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1. INTRODUCTION

Developing automated systems for the nondestructive quality control of products, diagnostics in engi�
neering and medicine, and pattern recognition has led to the synthesis of models of objects or processes
in hand [1–4]. One can efficiently use fuzzy neural networks [5–7], where the fuzzy output system is
implemented as a neural network that is easy to analyze, use, and acquire knowledge from, as recognizing
models.

To train fuzzy neural networks, one generally uses the method of back propagation of error [5–7] that
depends on the choice of the initial search point and requires setting the derivative of the objective func�
tion (software implementation makes it difficult to take into account possibility of adjusting parameters of
fuzzy neural networks using the objective functions set by the user) and has low speed so that, given limited
time or number of iterations, one cannot always achieve acceptable accuracy in practice. 

In this work, to train fuzzy neural networks, we propose using random search methods (genetic, evo�
lutionary, and stochastic search methods) [8–11] based on adaptation procedures for some set of solutions
(points in the search space) that both allow one to find acceptable solutions without the need to calculate
derivatives of the objective function and possess natural computation parallelism.

However, such methods also depend, though much less than gradient methods, on forming the initial
set of solutions (choosing initial search points), which is generally done at random, and have low speed of
search for optimal solutions. Therefore, it is topical to develop a new method of random search for training
(parametric synthesis) of fuzzy neural networks free of these drawbacks. Natural parallelism of computa�
tion characteristic of random search methods and their low convergence speed mean it is reasonable to
parallelize such methods, given the peculiarities of the problem involved.

The objective of this work is to create a method for training fuzzy neural networks based on parallel ran�
dom search.

2. STATEMENT OF THE PROBLEM OF TRAINING FUZZY NEURAL NETWORKS

Suppose the set S (1) of observations (precedents) that describe the state of objects or processes
involved is given as follows:

 (1)

where P is the set of features (a feature is a characteristic that describes the object or process involved) and
T is the set of values of response (the output parameter).
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The sets of values P and T are represented as matrix (2) and vector (3), respectively, as follows:

 (2)

 (3)

where pqm is the value of the mth feature of the qth observation   tq is the value
of response of the qth observation, M is the number of features, Q is the number of observations, and tr is
the symbol of transposition operation.

The structure of a fuzzy neural network is formed by mapping instances of sample (1) into fuzzy pro�
duction rules. Then, the problem of training the recognizing model based on the fuzzy neural network
NFN is to identify its parameters (the set of values of weight coefficients W and the set of parameters of
membership functions µ) so that to ensure the acceptable value of the given quality criterion G of the neu�
ral model NFN. When training fuzzy neural models, one can use, e.g., the recognition error (in problems
with the discrete output T) or the mean�square error (when the output parameter T can take real values
from some range  as the objective criterion G.

3. METHOD OF PARAMETRIC IDENTIFICATION OF FUZZY NEURAL MODELS
BASED ON PARALLEL RANDOM SEARCH

As noted above, to train hybrid models of computational intelligence, one can efficiently apply meth�
ods of random search with adaptation (methods of genetic, evolutionary, and stochastic search) [8–11].

However, to obtain acceptable results (models that ensure acceptable recognition or prediction accu�
racy), it is not generally sufficient to run such methods once due to the probabilistic approach used and,
in some cases, cycling in local optima.

The need for multiple runs and significant search time make it reasonable to parallelize the training
process for hybrid intelligent models, including fuzzy neural networks.

To develop a parallel random search method for training fuzzy neural models, we single out stages of
random optimization that it is reasonable to parallelize. It is known from the literature [8–11] that the
principal stages of probabilistic methods are as follows:

• initializing the initial set of solutions  where 

 is the kth solution in the set R(0),  

N
χ
 is the number of elements of the set R(0) (the number of randomly generated solutions in the course

of initialization), the variable N
χ
 does not generally change in the course of probabilistic optimization; 

 is the value of the lth element (parameter) in the kth solution,  

Ng is the number of parameters in the solution 

• estimating the current set of solutions  and checking the stopping criteria, where G is the
objective function that helps estimate the quality of the ith set of solutions R(i);

• forming a new set of solutions  which, for an evolutionary search, is performed by applying the
crossover and mutation operators.

