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1. INTRODUCTION

Using the Taylor series makes it possible to approximate a given real�valued function f(x) in the neigh�

borhood of point x0 by means of a power series  with real�valued coefficients ak that
are calculated from the derivatives of the function at the point x0. In this work, the problem of approxi�
mating a given complex function f(x) in the neighborhood of point x0 is solved using the exponential power

series  having the complex parameters hk and zk that also are calculated from the deriv�
atives of the function at the point x0. To solve the problem, the Prony’s method is used, which makes it
possible to simulate the selected data as a linear combination of exponential functions [1], while all the
parameters of these functions (amplitude, frequency, damping factor, and initial phase) are provided
directly from the data themselves. As the Prony’s method resolves the function into exponential compo�
nents and not into polynomials, when modeling quasiperiodic processes, it has the following advantages: 

(1) significantly longer approximation interval when using the same number of derivatives; 
(2) the possibility of direct interpretation of the model parameters in terms of time and instantaneous

frequency [2].
The Prony’s method consists of three main phases. At first, the estimation of the linear prediction coef�

ficients is implemented and they form the characteristic polynomial. Then the roots of a polynomial are
calculated, by which the damping factor and frequency of each exponential are determined. Then the sys�
tem of linear equations is solved, resulting in an estimation of amplitudes and initial phases. The initial
Prony’s method and all of its modifications known to the authors imply that the analyzed data are a
sequence of measurements selected at regular intervals, and thus they apply only to digital signals. How�
ever, as is shown in this article, the Prony’s method can be modified in such a way as to obtain a local
approximation of continuous functions using its derivatives.

The method of approximation of continuous functions obtained in the article can be used to estimate
the instantaneous parameters of discrete signals. For this purpose, an approximate calculation of deriva�
tives in the form of finite differences is performed. As is shown in the work, the error in the calculation of
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derivatives affects the evaluation of instantaneous
frequency and can be corrected by using the appro�
priate expressions. Application of the method is
parametric modeling of quasiperiodic processes
(including the modeling of voiced speech signals
using instantaneous sinusoidal parameters [3, 4]). A
feature of the method is the ability to process not
only real�valued but also complex signals.

Approximation of the signal using the derivatives
of can be applied only to continuous and smooth
functions on the observation interval. For discontinuous or noisy signals, the approximation method on
the basis of derivatives is not applicable. Therefore, in the work, it is assumed that the analyzed digital sig�
nal has a restricted spectrum (if it is not specified particularly, it is assumed that the spectrum is restricted
by the Nyquist frequency) and, consequently, according to the Nyquist–Shannon–Kotelnikov theorem,
the continuous signal can be recovered from this spectrum and be described by a continuous and smooth
function. Figure 1 shows an example of the recovery of a continuous signal from a discrete sequence cor�
responding to a rectangular pulse. The assumption of restricted spectrum makes it possible to calculate the
derivatives of any signals, including noisy ones.

Unlike analytical functions, for which it is possible to predict the behavior of the approximated signal
for an arbitrary point in time (far away from the time of calculation of all derivatives), in the case of a con�
tinuous signal, the interval of effective approximation is determined by the width of the signal spectrum
(the narrower spectrum, the longer the available interval of approximation).

Because the behavior of the continuous signal is completely determined by the values of its discrete
samples, then the calculation of derivatives at a given point in time and the approximation in the given
interval do not result in the receipt of new information. However, the value of the evolved method is in the
possibility to describe the signal using an exponential (sinusoidal) model with instantaneous (i.e., chang�
ing at each moment of time) parameters. Sinusoidal modeling of the signal provides a basis for solution of
many practical tasks (for example, processing, coding, and speech synthesis). Interpolation methods
based on derivatives also may be useful in the practical tasks of multirate processing of the signal values at
any points of time that are not multiple to the sampling interval.

