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Abstract—Protein kinases represent one of the largest eukaryotic enzyme superfamilies. However, only a few
can directly phosphorylate tubulin and contribute to the modulation of the “tubulin code.” The authors pre-
viously confirmed the structural and functional homology of the plant protein kinase IREH1 and members
of the mammalian MAST kinase family. Their participation in the regulation of the microtubule system in
plant and animal cells was also experimentally confirmed. At the same time, the direct contribution of
MAST/IRE to the “tubulin code” remains unclear. In the current study, based on bioinformatical and struc-
tural biology methods, the possibility of such an interaction was evaluated. The target sites of MAST/IRE-
phosphorylation of tubulin were predicted based on similarity to the generalized specific profiles. Two poten-
tial MAST/IRE specific sites, conserved in human and Arabidopsis tubulins were selected: Thr73 (80) exists
in most isotypes of α-tubulin and Ser115 was found in the majority of human and plant isotypes of β-tubulin.
It was predicted that phosphorylation of the first site can affect the assembly of α/β-tubulin heterodimer, and
phosphorylation of the second may affect the interaction between neighboring protofilaments of microtu-
bules. The last site Ser433, was found in both γ-tubulin isotypes of A. thaliana, but it was absent in mammals.
The external position of Ser433 in plant γ-tubulin allows for suggesting that phosphorylation of this amino
acid can affect the structure of the γTuRC complex but it does not affect inner contacts of γTuSC and their
interaction in the ring.
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INTRODUCTION
Microtubules (MT) are key element of the cyto-

skeleton involved in many important cellular pro-
cesses, such as cell division, cell polarity, intracellular
transport, and movement (Amos and Schlieper, 2005;
Desai and Mitchison, 1997; Howard and Hyman,
2003; Lansbergen and Akhmanova, 2006). Tubulin, as
a core MT protein, is an important substrate for post-
translational modifications (PTM) (Gadadhar et al.,
2017; Janke, 2014; Wloga et al., 2017; Yu et al., 2015).
Together with the expression of different tubulin iso-
types, diverse PTM form the basis of the “tubulin
code” as the main source of MT functional diversity.
Changes in charges, local conformations, and vol-

umes in regions of target sites caused by the addition or
removal of various chemical groups shape and control
the functional specialization and plasticity of MT
(Gadadhar et al., 2017; Smertenko et al., 1997). Known
PTM of tubulin include phosphorylation, acetylation,
polyglutamylation, ubiquitinylation, tyrosyla-
tion/detyrosylation, methylation, formation of Δ2-
tubulin, tyrosine nitration, polyamination, glycyla-
tion, etc. (Blume et al., 2010; Chakraborti et al., 2016;
Wloga et al., 2017; Smertenko et al., 1997; Yemets et al.,
2011). In particular, phosphorylation is an extremely
important modification that integrates various signal-
ing pathways affecting cell division, proliferation, dif-
ferentiation, movement, gene transcription, metabo-
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lism, adaptation to environmental conditions, etc.
(Sawyer, 2007).

In plants, phosphorylation is carried out by numer-
ous protein kinases. Thus, the genome of A. thaliana
contains more than 1000 protein kinase genes (accord-
ing to our data, 1021 genes) (Chudinova et al., 2017;
Karpov et al., 2017; Wang et al., 2003, 2007; Zulawski
et al., 2014). However, only a small part of them is
related to the regulation of the cytoskeleton and cell
division, and only a few of them can directly partici-
pate in tubulin phosphorylation (Hornbeck et al.,
2015; Magiera et al., 2014). According to experimental
data, for most protein kinases involved in the regula-
tion of the cytoskeleton and cell division, the target
proteins, as well as their phosphorylation sites, are
quite often poorly defined or unknown (Hornbeck
et al., 2015). This applies entirely to the group of
MAST—Microtubule-Associated Serine/Threonine
Kinases), which belong to the AGC Ser/Thr protein
kinase family. In mammals and Drosophila, MAST
protein kinases take an active part in regulation of var-
ious microtubule structures (interphase microtubules,
preprophase band, and mitotic spindle). Higher plants
also have protein kinases homologous to MAST, but
the structural and functional mechanisms of their
interaction with the cytoskeleton remain poorly
understood (Bryantseva et al., 2010; Chudinova et al.,
2017; Karpov et al., 2009, 2010). We previously con-
firmed the similarity of the sequences and structures
of the plant protein kinase IREH1 (Incomplete Root
Hair Elongation 1; At3g17850) and animal protein
kinases of the MAST family (Karpov et al., 2010;
Chudinova et al., 2017). We also cloned a fragment of
grape MAST-like kinase containing the catalytic
domain and the full-length cDNA of IREH1 from A.
thaliana (Bryantseva et al., 2010; Chudinova et al.,
2017). Recombinant GFP-IREH1 protein expressed
in mammalian cells revealed colocalization of the
plant homolog with the centrosome. At the same time,
it was demonstrated that the centrosomal colocaliza-
tion of plant IREH1 is associated with the N-terminal
region of the specified protein kinase (Chudinova
et al., 2017). However, at the same time, the sites of
phosphorylation of tubulin isotypes by MAST/IRE
protein kinases remain unknown.

