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Abstract—The year 2022 paid a bicentennial tribute to the phenomenal work of the father of Genetics, Gregor
Johann Mendel for deciphering the genetic logic behind the phenotypes. His principles were distilled as the
law of segregation and law of independent assortment. His work was rediscovered 34 yr later by H. De Vries,
C. Correns, and E. Tschermak and popularized by W. Bateson. While C. Darwin accounted for similarities
among organisms through the differences in the form of evolution, G. Mendel accounted for similarities
through heredity; the ideological gaps were bridged mathematically by R. Fisher. Later with the test of time,
the interaction among researchers paved Mendelian principles into different branches of genetics viz., cyto-
genetics, molecular genetics, population genetics, quantitative genetics, etc. At present we have landed in the
era of genomics and the emerging field of phenomics which have potential to bridge the huge gap between
demand and supply in different agro-industrial and allied goods. The need to connect the budding research-
ers in the field of genetics with Mendelism and its significance, catalyzed our concentrated effort to link Men-
delism across the centuries, highlighting its importance and extrapolating the concept of heredity and varia-
tion from garden peas to different life forms. In conclusion, as our knowledge on genetics deepens, more
insights on underlying mechanisms and subsequent applications will be witnessed.
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1. INTRODUCTION
We, humans, are peculiar compared to other crea-

tures because we have a special character called “curi-
osity”. We fascinatingly ask the question, “why” and
“how” things are intricately woven to form what’s
happening in nature, the life narrative. In the past,
certain scholars also tried to answer the question,
“how the continuous evolution of myriad forms of life
is occurring?” which led to the development of an
important branch of science i.e., Genetics. Genetics is
instrumental in providing evolutionary insights by
unraveling underlying mechanisms for different traits
(Andersson and Purugganan, 2022). Though the sci-
ence of genetics has reached the level of genomics and
transcended inter-disciplinary barriers with omics
approaches, all these advances can be streamlined to
Gregor Johann Mendel’s idea of inheritance. July 20,
2022 commemorated the bicentennial of the birth of
G.J. Mendel (1822–1884), regarded as the father of
genetics, for his f lag-bearing work on particulate
inheritance in the 1860s. As anything which is
dynamic surely has a history, we mined many reviews
on the relevance of Mendel’s work in modern research
(Smýkal et al., 2016; Gayon, 2016; Poczai and Santi-

ago-Blay, 2021; Sussmilch et al., 2022; Wolf et al.,
2022; Van Dijk et al., 2022; Fairbanks, 2022) but those
linking histories of evolution with the state-of-art are
not witnessed yet. This catalyzed our concentrated
effort to connect Mendelism across the centuries,
highlighting its importance and relevance in extrapo-
lating the concept of heredity and variation from gar-
den peas to different life forms, ultimately bridging the
huge gap between demand and supply in different
agro-industrial and allied goods.

Prior to 1000 BC, there was a widespread accep-
tance of the theory of Vedas in Hinduism, the theory
of creationism in Christianity, and other similar theo-
ries whose literal interpretation is that God created
Earth and all modern, immutable species, for exam-
ple, the trinity of the Hindu gods, viz., Brahma-
Vishnu-Mahesh had their roles of cosmic creator, the
preserver, and the destroyer, respectively. Later on,
geological and palaeontological shreds of evidence
over time led to the development of theories that form
the basis of evolutionary biology. The first person who
elaborated the theory of generations was Hippocrates,
known as the father of medicine, who around 400 BC
postulated that hereditary material has a physical form
500
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similar to the shape of different parts of the body but in
very minuscule sizes and elements from these parts,
become concentrated in the semen and later develop
as offspring in the womb. This is famously known as
the “Bricks and mortar theory” (Gardner, 1972). Even
though it seemed irrelevant to modern man, during
those days (~300 BC) this led to the genesis of theories
on evolution. Later around 350 BC, Aristotle came up
with his theory of spontaneous generations. As the
name suggests, species that co-exist at a given time
have evolved independently of one another, sponta-
neously. He was also the first to highlight the impor-
tance of blood, in life and inheritance. Aristotle
rejected the bricks-and-mortar model of inheritance.
Instead, he proposed that heredity involves the trans-
mission of information in the form of a “blueprint
model” i.e., it does not have a physical form (Leroi,
2014). This remarkable insight was ignored until the
middle of the 20th century. Apparently, both Hippo-
crates and Aristotle sketched theories that attempted
to explain resemblance among relatives and account
for the fact that offspring somehow show a character
that is similar to their parents. The theories were fur-
ther encapsulated as the “blending theory of inheri-
tance” which says, the material basis of inheritance is
analogous to a f luid. It was assumed that the heredi-
tary material coming from the parents mixes in the
progeny to produce the offspring, which appear as
intermediates of the two parents.