The work is organized as follows. Section 2 outlines the initial Prony’s method. The modified Prony’s
method for approximation of continuous functions by its derivatives is proposed in Section 3. In Section
4, the modified Prony’s method is compared with Taylor series by a few examples. Several continuous
functions are used for which the region of approximation by the Taylor series is appreciably limited. It is
shown that the proposed method provides a wider region of approximation for the selected functions. Sec�
tion 5 discusses the special case where the function is a decaying sinusoid. This case is chosen as the sim�
plest and most appropriate example for comparison with alternative methods, as well as for research of
robustness to errors and additive noise. The corresponding estimation algorithm is deduced and its rela�
tion to the known algorithm ESA is shown [5]. The discrete version of the algorithm is performed using
the finite difference method and the expressions of the error correction in calculation of the derivative are
deduced. It is shown that, in the case of a three�point differentiator, the derived discrete version of algo�
rithm is more tolerant to additive white noise compared to discrete versions of the ESA. In Section 6, a
practical comparison of the obtained algorithm with similar methods using pure and noisy synthetic sig�
nals is performed.

2. THE INITIAL PRONY’SMETHOD 

In accordance with the Prony’s method, the discrete complex signal s[n] can be represented as a sum
of damped complex exponentials:

where p is the number of complex exponentials,  is the initial amplitude, and  is
the complex exponential with the damping factor αk and normalized angular frequency ωk. In order to
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evaluate the exact parameters of the model, 2p complex samples of the signal are needed. The desired solu�
tion can be obtained using the following set of equations:

 (1)

Complex exponents  are the roots of the characteristic polynomial

 (2)

with complex coefficients a[m], which in turn are the solution of the set of linear equations 

 (3)

and  The values of the damping factor αk and frequency ωk are calculated using the following
expression:

 

As a result of the substitution of the values  the set (1) is converted to a set of linear equations,
which is solved relative to complex parameters  Then, for each of them, one can calculate the ini�
tial amplitude Ak and θk as follows:

 (4)

The Prony’s method outlined above applies only to discrete signals. In order to describe a continuous
function by it, the discretization of the function needs to be implemented on the approximation interval.
For a description of the behavior of an arbitrary function in an infinitely small neighborhood of a given
point, one must discretize with an infinitely small sampling interval. A numerical solution in this case is
difficult, because it requires the calculation of appropriate limits. Instead, one can use the value of the
derivative function at the point, as will be shown in the next section.

3. MODIFICATION OF THE PRONY’S METHOD FOR APPROXIMATION 
OF CONTINUOUS FUNCTIONS

The following observation underlies the proposed method of approximation of continuous functions.
If analytic function f(x) is represented as a sum of a finite number of complex exponentials, the sequence
of its derivatives at an arbitrary point x0 can be represented as a sum of the same number of complex expo�
nentials. For the proof, it is sufficient to consider the derivative of function f(x) of order n at a point x0:

(5)
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Thus, the solution can be obtained from the set (1) by calculating the derivative of the function f(x) at
the point x0 and by replacing the variables:

 (6)

where  The search for a solution of the set (6) is performed in the same way as for set (1),
except that, with allowance for the replacement of the variables, the damping coefficients αk and frequen�
cies ωk are calculated as follows: 

 (7)

Therefore, the proposed approximation method is the following action sequence.
1. Solving the set of linear equations for the coefficients :

 (8)

2. Finding the complex exponentials  by calculating the roots of the characteristic polyno�
mial (2).

3. Substituting the values  into set (6) and solving it with respect to 
4. Calculating the desired parameters Ak, θk, αk, and ωk by formulas (4) and (7) respectively.

As a result, we will find an approximation of the original function f(x) in the neighborhood of the point x0

by the complex exponentials:

 

If the function f(x) is the sum of p damping complex exponentials, for exact fitting of parameters, it is
required to find a 2p – 1 derivative at point x0, while the exact approximation will be provided throughout
the whole domain of function f(x) regardless of the choice of x0.

4. COMPARISON OF THE MODIFIED PRONY’S METHOD 
WITH THE TAYLOR SERIES APPROXIMATION 

A comparison of the proposed method with approximation using Taylor series is performed below. The
Taylor series is as follows:

where  is the factorial of n,  is the nth derivative of f(x) at the point x0, and  is the residual
term of the Taylor formula. When using a finite number of derivatives, the approximation of the function
f(x) is a polynomial of finite degree:

 (9)
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tives is provided, while in the modified Prony’s method, the equality of values of the functions and only of
the first p – 1 derivatives is provided. The remaining p derivatives are used to calculate the coefficients of
the linear prediction (8). Owing to the use of the predictions, often one can get a good approximation of
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the initial function (including the nonperiodic) compared to the Taylor polynomial. Figure 2 shows an
example of approximation of functions  x0 = 0. Notice that for x > 1 the approximation
using the Taylor series becomes worse with increasing number of derivatives, whereas the approximation
by complex exponentials tends to f(x).