For plants, one of the most sensitive test systems
demonstrating the effect of tubulin phosphorylation
on the morpho-physiological characteristics of cells is
root hairs (Yemets et al., 2008; Karpov et al., 2019;
Oyama et al., 2002). A decrease in the expression levels
of the protein kinase IREH1 impaired the growth of
Arabidopsis root hairs (Oyama et al., 2002). Normally,
root hair growth starts with the expansion of the vacu-
ole, and, subsequently, in the subapical region, near
the vacuole, there is an increase in the number of MT,
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which are positioned in parallel to the longitudinal
axis (Grierson et al., 2014). There is no information on
how cytoplasmic MT relocalization occurs and how it
is related to the regulation of root hair ontogenesis.
However, there is an assumption that this may be
related to IREH1 since human MAST, homologous to
IREH1, regulates the formation of morphologically
similar structures, parallel MT in “cuffs” of sperma-
tids (Chudinova et al., 2017; Walden and Millette
1996). In addition, MAST2 activity was recorded in
round spermatozoa at the beginning of the formation
of “cuffs” and its sharp decrease at the final stages of
spermatogenesis was revealed (Walden et al., 1993). In
early Drosophila embryos, the MAST-like protein
kinase “Drop out” (dop) regulates membrane centers
of primary microtubule nucleation by phosphorylat-
tion of dynein molecules (Hain et al., 2014; Pelissier
et al., 2003). In turn, we found that plant IREH1 colo-
calizes with centers of microtubule organization in
animal cells and is potentially involved in microtubule
regulation (Chudinova et al., 2017). At the same time,
the question of whether this regulation is related to the
direct phosphorylation of tubulin, and whether plant
IRE-like protein kinases belong to a unique group of
modulators of the “tubulin code” of plants, remains
unexplored. Therefore, in this study, based on the
results of bioinformatics and structural biological
studies, we determined the most probable sites of
MAST/IRE-specific phosphorylation of tubulin iso-
types in human and A. thaliana.

MATERIALS AND METHODS

Control sites of MAST-specific phosphorylation.
Experimentally confirmed sites known for human
Greatwall protein kinase (MASTL, GWL, Uni-
ProtKB: Q96GX5): 55-KGQKYFD GDYNMAK-
69 identified in cAMP-dependent phosphoprotein 19
(ARP19, UniProtKB: P56211) and 60KGQKYF-
D GDYNMAK-74 identified in alpha-endosulfin
(ENSA, UniProtKB: O43768) were used as the main
control sites (Fig. 1). As an additional source of infor-
mation on MAST-specific phosphorylation, the
PhosphoNetworks database was used (www.phospho-
networks.org), which contains information obtained
using a combination of bioinformatics methods and
the protein chip (Hu et al., 2014a, 2014b; Newman
et al., 2013).

MAST1-specific human protein phosphorylation
sites deposited in PhosphoNetworks, included

S

S



204 KARPOV et al.
MAST2-specific human protein phosphorylation
sites deposited in PhosphoNetworks included

Construction of MAST-specific phosphorylation
site motifs. Motifs of MAST-specific phosphorylation
sites were constructed according to the recommenda-
tions of the PROSITE service (https://prosite.
expasy.org) (Sigrist et al., 2013). When scanning pro-
teins using the ScanProsite program, the search option
in a user-defined collection of motifs and target pro-
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CHEK2 (SHGSSAC S QPHGSVT), 