To reduce the time of the random search when constructing hybrid models of computational intelli�
gence, it is reasonable to use a priori information on the training sample at the initialization stage when
generating the initial set of solutions. Hence, this approach requires one to synthesize fuzzy neural models
N

χ
 times (forming the set of initial values of their parameters), which results in the significant use of com�

putational resources and implements the parallelization of this stage.
Generally, the stage of estimating the current set of solutions R(i) is the most resource intensive, as it

uses many computational and time resources to calculate values of the objective function G for each kth
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 solution  in the form  Since this stage is of high computational complexity,

is performed slowly and does not require data exchange between solutions  it is reasonable to be per�
formed in parallel.

Generating a new set of solutions  is an important stage. To study the domains of local optima in

more detail, it is reasonable to decompose the current set of solutions  into subsets  and then search

for the optimum in each of them:  where  is the jth subset of the ith set
R(i) and Npr is the number of processes that are simultaneously run in the parallel computing system. We

propose to perform this decomposition using the a priori information on location of the solutions  in
the space of elements gl  Unlike the island model of evolutionary search [8, 9], which

implies the random generation of subpopulations  with this approach, one can take into account

information on spatial location of solutions  in the set R(i) and study domains of possible optima in more

detail. We propose to perform random search with adaptation in each jth subset  on the jth process of
the parallel computing system  for Nit iterations.

After  iterations of a random search over each subset  they are combined into one population

 followed by the probabilistic optimization over the combined set. This
will allow one to detect new domains that have local (and, may be, global) optima in them. To reduce the
time of probabilistic optimization when operating with a combined set of solutions, we propose calculat�

ing the values of the objective function  of the solutions  based on the processes in the parallel system
(i.e., by parallelizing it).

Therefore, the principal stages of the proposed method are the initialization, the estimation of solu�
tions, the decomposition of the current set of solutions into subsets, and the search for optimal solutions
based on a parallel approach. Moreover, to be able to use a random search to train fuzzy neural models,
we need to find a way to represent synthesized neural models like the solutions χk.

Thus, the proposed method of training fuzzy neural networks is based on the probabilistic approach
when searching for values of adjustable parameters and distributes most resource intensive stages between
nodes of the parallel computing system, which reduces the time to adjust the parameters of the neural
models to be synthesized, including the weight coefficients and parameters of membership functions of
neuroelements.

3.1. Encoding Solutions

Set of observations (1) and the model structure are the input information used to train hybrid models
of computational intelligence. The number of adjustable parameters Ng (parameters of the membership
functions and weight coefficients of the neuroelements used) of the fuzzy neural models depends on the
number of neurons used, which in turn depends on the production rules that describe the set S.

To use a random search for the parametric identification of fuzzy neural models, we present a way to
represent the values of adjustable parameters glk in the solutions (chromosomes for the evolutionary
search) χk. Suppose NR production rules are singled out from the sample  It is reasonable to use
the ANFIS fuzzy neural network [5, 12], which is now widely used in solving pattern recognition problems
[4, 5, 12, 13], and implements the Takagi–Sugeno fuzzy logic inference system, as a feedforward neural
network that consists of five layers [5, 12] as the basis for the model to be synthesized.

The ANFIS�based synthesis of the model implies the selection of values of parameters of fuzzy terms
and rules. The developed method can be similarly applied for the parametric synthesis of other types of
hybrid models of computational intelligence (to do this, it will be sufficient to determine the adjustable
parameters and the way to represent them in the solution χk).