Figure 3 shows an example of approximation of functions  x0 = 0. One can see that for

|x| > 1 the compared methods have the same characteristics. 

The advantage of the proposed method becomes evident for functions containing periodic components.
Figure 4 shows an example of approximation of function  x0 = 0. One can see that
the parameters of the exponentials are estimated sufficiently precisely to execute the extrapolation of the
function for four periods. The above example shows that the proposed approximation method is well
applicable for continuous quasiperiodic signals.

5. ESTIMATION OF THE INSTANTANEOUS PARAMETERS 
OF A REAL�VALUED SINGLE�COMPONENT PERIODIC SIGNAL

In digital signal processing, the task of estimating the changing parameters of a real�valued single�com�
ponent periodic signal arises fairly often and it is a separate case having practical value in modeling of
speech signals [5]. A single�component periodic signal means a signal that can be represented at any point
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in time as one damped sinusoid (in contrast to (5), where the sum of complex damped periodic functions
is used):

 (10)

The most popular approach to the solution of this task is the energy separation algorithm (ESA) based
on the Teager–Kaiser nonlinear energy operator (TEO). The operator is as follows [5]:

 (11)

As is shown in [6], this operator provides a more accurate estimate of an energy signal noisy by additive
noise compared to the squaring operator

In view of the fact that, for a periodic signal with constant amplitude and frequency
 the following relations are correct

the frequency and the absolute value of the amplitude can be obtained as follows:

 (12)

 (13)

Expressions (12) and (13) form the core of the energy separation algorithm for continuous signals. To pro�
cess discrete signals, the discrete approximation of the operator TEO [7] is used

 (14)

In the article [10] several appropriate algorithms called DESA (Discrete Energy Separation Algorithm)
for discrete signals are deduced. They make it possible to estimate the instantaneous frequency and ampli�
tude. The DESA�1 algorithm uses two adjacent samples to calculate the derivatives of the first order and
reduces to calculation of the following expressions:

where  The algorithm allows estimating the parameters of periodic signals with a fre�
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In the DESA�2 algorithm, the first�order derivatives are calculated using the difference between the
sampling with indices n + 1 and n – 1. The DESA�2 algorithm reduces to computing the following expres�
sions:

where  In the DESA�2 algorithm, the range of estimation of the frequency is lim�
ited to half the Nyquist frequency owing to the selected method of calculation of the derivative.

The above DESA algorithms are very popular owing to the low computational complexity and the lack
of the need to use the Hilbert transformation and complex numbers. DESA algorithms are used in various
applications such as demodulation [8], the separation of sound and speech sources [9], and noise reduc�
tion.

In [10], it is shown that, if the signal is a decaying sinusoid, the damping coefficient can be determined
using the following expression:

where  is the energy operator of the third order. In the case of a discrete sig�
nal, one can use its approximation 

We estimate the instantaneous parameters of a single�component periodic signal using a method
derived in Section 3. If f(x) is a real damped sinusoid, then one can find all the desired parameters accord�
ing to its value and three derivatives at point x0. As a result, we generate the following algorithm:

1. Calculation of the derivatives of the signal 
2. Calculation of the coefficients of the characteristic polynomial (2) of the set (8)

 (15)

 (16)

3. Calculation of the roots of polynomial (2) 

 (17)

4. Calculation of initial complex amplitude

 (18)

5. Calculation of desired parameters of damped sinusoid
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It is easy to show that, if f(x) is a continuous sinusoid, i.e., when  the obtained expressions for
estimating the instantaneous frequency and amplitude are identical to the ESA. In addition, it should be
noted that the expression for estimating the damped coefficient (19) is identical to the expression given in
[10] and the expression for estimating the instantaneous frequency (20) can be obtained from the case of
decaying sinusoid considered in [5]. 