C14orf106 (VQGVPLE S SNNDIFL),
NCL (TPAKAVT T PGKKGAT), 

TFDP1 (VFIDQNL S PGKGVVS),
  NCL (TPAKKTVT PAKAVTT),
NOL7 (SQTNIKKS PGKVKEV),
RPA2 (VDTDDTS S ENTVVPP), 

C14orf106 (SIVATTK S KKDTFVL), 
EIF4B (SRTGSES S QTGTSTT), 
NOL7 (VQKVQSV S QNKSYLA), 
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teins was applied (Option three: Submit PROTEIN
sequences and MOTIFS to scan them against each
other) (Sigrist et al., 2013). As protein targets, we used
up-to-date revisions of human and Arabidopsis α-, β-,
and γ-tubulin isotype sequences deposited in Uni-
ProtKB (www.uniprot.org, UniProt Consortium,
2023): 

H. sapiens—α-tubulin isotypes: 
TBA1A (Q71U36), TBA1B (P68363),
TBA1C (Q9BQE3), TBA3C (P0DPH7),
TBA3E (Q6PEY2), TBA4A (P68366),
TBA8 (Q9NY65) and TBAL3 (A6NHL2);
β-tubulin isotypes:
TBB1 (Q9H4B7), TBB2B (Q9BVA1),
TBB2A (Q13885), TBB4A (P04350),
TBB4B (P68371), TBB5 (P07437),
TBB3 (Q13509), TBB6 (Q9BUF5)
TBB8 (Q3ZCM7);
γ-tubulin isotypes:
TBG1 (P23258) and TBG2 (Q9NRH3).
A. thaliana—α-tubulin isotypes:
TBA1 (P11139), TBA2 (B9DGT7),
TBA3 (Q56WH1), TBA4 (Q0WV25),
TBA5 (B9DHQ0), TBA6 (P29511);
β-tubulin isotypes: 
TBB1 (P12411), TBB2 (Q56YW9),
TBB3 (Q9ASR0), TBB4 (P24636),
TBB5 (P29513), TBB6 (P29514),
TBB7 (P29515), TBB8 (P29516),
TBB9 (P29517);
γ-tubulin isotypes:
TBG1 (P38557) and TBG2 (P38558).
Phylogenetic clustering. The clustering of control

and potential phosphorylation sites were identified
using a profile search performed by aligning the corre-
sponding amino acid sequences by ClustalX (v.2.0.10)
using UPGMA clustering (Atteson et al., 1997) and
bootstrapping (Efron et al., 1996). Further visualiza-
tion and dendrogram analysis were performed using
MEGA v.11 (www.megasoftware.net) (Tamura et al.,
2021) and FigTree (Tree Figure Drawing Tool) version
1.4.4 (http://tree.bio.ed.ac.uk). Predicted motif posi-
tions were compared with experimentally confirmed
sites from the PhosphoSitePlus database
(http://www.phosphosite.org) and saved in Xp ± 7
format (*.fasta) (Hornbeck et al., 2015).

Structural and biological studies. Visualization of
structural models, analysis of protein complexes, and
topology of phosphorylation sites was performed using
the PyMOL v.1.5.0.5 program (www.pymol.org). The
structural analysis was based on the use of RCSB Pro-
tein Data Bank structures—6BR1, 6BRF, 6BRY,
6BS2 (for α and β-tubulins) (Banerjee et al., 2018)—of
the previously constructed SD model of the
CYTOLOGY AND GENETICS  Vol. 58  No. 3  2024
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Fig. 1. Experimentally validated animal Greatwall kinase sites identified in cAMP-regulated phosphoprotein 19 (ARP19) and
endosulfin alpha (ENSA) deposited in UniProtKB.

* * * * * * * * * * * * * * *
plant γTuSC complex (Karpov et al., 2017), con-
structed using protein structure homology modeling
servers I-Tasser (Yang et al., 2015) and Swiss-Model
(Bienert et al., 2017).