In 1665, Robert Hooke used the term “cell” to
describe plots made up of cork and other plants. This
is because it reminded him of cellula, the small one-
room apartments of the monks (Gest, 2009). Some-
what contemporarily, Anton van Leeuwenhoek
(1632–1723), known as the father of microbiology,
modified the microscope invented by Zacharias Jans-
sen and Hans Janssen around the 1590s which enabled
him to report single-celled organisms, “animalcules”
for the first time in history. These animalcules later
came to be known as microorganisms in modern ter-
minology. Later his idea of observing microorganisms
led to the establishment of the cell theory and visual-
ization of chromosomes (Dobell, 1932).

In the 1800s, Jean-Baptiste Pierre Antoine De
Monet chevalier De Lamarck gave the theory of use
and disuse, also called the inheritance of acquired
characters or soft inheritance (De Monet, 1914). The
roots of Lamarckism have taken the shape of what we
know today as Epigenetics. The concept and nomen-
clature of Epigenetics was given by Conrad Wadding-
ton around the 1940s, defined as the effect of both
heritable and non-heritable changes that alter the gene
expression, without altering the nucleotide sequence
(Waddington, 1942). During 1838–1839, the “unified
cell theory” by German botanist, Mathias Schleiden
and German physiologist, Theodor Schwann sur-
faced, which narrowed down the idea of evolution to
the cellular level. They concluded this theory in two
tenets viz., firstly, organisms are made up of a large
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number of cells and secondly, cells form the basic
structural, functional, and fundamental unit of life
(Schwann, 1847; Maton, 1994). Rudolf Virchow,
known as the father of modern pathology, added a
third tenet to the series, which says, every new cell
arises from previously existing cells i.e., omnis cellula e
cellula (Virchow, 1860). The third tenet gave inkling
about the replication of cells and genetic material.

Around the late 1850s, Charles Darwin and Alfred
Wallace jointly came up with the idea of evolution by
means of natural selection, which form the basis of
modern selection theories and breeding methods
(Wallace, 1855; Darwin, 1859). Fleeming Jenkin gave
the theory of blending inheritance, causing the con-
vergence of phenotypes to the population (Jenkin,
1867). The theory was vernacularly called the “blood
theory of heredity”. C. Darwin also postulated the
theory of pangenesis, where he assumed that each
organ of the body drops tiny particles called “gem-
mules” or “pangenes” (Darwin, 1868). Supposedly,
these pangenes were microscopic particles that con-
tained information about the characteristics of their
parent cell, eventually forming an embryo. His con-
cept was the-then modern update of the Hippocratic
bricks-and-mortar theory. Nearly two decades later,
pangenes were renamed as genes by Johannnsen.
Hugo De Vries, while observing variations among eve-
ning primrose (Oenothera lamarckiana) growing in an
abandoned potato field, discovered mutations.
H. De Vries in 1886, tried to answer the arrival of the
fittest, evoked by natural selection theory. In the next
section, we shall be dealing with intracellular elements
to look into the theories of life, in finer detail (De
Vries, 1889).

2. RESURRECTION

G.J. Mendel’s work remained in backdrop, since
biologists of 1865 were less prepared to understand his
insights (Dobzhansky, 1965). Between 1866 and the
beginning of the 20th century, two milestones along
the way of biology that had a significant bearing on the
acceptance of Mendel’s after work, were surpassed.
Firstly, the discovery of chromosomes and their
movements during cell division by Walther Flemming
in 1882. These “colored bodies” were first reported in
the early 1840s by Karl Wilhelm von Nageli in plants
and Eduard Van Beneden in animals, although the
actual word “chromosome” was coined several
decades later, in 1888 by Heinrich W. Gottfried von
Waldeyer-Hartz. This led to observations that are
almost intuitively evident to us today as: (1) chromo-
somes duplicate during cell division; (2) each daughter
cell receives the same number of chromosomes; (3)
gametes contain half the number of chromosomes as
an adult cell; (4) fertilization involves the fusion of the
nuclei of sperm and egg; (5) the resulting zygote has
the full chromosome complement (Paweletz, 2001).
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Secondly, biometricians started using mathematics
in biological research, for drawing meaningful insights
from field data; this can be greatly accredited to Fran-
cis Galton for his conception of variance, standard
deviation, correlation, regression, and eugenics.
Eugenics influenced both the setting of objectives and
methods in human genetics. He was also the first to
analyze the relative importance of genetics and envi-
ronment in aetiology, using twin data (Galton, 1883),
and to introduce fingerprint analysis, the most valu-
able tool in forensic studies.