We perform the discretization of expressions (15)–(22). For this, in the first step of the algorithm, we
use an approximation of the derivatives of the discrete signal s[n],   and s(3)[n] by means of finite
differences. Similar to the algorithms DESA�1 and DESA�2, we will separately consider two cases,
namely, using a two�point or three�point differentiator.

In the first case, the differentiator is  Calculating the convolution of the sequence

of its coefficients, we obtain the following expressions for the pulse h1–3 and frequency  charac�
teristics of the differentiators of all desired orders:

 (23)

 (24)

 (25)

According to the properties of linear system with constant parameters, if the input signal is a complex

exponential  the frequency response of the system is a complex multiplier joining its input and
output, i.e., 

 (26)

It follows from expressions (5) and (26) that the difference of the frequency characteristics of the differ�

entiators of ideal  will result in error of estimation of the instantaneous frequency.
Using relations (20), (23)–(25), we obtain an expression for the estimation of the instantaneous frequency
based on calculation error of the derivatives:

 (27)

Thus, by applying a two�point differentiator to approximate the first three derivatives of the signal and cal�
culating the estimate of the instantaneous frequency using expression (27), we obtain the discrete estima�
tion algorithm of an instantaneous sinusoidal parameter (for brevity, it is denoted as “DIPA�1”—Discrete
Instantaneous Prony Algorithm). DIPA�1 uses four serial samples of the analyzed signal.

In the second case. 

We apply the three�point differentiator  We obtain the following pulse and

frequency characteristics denoted by h1–3 and  respectively:
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As a result, we obtain an algorithm for estimation of parameters (denoted as “DIPA�2”) which uses seven
consecutive samples of the signal. As for DESA�2 owing to the selected method of calculating the deriva�
tive, the range of estimation of the instantaneous frequency is limited to half the Nyquist frequency.

We will show that the proposed algorithm DIPA�2 is more stable to additive white noise compared with
the DESA algorithms. It is known that a discrete TEO approximation is sensitive to broadband noise [5];
however, the influence of noise can be greatly reduced by applying the a low�pass filter to the TEO output
[7]. The idea is based on the fact that the TEO output typically has a narrower frequency band in compar�
ison with the signal. We write the outputs of the differentiators of all orders obtained by the three�point
symmetric difference according to (28)–(30):

 (31)

 (32)

 (33)

Using (11) and (31)–(33), we obtain an alternative discrete TEO approximation:

 (34)

 (35)

From (34) and (35), it is shown that the output of operator  is actually the output of original operator

Ψ (14) filtered by a low�pass filter with coefficients .

6. RESULTS OF THE EXPERIMENT 

This section provides a practical comparison of known algorithms for the estimation of the instanta�
neous amplitude and frequency of a single�component signal with the algorithms obtained in this work
DIPA�1 and DIPA�2. Among the known algorithms, the following ones are used: DESA�1; DESA�2 [5];
classic four�point Prony’s method [1], which is denoted as Prony; and combined five�point Prony’s
method [11], which is denoted as Prony.m. For comparison, synthetic quasiperiodic signals with known
instantaneous parameters generated by means of the expression

where  and  are used. The same discrete func�
tions were used in [11] to estimate the precision of the algorithms for estimating the instantaneous fre�
quency practically. The test sequence consists of 50 signals with different coefficients of amplitude and fre�
quency modulation ranging from 5 to 50%. White noise of varying intensity is added to the synthesized
signal, resulting in four additional test sequences with different signal�to�noise ratios. The average values
of the absolute error of the estimate of the instantaneous frequency and amplitude are calculated for each
sequence. Errors are classified as serious (hereinafter denoted GE—gross errors) or small (hereinafter
denoted FE—fine errors). The total percentage of gross error is calculated as

where  is the number of measurements with deviations of more than ±20% from the true values, and
 is the total number of measurements. The fine errors are normalized to the true values and are averaged
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where NFE is the number of fine errors, P true is the true value of the parameter, Pest is the parameter value
obtained as a result of the estimation, and P means the corresponding parameter (instantaneous frequency
or amplitude).

In [5], it is proposed to use a median filtering of output parameters to enhance the stability to noise of
the DESA algorithm. To estimate the possibilities of this approach in the experiment, the five�point
median filtering is also used for each method. The obtained error values are listed in the table.