RESULTS

To predict the sites of specific phosphorylation of
α-, β-, and γ-tubulins of H. sapiens and A. thaliana,
CYTOLOGY AND GENETICS  Vol. 58  No. 3  2024
first of all, a generalized motif was constructed based
on the sequences of experimentally confirmed sites
of protein kinases of the MAST family. The initial
selection included experimentally confirmed sites of
specific phosphorylation by protein kinase GWL
(Greatwall/MASTL), specific phosphorylation sites
are known for cAMP-regulated phosphoprotein 19
(ARP19) and alpha-endosulfin (ENSA) (Fig. 1). In
addition, sites from the PhosphoNetworks project
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associated with human MAST1 and MAST2 protein
kinases were added to the sample (www.phosphonet-
works.org) (Hu et al., 2014a,b; Newman et al., 2013) (see
Materials and Methods for details). The full sample
included 77 phosphorylation sites: 31 for GWL, 33 for
MAST1, and 12 for MAST2. Based on the results of the
alignment of the control sites, subject to the restriction of the
opening of gaps, we created an appropriate search motif
(according to the PROSITE rules): {CHNRWY}-{NWY}-
{CHQWY}-{CWY}-{CFHV}-{CGMWY}-{MQRWY}-
[ST]-{CIMWY}-{CFMQWY}-[DEGHKNSTY]-{MPW}-
{NPTW}-{CMY}-{FMNRWY}.

At the next stage of research, the specified motif
was used to identify promising consensus sites in the
complete set of sequences of α-, β-, and γ-tubulin iso-
types of H. sapiens and A. thaliana (see Materials and
methods). According to the results of the search using
the ScanProsite tool, 51 potential sites of MAST-spe-
cific phosphorylation of tubulins for H. sapiens and
A. thaliana were revealed. The results of a comparative
analysis of the identified phosphorylation sites of
human tubulins with PhosphoSitePlus data
(www.phosphosite.org) confirmed their coincidence
with the results of mass spectrometry. Since this motif
exhibits a degraded nature, the number of predicted
MAST/IRE phosphorylation sites was excessive. In
this regard, at the next stage, joint clustering of pre-
dicted and experimentally confirmed GWL sites was
carried out. Since the sequences of all GWL sites
from ARP19 and ENSA proteins turned out
to be identical, clustering was performed using
one common sequence: KGQKYFD GD YNMAK
(55-KGQKYFD GDYNMAK-69 from human
ARP19/UniProtKB: P56211 and 60KGQKYFD G-
DYNMAK-74 from human ENSA/ UniProtKB:
O43768) (Fig. 1). For joint clustering, all sampling
sites were prepared in the generally accepted form of
S/T ± 7 and saved in *.fasta file format. At the same
time, during the alignment of the PTM sections, the
opening of gaps was prohibited. Thus, clustering in
ClustalX based on UPGMA and bootstrapping with-
out conventional sequence alignment was applied
(Fig. 2). The constructed tree allowed us to determine
the most promising phosphorylation sites of α-, β-,
and γ-tubulins, which formed a common clade with
the control sequence. For α-, β-tubulins, one site was
selected for α-, β-tubulin isotypes. These sites had a
common location for most isotypes of α- and β-tubu-
lins of H. sapiens and A. thaliana.

For α-tubulin, the closest cluster was formed by a
group of fragments corresponding to the Thr73 site
(Thr81 in human TBAL3 (A6NHL2)). The specified
site was revealed in all human α-tubulins (TBA1A,
TBA1B, TBA3C, TBA3E, TBA8, and TBAL3) and
all α-tubulins of Arabidopsis (TBA1, TBA2, TBA3,
TBA4, TBA5, and TBA6) (Fig. 3). Only the human
TBA4A isotype was an exception. Based on the results
of the analysis of structural models of microtubule
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S

fragments of H. sapiens and A. thaliana (Fig. 4a),
localization of Thr73 on the internal contact area of
α/β-tubulin heterodimers was established (Fig. 4b).
Thus, the obtained results indicate that Thr73 phos-
phorylation can affect the assembly and integrity of
tubulin heterodimers in animals and higher plants.

For β-tubulin, the closest cluster was a group of
fragments corresponding to the Ser115 site and uniting
most β-tubulins of A. thaliana (TBB2, TBB3, TBB4,
TBB7, TBB8, and TBB9) and H. sapiens (TBB5,
TBB3, TBB4B, TBB2B, and TBB2A) (Fig. 3). At the
same time, this site was not identified in isotypes
TBB1, TBB5, and TBB6 of A. thaliana and TBB4A,
TBB6, TBB8, and TBB1 of H. sapiens. The location of
Ser115 on the surface of the protein molecule suggests
that its phosphorylation should affect the lateral inter-
actions of neighboring protofilaments (Figs. 4a, 5a).