Outputs of the first�layer neurons of the ANFIS fuzzy neural network show whether the instance to be

recognized belongs to fuzzy terms of features with the membership functions  (  is the membership
function of the instance to be recognized to the nth term of the mth feature pm, 

 Nint is the number of terms of features). We define the term as an interval of values of the
feature that corresponds to some concept, category, or projection of the cluster to the feature’s axis.
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As the membership functions of the first�layer neurons, it is reasonable to choose inverted U�shaped
(4) or trapezoidal (5) [9, 14, 15] functions, since they are universal with regard to the class of elementary
membership functions, i.e., they can be used to construct other functions, as follows:

 (4)

 (5)

where amn, bmn, cmn, and dmn are the parameters of the membership function µmn. Furthermore,  and

 are the S� (6) and Z�shaped (7) membership functions

 (6)

 (7)

The parameters amn and bmn of the functions  are chosen based on the boundaries of decomposition
intervals of the values of the feature  Therefore, for each of MNint first�layer neurons,
cmn and dmn will be the adjustable parameters. 

The second layer implements left�hand sides (antecedents) of the rules. One can use formula (8) to cal�
culate the outputs of the neurons of this layer as follows:

 (8)

where  are the parameters that show there is a link between the respective first� and second�layer neu�

rons and are found from the given structure of the network (  = 0 if the nth term of the mth feature is

not in the antecedent of the rth rule;  = 1 if the respective term of the feature is in the hypothesis of
the rth rule). In addition to formula (8), one can find the values of outputs of the second�layer neurons

 as the minimum of products   

The third�layer neurons normalize the values of the degrees of fulfillment of antecedents of rules (9)

  (9)

Hence, the second and third layers have no parameters to be adjusted with random search.

Every rth neuron of the fourth layer can be calculated as follows:

  (10)

where  are the weight coefficients that give significance of the feature pm in the rth rule and are adjust�
able parameters of the fuzzy neural model. 
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The fifth layer has one neuron that calculates the total output of the network (11)

 (11)

Thus, when training fuzzy neural models, the adjustable parameters are MNint, parameters cmn and dmn

of the membership functions  of the first�layer neurons, and MNR weight coefficients  of the
fourth�layer neurons. Hence, the total number of adjustable parameters Ng can be found by formula (12)

  (12)

To train fuzzy neural networks, given that it is reasonable to only adjust parameters of the first and
fourth layers, we can represent the solution (chromosome) χk as shown in figure.

The proposed means of representation (figure) allows one to carry out the parametric identification of
fuzzy neural networks using a random search.

3.2. Initialization

At the initialization stage of the proposed method, we give the input parameters (the set  the
structure of the fuzzy neural network, which requires parametric identification, and a number of param�

eters needed for random search). To bring the initial search points 

closer to optimal, we form the set R(0), unlike the known random search methods [8–11, 13], given the a
priori information on the training sample  To do this, we decompose the range of values

 of each mth feature pm  into the given number of intervals Nint. Thus,
we form the intervals   the boundaries of which help determine the
parameters of fuzzy terms.

When calculating the values of parameters cmn and dmn, we take into account the significance of the nth
term Δpmn of the mth feature pm in order to distinguish the instances of the sample  We define
the significance (informativity, importance) Vmn of the nth term of the mth feature as the product of the

variables  and  which characterize the location density of the instances of the set

S in the interval Δpmn of the feature pm and the degree of influence of the term Δpmn, respectively, based on
the value of the output parameter T (13) as follows:

 (13)

where  is the number of observations of the sample S, the values of the mth features pm of which

are in the interval Δpmn, and  is the entropy of the interval Δpmn, i.e., the variable [2, 9, 10] that

characterizes the uncertainty measure of the output parameter T given that  The higher its
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entropy, the less informative the interval is for making decisions. The variable  can be calcu�
lated by as follows:

 (14)

where  is the number of decomposition intervals (classes) of the output parameter T of the frag�
ment of the sample  in which the values of the mth features pm are in the interval Δpmn, and ρq is the

probability (15) that the output parameter T takes the value q in the set  (given that )

 (15)