Estimation of the accuracy of the algorithms

GE frequency, % FE frequency, % GE amplitude, % FE amplitude, %

Median filtering no yes no yes no yes no yes

Pure quasiperiodic signals

DESA1 (5) 0 0 0.19 0.18 0 0 0.25 0.21

DESA2 (5) 0 0 0.22 0.20 0 0 0.28 0.23

Prony (4) 0 0 0.22 0.22 0 0 0.99 0.99

Prony.m (5) 0 0 0.08 0.08 – – – –

DIPA1 (4) 0 0 0.38 0.21 0.36 0 9.86 3.21

DIPA2 (7) 0 0 0.15 0.15 0 0 0.19 0.17

Quasiperiodic signals with noise, signal/noise ratio is 40 dB

DESA1 (5) 0.01 0 1.5 0.68 0 0 1.71 0.90

DESA2 (5) 0 0 2.04 1.09 0.02 0 2.70 1.26

Prony (4) 2.49 0.02 3.48 1.56 3.12 0.20 4.12 1.97

Prony.m (5) 8.40 0.89 4.85 2.72 – – – –

DIPA1 (4) 2.76 0.20 3.79 1.84 6.49 0.12 9.68 3.72

DIPA2 (7) 0 0 0.58 0.36 0 0 0.59 0.46

Quasiperiodic signals with noise, signal/noise ratio is 30 dB

DESA1 (5) 2.70 0.08 4.13 2.02 2.64 0.54 4.90 2.69

DESA2 (5) 4.95 0.99 5.50 3.14 10.2 1.95 6.28 3.44

Prony (4) 19.1 5.98 6.63 4.18 24.3 7.74 7.24 4.52

Prony.m (5) 33.3 16.6 8.08 5.54 – – – –

DIPA1 (4) 21.0 6.41 7.19 4.64 23.7 4.48 8.90 4.59

DIPA2 (7) 0.05 0 1.80 0.96 0.01 0 1.77 1.22

Quasiperiodic signals with noise, signal/noise ratio is 20 dB

DESA1 (5) 25.8 7.81 7.44 5.30 31.6 13.4 8.38 5.86

DESA2 (5) 37.3 14.5 8.93 6.48 48.6 20.2 8.92 6.84

Prony (4) 57.0 37.9 8.86 6.82 60.3 33.4 9.17 7.81

Prony.m (5) 69.8 57.2 10.0 8.01 – – – –

DIPA1 (4) 59.8 31.8 9.33 7.62 46.5 14.2 8.81 7.46

DIPA2 (7) 3.60 0.30 4.90 2.94 1.42 0.37 5.50 3.80

Quasiperiodic signals with noise, signal/noise ratio is 15 dB

DESA1 (5pt) 45.8 23.1 8.68 7.30 53.7 30.3 9.08 7.69

DESA2 (5pt) 58.3 34.7 9.50 7.97 66.2 40.9 9.92 8.43

Prony (4pt) 74.3 56.3 9.24 7.85 73.9 47.1 9.70 9.28

Prony.m (5pt) 82.5 76.5 10.23 9.93 – – – –

DIPA1 (4pt) 76.3 51.2 9.52 8.56 57.6 27.7 9.46 8.88

DIPA2 (7pt) 12.6 2.70 6.99 4.88 11.6 4.25 8.35 6.27
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For pure quasiperiodic signals, all algorithms show closely related accuracy; however, the five�point
Prony.m algorithm provides the most accurate estimate of the instantaneous frequency, while DIPA�2
provides the most accurate estimate of amplitude. The estimate of the instantaneous frequency using
DIPA�2 is more accurate than that by means of DESA. This shows that the proposed algorithm has a
higher time resolution, in spite of the expansion of the analysis window (seven points instead of five).

If noise is added to the signal, the accuracy of the known algorithms based on the Prony’s method
(Prony and Prony.m) sharply degrades compared with DESA. In addition, the proposed algorithm
DIPA�1 behaves in the same way. However, the seven�point algorithm DIPA�2 has a significant advantage
for all signal�to�noise ratios ≤30 dB. Median filtering expands the analysis window of each algorithm by
four points (i.e., DESA becomes nine�point). However, the overall accuracy of all methods with median
filtering is worse than the seven�point DIPA�2 algorithm without a median filtering. One can make an
empirical conclusion that filtering of the TEO output in DIPA�2 is more productive than filtering of the
output parameters implemented in [5]. A brief example of estimation of parameters of the test signal is
shown in Fig. 5.