A separate clade corresponding to the Ser433 site
was found in the case of γ-tubulin (Fig. 3). Sites from
this clade showed minimal distance to the control
(GWL-specific phosphorylation site) and are repre-
sented by only two identical sites from γ-tubulin of
Arabidopsis: TBG1 and TBG2. At the same time, this
site was absent in human γ-tubulins. The results of a
Blastp search of this site in the “reviewed” section of
UniProtKB showed that the first 100 hits were repre-
sented exclusively by 71 γ-tubulin sequences from
flowering plants (Magnoliophyta). Thus, if phosphor-
ylation of the S433 residue in A. thaliana will be con-
firmed experimentally in the future, it will indicate the
presence of an IRE-dependent mechanism of post-
translational regulation, which is unique to higher
plants.

To analyze the structural localization of Ser433, we
supplemented the previously constructed model of the
primary center of microtubule nucleation of A. thali-
ana (a fragment represented by a complex of three
γTuSC heterotetramers) (Karpov et al., 2017). To
obtain a more complete picture, two α/β-tubulin het-
erodimers were added to the γTuSC complex. The
analysis of the position of the Ser433 site showed that
phosphorylation of the specified amino acid residue
cannot affect the internal and ring contact interfaces
of small γTuSC complex (Figs. 4a, 4b). However, its
external localization indicated that phosphorylation of
the Ser433 residue may affect the external interactions
of the large γTuRC complex of plant primary centers
of microtubule nucleation (Yemets et al., 2008).

DISCUSSION

According to the obtained results, two of the iden-
tified potential sites of MAST/IRE-specific phos-
phorylation are conserved in humans and Arabidopsis:
Thr73 (80), which is conserved in the most of α-tubu-
lin isotypes, and Ser115, found in most animal
and plant β-tubulin isotypes. A third site of potential
phosphorylation on Ser433 residue was found in both
CYTOLOGY AND GENETICS  Vol. 58  No. 3  2024
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Fig. 2. Results of joint clustering (bootstrapping by the UPGMA method with gap opening restriction) of the MAST/IRE-spe-
cific phosphorylation sites predicted for human and Arabidopsis tubulin isotypes and the experimentally proven conserved site
MASTL (GWL—Serine/threonine-protein kinase greatwall) with ARP19 (cAMP-regulated phosphoprotein 19) and
ENSA_HUMAN (Alpha-endosulfin).
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Fig. 3. Regions of potential phosphorylation sites that revealed the highest similarity to control GWL-kinase sites identified for
α-, β-, and γ-tubulins. The selection was made based on the maximum similarity to the search patterns as well as on the results
of joint clustering.

CONTROL:

Thr73 (81)

Ser115

Ser443

* * * * * * * * * * * * * * *

* * * * * : * * * * * * * * *

* * * * : : : :: : * * * **

�-tubulin

�-tubulin

�-tubulin
γ-tubulin isotypes of A. thaliana, but it was absent in
mammalian γ-tubulins. It should be noted that Ser433
and its amino acid surroundings are conserved in most
members of Magnoliophyta (The UniProt Consortium
T, 2023). The highlighted amino acid residues corre-
spond to the canonical motifs of phosphorylation
sites, and the structural topology confirms their avail-
ability for modification.