Here, is the number of observations in the set  in which the value of the output param�

eter T is q (T = q).
Along with the other required parameters, the estimates Vmn calculated on the main process are sent to

other processes for the parallel generation of the initial set of solutions 

When constructing the solutions  we expand the boundaries of the intervals  and 
by decreasing and increasing the values of parameters cmn and dmn, respectively, depending on the variables
Vmn that characterize the significance of the nth term of the mth feature pm. We expand the intervals that
correspond to high values of the estimates Vmn. To form a set of solutions in the form of N

χ
 sets of param�

eters of fuzzy neural models  rather than a single solution, to ensure variability, we
introduce the coefficient rand[x; y] (a randomly generated number in the interval from x to y), which
ensures the stochastic component when calculating the parameters cmn and dmn of the fuzzy neural models
to be synthesized. Given the above, we calculate the values of parameters cmn and dmn as follows:

  (16)

  (17)

Using these formulas to calculate the values of cmn and dmn, one can generate the set of respective
parameters, each of which depends on the estimate of the significance of its term Δpmn and a random num�
ber in the interval from 1 to 2, which ensures the possibility of a maximum increase in the lengths of the
intervals  and  up to the width of two intervals Δpmn. This makes it possible for the neigh�

boring intervals      of the membership functions  to cross, which in
turn allows one to introduce fuzziness at the first layer of the fuzzy neural network to be synthesized. If we
need to ensure more intervals Δpmn cross and to introduce greater fuzziness, we can increase the value of
the second parameter in the function rand[x; y] in formulas (16) and (17) given above.

To calculate the weight coefficients  of the fourth layer of the fuzzy neural network to be synthe�
sized, which define significance of the feature pm in the rth rule, we use the estimates Vmn obtained earlier.
The significance of the feature pm in the rth rule Vm(ruler) is given by informativity  of the respec�

tive term Δpmn of the mth feature in this rule. To ensure variability in order to form a set of solutions when

calculating the values  we also take into account the stochastic component rand[x; y] as follows:

  (18)

Thus, at each jth node  of the parallel system, the subsets 

of solutions are generated, where the parameters  of the solution  are cal�
culated by formulas (16)–(18).
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3.3. Estimation of Solutions

Then, we perform transformation (19)

 (19)

that, using expressions (4)–(11), leads to the generation of the fuzzy neural network  based on the

given structure and the set of parameters represented in the solution 

Then, we estimate the recognition quality for each kth generated fuzzy neural model 

 This estimate is calculated as the recognition error (if the output T is discrete in the set S) or

as the root�mean�square error (if the output T takes real values), which requires using the model 

to be synthesized to calculate the values of the output parameter  for each qth observation of

the set  The resulting estimate  characterizes the fitness  of the solution  in
the set R(0) 

 

so that, in the future, we can select the best�fitted solutions to generate new sets  

3.4. Decomposition of Current Set of Solutions into Subsets

After the quality estimates  of the current set of solutions  are calcu�

lated, the set is decomposed into subsets  as follows:

 

Then, the extrema of the objective function  are searched for in each jth subset R(i, j) at the jth
process of the parallel system. We form the subsets R(i,  j) so that each jth set is a group of densely located

solutions  in the space of elements  This allows one to take into account the a priori informa�

tion on the spatial location of the solutions  and study the domains of the location of extremal solutions in
more detail using random searches. Since we propose processing each set R(i,  j) on the respective process,
the total number of clusters (subsets R(i,  j)) formed corresponds to the number of processes of the parallel
system Npr.

To determine groups R(i,  j) of single�type solutions  we use a priori information on the initial location

of the adjustable parameters glk (the parameters cmn and dmn of the membership functions  of first�layer

neuroelements and values of weight coefficients  of the fourth�layer neurons). Formulas (16), (17)
given above show that these parameters generally occur in the intervals 

(for Vmn = 1 and and

Therefore, when forming the decomposition  we propose taking into account

the location of the solutions  in the respective intervals. We decompose each of these intervals into Npr

segments. We use formula (20) to estimate the rank  of the solution 
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way the solution  is represented, the parameter and the range of its values glk corresponds to one of three

values cmn, dmn, ). We propose calculating the variable  by formula (21) as follows:

  (21)

where ceil(A) is the function that returns the integer part of A.