7. CONCLUSIONS

A method of approximation of analytic functions by damped complex exponentials is described in the
work. The method is based on the use of a modified Prony’s method, which in contrast to the original one
performing the approximation by points, performs the approximation by the derivatives of the function at
a given point. In comparison with a Taylor series, the modified Prony’s method provides a better descrip�
tion of quasiperiodic functions, using the same number of derivatives. The advantage of this method is that
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Fig. 5. Estimate of the instantaneous frequency and amplitude, signal/noise ratio of 20 dB: (a) initial signal and additive
noise; (b) estimate of the instantaneous frequency; (c) estimate of the instantaneous amplitude.
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the calculated parameters have a direct frequency interpretation and can be used for time–frequency
analysis of a signal. 

This method of approximation of analytic functions was used to derive the algorithm for estimating the
instantaneous parameters of a damped sinusoid. For this purpose, a special case of the limited signal
approximation with a limited number of derivatives was considered. The discrete versions of the algorithm
by approximating the derivative of a discrete signal by finite differences were obtained. The impact of the
error introduced by the approximation was taken into consideration. The relation of the obtained algo�
rithm to a known algorithm of energy separation was shown. The stability of the algorithm to additive
noise was investigated. By comparison with known discrete algorithms for estimating instantaneous sinu�
soidal parameters, it was shown that the proposed algorithm is more stable to additive white noise.

REFERENCES
1. Marple, S.L., Tsifrovoi spektral’nyi analiz i ego prilozheniya (Digital Spectral Analysis with Applications), Pren�

tice Hall, 1987; Moscow: Mir, 1990.
2. Boashash, B., Estimating and interpreting the instantaneous frequency of a signal, Proc. IEEE, 1992, vol. 80,

no. 4, pp. 519–568.
3. Azarov, E., Vashkevich, M., and Petrovsky, A., Instantaneous harmonic representation of speech using multi�

component sinusoidal excitation, Proc. 14th Ann. Conf. Int. Speech Commun. Assoc. (INTERSPEECH–2013),
Lyon, 2013, pp.1–5.

4. Abe, T. and Honda, N., Sinusoidal model based on instantaneous frequency attractors, IEEE Trans. Audio,
Speech, and Language Proc., 2006, vol. 14, pp. 1292–1300.

5. Maragos, P., Kaiser, J.F., and Quatieri, T.F., Energy separation in signal modulations with application to speech
analysis, IEEE Trans. Signal Proc., 1993, vol. 41, pp. 3024–3051.

6. Dimitriadis, D., Potamianos, A., and Maragos, P., A comparison of the squared energy and Teager�Kaiser oper�
ators for short�term energy estimation in additive noise, IEEE Trans. Signal Proc., 2009, vol. 57, pp. 2569–2581.

7. Kaiser, J.F., On a simple algorithm to calculate the “energy” of a signal, Proc. IEEE ICASSP�90, Albuquerque,
New Mexico, 1990, pp. 381–384.

8. Dimitriadis, D. and Maragos, P., Continuous energy demodulation methods and application to speech analysis,
Speech Commun., 2006, vol. 48, pp. 819–837.

9. Litvin, Y., Cohen, I., and Chazan, D., Monoural speech/music source separation using discrete energy separa�
tion algorithm, Signal Proc., 2010, vol. 90, pp. 3147–3163.

10. Maragos, P., Potamianos, A., and Santhanam, B., Instantaneous energy operators: Applications to speech pro�
cessing and communications, Proc. IEEE Workshop on Nonlinear Signal and Image Proc., Thessaloniki, Greece,
1995.

11. Fertig, L.B. and McClellan, J.H., Instantaneous frequency estimation using linear prediction with comparisons
to the DESAs, IEEE Signal Proc. Lett., 1996, vol. 3, no. 2, pp. 54–56. 

Translated by M. Kromin


