducible
Markov chain. The chain is subjected by failures, the intensity of which depends on the state of the random
environment. Methods of chain reliability are presented, as well as the distribution function of successful
performance time computing in the paper. The numerical example illustrates a formal description of the
methods.

The authors plan to use the presented approach to more complex structures of the supply, specifically
to network structures in the future.
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Table 5. Distribution functions  t ≥ 0 of the successful performance time 

t  2.3  2.6  2.9  3.2  3.5  3.8  4.1
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Σ  0.232  0.399  0.519  0.604  0.665  0.707  0.728
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Table 6. Distribution functions  t ≥ 0  of the successful performance time of the chain
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j = 2 0.086 0.087 0.088 0.089 0.089 0.089 0.093 0.098 0.103 0.107 0.112
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