Using formula (21), we can find the ranks  so that they correspond to the numbers of ranges of
decomposition of the interval  into Npr segments and can take values  No need in
computationally complex sorting operations is also why it is reasonable to apply this approach in order to

estimate the solutions  (using the ranks  for them to be decomposed into subsets 

The set  is formed as follows. The subset  is ascribed with the first 

solutions  chosen with respect to the values of the variable  The next  solutions form

the subset  This process is continued similarly for each subset  until the last Npr th subset 
is formed.

3.5. Search for Optimal Solutions Based on Parallel Approach

After the set R(i) is decomposed into subsets  on the main process, they are sent to
other processes for parallel random search for extrema.

It is known [8–11] that the principal stages of a random search consist of forming a new set of solu�
tions, estimating the quality of new solutions, and checking the stopping criteria.

To form the new set  on the jth process, we select the solutions  based on the values of

their objective function  We propose to introduce the solution  into the set of

solutions  accepted for forming the new generation  given that the following condition (22):

 (22)

where  is the normalized value of the objective function  for the set  Thus, the smaller the

error  of the network  the higher the probability that the solution 

will be selected to form the new set 
Similar to the evolutionary approach to searching optimal solutions [8, 10, 11], we propose forming a

new set of solutions  out of most adapted sets of  (elite ones) and the sets resulted from applying
evolutionary crossover and mutation operators. The number of solutions of new generations obtained in a
given way is determined by rounding off the integer as follows: 

  (23)

where  is the number of elite solutions (the solutions  with the best values of the

estimates  in the set );  is the number of solutions resulting from the crossover oper�
ator;  is the number of solutions generated by the mutation operator; and α, β, γ are the
coefficients that indicate the significance of a given way of obtaining the new set, where α + β + γ = 1. 

When the new set is formed, Ncross solutions are generated by crossover of sets represented in the set

 The elements  of the new solution  based on parent solutions  and

 can be determined by formulas (24)–(27) as follows:
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  (27)

where  and  are the values of the lth elements of the parent solutions  and

 respectively;  and  are the minimal and maximal values of the lth elements, respec�
tively;  is the coefficient that can be obtained randomly  or calculated depending

on the values of the objective function  of the parents  and  in order to increase the influence

of the solution with the best (smallest) value  as shown below:

 (28)

It is reasonable to apply the latter expression when new solutions are formed using formula (24), while
the random generation of the coefficient  makes sense when formulas (25)–(27) are used.

Using formulas (24)–(28) in the proposed crossover operator allows one to generate new solutions 
given the peculiarities of the adjustable parameters glk (range of their values) and the fitness of the parent

solutions  and 

As noted above, the mutation operator brings  solutions to the new set  We perform

mutations over the selected solutions  in order to vary the values of some elements

 within some range. The number  of mutating parameters  is deter�

mined as follows:  ϑ is the portion of parameters  that can mutate in the selected solu�

tions  We propose to setting the default portion ϑ of mutating parameters  at a
level of 10% so it will be possible to vary the values of every tenth adjustable parameter. We propose the

following expression for varying the values of 

 (29)

where  is the width of the range of change of the lth elements gl;  is the mean value

of the objective function  in the set  and the designations   and 

reflect the type of the adjustable parameter in the element gl, i.e., cmn, dmn, and  respectively. 

Expression (29) allows one to generate the values of mutating parameters  as random numbers

from the respective ranges  if the value of the objective function  does not exceed the

mean value of  in the set  Otherwise, in addition to the peculiarities of the location (the range of
values) of the adjustable parameters glk, we take into account their type (the parameters cmn, dmn of the

membership functions of the first�layer neurons, and the weight coefficients  of the fourth�layer neu�
roelements). It is allowed to go outside the corresponding ranges so that one can expand the search
domain and go outside the of possible ranges of local extrema. Furthermore, it is ensured that some values

of the weight coefficients of the fourth layer  will decrease so that these weights can be
then zeroed, which simplifies the structure of the fuzzy neural model to be synthesized.