The functional value of the Thr73 α-tubulin resi-
due was confirmed by the fact that this residue is local-
ized in the area of the internal interface of the α/β-
tubulin dimer (Prota et al., 2014). The position of
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Fig. 4. Structural topology analysis of identified MAST/IREH1 sites in mammalian and plant microtubules: (a) topology of
Thr73(81) of α-tubulin and Ser115 of β-tubulin in the protofilament of microtubules of mammals (above) and plants (below); (b)
location of Thr73 of α-tubulin in intradimeric contact of molecules of α and β-tubulin of the experimentally solved structure of
mammals (PDB: 6BR1, left) and plant model (right).
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Thr73 indicates that its phosphorylation can not only
affect the structure of the tubulin heterodimer,
GTP/GDP exchange site, and the interaction with the
cofactor (Mg2+) but also the properties of the interdi-
mer space of the canonical colchicine binding site
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(Prota et al., 2014; Vela-Corcia et al., 2018). According
to PhospoSitePlus (ID: 14582260), phosphorylation
of human α-tubulin at residue Thr73 was previously
confirmed by mass spectrometry (Hornbeck et al.,
2015; Mertins et al., 2016). In addition, the fundamen-
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Fig. 5. Structural arrangement of Ser115 in β-tubulin and Ser433 in γ-tubulin. (a) The location of the Ser115 residue on the surface
of the β-tubulin molecule indicates that its phosphorylation can affect the interaction between neighboring microtubule proto-
filaments. (a, b) The position of Ser433 in the γ-tubulin molecule indicates that this residue does not affect the internal contacts
of the small γ-tubulin complex (γTuSC) and their polymerization. However, the external localization of the Ser433 residue sug-
gests that, in higher plants, the phosphorylation of this amino acid may affect the interaction of the large complex (γTuRC) with
associated proteins.
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tal role of the Thr73 residue was confirmed by experi-
ments on HeLa, Jurkat, and K562 breast tumor cell
cultures (Hornbeck et al., 2015; Kettenbach et al.,
2011; Mertins et al., 2016; Zhou et al., 2013).

Another site, the Ser115 residue of β-tubulin is
located in the lateral contact zone between microtu-
bule protofilaments, and its phosphorylation in mam-
mals was previously confirmed by phosphoproteomic
analysis of HeLa cell proteins (Liu et al., 2015). Phos-
phorylation of the Ser115 residue of β-tubulin in
mammals was also detected by mass spectrometry
(ID: 4713923) (Hornbeck et al., 2015; Klammer et al.,
2012; Mertins et al., 2016), as well as proven by experi-
ments on breast tumor cell cultures, H2009, H2887,
HeLa, Jurkat, and MKN-45 (Hornbeck et al., 2015,
Kettenbach et al., 2011; Klammer et al., 2012; Mertins
et al., 2016). In addition, it was recently shown that
Ser115 residue of β-tubulin in A. thaliana can also be
phosphorylated by NIMA-related kinase 6 (NEK6)
(Takatani et al., 2017).

Previously, we transfected the African green mon-
key kidney cell line (Vero) with a plasmid construct
expressing a chimeric gene GFP-IREH1, and it was
shown that the product of its expression is distributed
in the cytoplasm, mainly colocalizing with the centro-
some. However, further experiments proved the
absence of colocalization of IREH1 with centrosomes
in cells with destroyed MT and its restoration after the
reappearance of MT. Therefore, the binding of the
plant protein kinase IREH1 to the animal centrosome
depends on MT (Chudinova et al., 2017). This was also
confirmed by immunoprecipitation of chimeric
pEGFP-IREH1 and pEGFP-C3 gene expression
products from HEK293 cell lysates with anti-GFP
antibodies. As a result of immunoprecipitation with
mammalian γ-tubulin, complex formation was not
detected. Thus, the plant protein kinase IREH1 in
human cells shows direct or indirect affinity to the
microtubule but not to the centrosomal tubulin
(Chudinova et al., 2017).

Comparing the data of previous experiments and
the current bioinformatics study, we can conclude that
the Thr73 (80) residue of α-tubulin and the Ser115 res-
idue of β-tubulin are the most probable target sites of
the plant protein kinase IREH1 and the animal pro-
tein kinase MAST. Even though it was previously
experimentally proven that these sites are part of the
“tubulin code” and are phosphorylated in vitro
(Hornbeck et al., 2015; Klammer et al., 2012; Mertins
et al., 2016), the hypothesis of their association with
protein kinases IREH1 and MAST was proposed for
the first time. The conservatism of these areas in plant
and animal tubulins confirms our theory about not
only structural but also certain functional conserva-
tism of plant IREH1 and animal MAST (Bryantseva
et al., 2010; Chudinova et al., 2017; Karpov et al.,
2009a, 2009b, 2010).
CYTOLOGY AND GENETICS  Vol. 58  No. 3  2024
The possibility of direct phosphorylation of plant
tubulin by IREH1 should also not be ignored.
Although Ser433 is present only in γ-tubulin of plants,
it should be taken into account that this site turned out
to be the most similar to the experimentally proven
sites of the animal protein kinase MASTL (GW—Ser-
ine/threonine-protein kinase greatwall) (Figs. 1, 3).
However, at this stage, this hypothesis remains some-
what debatable but undoubtedly requires further
research with application of experimental methods.
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