After the new sets of solutions  are generated, the transformations of type (19)

 are performed and each solution  is estimated  Then,
the stopping criteria are checked, including whether the maximum number of iterations Nit is achieved on

each jth process, whether the acceptable value Gac of the objective function  is obtained, etc.

If these criteria are not met, the set  is formed.
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To introduce some variety, migrations of the solutions  into the neighboring populations 

 are performed in the population  with some periodicity Lmigr. Each jth process broadcasts

 most fitted solutions  with calculated values of their objective functions

 and receives similar solutions  and  from other processes  Thus, each

jth process forms the set  of migrated solutions  

We propose bringing  solutions from  to the subpopulation  We propose

choosing the solutions  to be added to  proportionally to the values of the objective

functions  as follows: if the condition  is met, the solution

 is added to the subset  where  is the normalized value of the objective

function  of the solution  To ensure that the condition α + β + γ = 1 is met, which allows

one to leave the total number of solutions  on each jth process (in each subset ) unchanged is
met, we need to reduce the value of the sum of coefficients β and γ by the variable α on random search
iterations that transfer some solutions to other processes as follows:  which
reduces the number of children generated by crossover and mutation.

After Nit iterations of the search  are performed in each of the Npr subsets  they are com�

bined into a single population  To do this, the sets of values

are sent to the main process. Then, the random search  is performed over the combined popula�

tion  and the values of the objective functions are calculated on various processes of the parallel system.
This search allows one to study the search space without decomposing it into some parts and find new
extremal domains that contain suboptimal solutions. We propose using the selection, crossover, and muta�
tion operators given above to form new solutions. To reduce the time of probabilistic optimization, we pro�

pose determining the values of the objective functions  since the process is com�
putationally complex, on different nodes of the parallel system.

After the random search  is performed and the stopping criteria are not found, the set  is
decomposed into subsets again as follows:

after which a search  for optimal solutions is carried out in each of them. The processes

  and  are performed alternately until the stopping criteria are met for the
search.

Thus, the proposed method for the parametric identification of fuzzy neural models is based on the
probabilistic approach when searching for values of adjustable parameters and implies the distribution of
the most resource�intensive stages among the nodes of the parallel computing system, which allows us to
reduce the time of adjusting the parameters (values of the weight coefficients and parameters of the mem�
bership functions of neuroelements) of the neural models to be synthesized.

4. CONCLUSIONS

In this work, we consider the topical problem of automating the process of training fuzzy neural models
using the given sets of observations.

The scientific novelty of the work is that we proposed a method for the parametric identification of
fuzzy neural networks based on parallel random search that uses probabilistic optimization to adjust the
parameters of the models to be synthesized (parameters of the membership functions and weight coeffi�
cients of neuroelements) and forms the initial set of solutions based on information on the training sample
(the significance of the terms of features is taken into account using the density of the location of instances
of the training set in the respective term and its degree of influence on the value of the output parameter),
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which allows the initial search points to be brought closer to the optimal values and accelerates the opti�
mization process.

To study the domains of local optima in more detail, the proposed method decomposes the current set
of solutions into subsets; then, optima are searched for in each subset based on the corresponding pro�
cesses of the parallel system. The respective subsets are formed so that each set represents a group of solu�
tions densely located in the space of adjustable elements, which allows one to take into account the infor�
mation on the spatial location of solutions and study domains of location of extremal solutions in more
detail via random search.

The developed operators of forming the new set of solutions take into account the peculiarities of the
location (the range of values) of adjustable parameters, their type (parameters of membership functions of
neurons, weight coefficients of neuroelements), and the fitness of parent solutions, as well as allow one to
go outside of the respective ranges so that we can expand the search domain and go outside of the possible
domains of local extrema.

We highlight the following directions for future research:
—a theoretical analysis of computational complexity and an estimation of the efficiency of the pro�

posed parallel method of training fuzzy neural networks,
—experimental research on a cluster and vector processor when solving practical problems that

require constructing diagnostic neural network models.
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