From 1892 onwards, H. De Vries started hybridiz-
ing many closely related species that differed from one
another by only one or a few traits, for instance, the
blue and white f lowers of Veronica longifolia and pur-
ple and white f lowers of Aster tripolium. He interpreted
his results in the framework of intracellular pangene-
sis, where he used self-coined terminologies viz., pan-
genes, central hybrids, and old types, analogous to
Mendel’s terms—factors, heterozygous, and homozy-
gous organisms, respectively (De Vries, 1889). Before
publishing, H. De Vries accidentally came across the
original paper of G. Mendel published in 1866, and
thereby cited the Mendelian F2 genotypic ratio of
1 : 2 : 1, which was in concordance with his own work
(Allen, 1969). This publication presumably triggered
both Carl Correns and Erich Tschermak von Seysen-
egg to read G.J. Mendel’s work and prioritize its
importance. E. Tschermak published the first manu-
script with the full knowledge of G. Mendel’s paper
(Tschermak, 1900). E. Tschermak, whose grandfa-
ther, the famous botanist, Eduard Fenzl taught botany
to G. Mendel, conducted hybridization of plants to
improve crop yield and C. Correns while experiment-
ing hybridization in hawkweed, arrived at the typical
Mendelian ratio of 3 : 1 and 9 : 3 : 3 : 1 for single traits
and two traits in F2 generation, respectively (Correns,
1900, 1950), also cited G.J. Mendel in their publica-
tions. Some of C. Correns’ unpublished work and
most of his lab books were destroyed in the Berlin
bombings of 1945, during the Second World War.
Thus, these three musketeers, 16 years after his death,
were rediscovered independently, cited, and attributed
the priority of discovery solely to Mendel.

3. THE ROOTS
G.J. Mendel, known as the “father of genetics”,

was an Austrian monk. Based on the transmission of
traits in hybridization experiments, he concluded that
particles/factors determining the characters of an
individual are inherited intact across the generations.
From 1851 to 1853, he studied natural history at the
University of Vienna under the guidance of Franz
Unger, a well-known botanist, and cytologist at that
time (Blume, 2022). G. Mendel during 1856–1868
conducted his study on 2 ha of land and analyzed
7 contrasting traits in over 28000 plants of garden pea
(Pisum sativum) and concluded the results as follows:
(a) He called agents responsible for traits as “factors”
or “units”, (b) Factors occur in pairs (factors now
called as genes), (c) Each parent passes only one factor
to offspring, (d) A trait not expressed in F1, can reap-
pear in F2 and (e) Factor does not change in hybrids,
it remains the same (Sutton, 1903; Boveri, 1904). He
extended his hybridization experiments to at least
twenty plant genera in addition to garden peas. The
letters he wrote to C. Nägeli indicate that he published
only a few of the results of the additional experiments
(Fairbanks, 2022; Blume, 2022; Nogler, 2006;
Vecerek, 1965). By conducting his research step by
step, G. Mendel rose step by step to the top of his the-
ory—predicting the principles of inheritance of
genetic material, he deciphered the black box which
was later distilled by C. Correns as laws of inheritance
(Correns, 1900).

3.1. Law of Segregation or the Law
of Purity of Gametes

Alleles of a gene segregate during gamete formation
so that each gamete contains only one allele and has
not been contaminated. This law was a result of mono-
hybrid crosses and is universally accepted.

Phenotypic ratio—3 : 1;
Genotypic ratio—1 : 2 : 1.

3.2. Law of Independent Assortment
Different alleles of two genes assort independently

without interacting with each other and descend to
gametes in the same arrangements as in parents. This
law was a result of dihybrid crosses. Linkage is an
exception to this law as recombinant-type gametes can
also be observed in a pool of gametes formed during
gametogenesis.

Phenotypic ratio—9 : 3 : 3 : 1;
Genotypic ratio—1 : 2 : 1 : 2 : 4 : 2 :1 : 2 :1.
The essence of G.J. Mendel’s postulates is that

behind the phenotypic ratio of 3 : 1 lies a more funda-
mental genotypic ratio of 1 : 2 : 1 and that the two
alleles of the same gene do not affect each other, they
cannot modify each other or merge, remaining,
“uncontaminated” (Blume, 2022). Thus, phenotypi-
cally expressed characters are determined by the com-
bination of discrete particles received from the two
parents, transmitted in an unbroken manner, known
as the “particulate theory of inheritance”, was the first
theory to oppose the “blending theory of inheritance”
put forward by concurring Hippocratic to Darwinian
via Aristotelian ideologies. G.J. Mendel in 1865 pre-
sented his results to the Society for the Study of the
Natural Sciences in Brünn as “Experiments in plant
hybridization” (Mendel, 1865). Mendel himself sent
copies of his work to well-known botanical researchers
but could not get ample outreach (Blume, 2022).
Some historians suggest that Mendel sent an offprint
CYTOLOGY AND GENETICS  Vol. 57  No. 5  2023
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to C. Darwin, but its pages were uncut perhaps due to
lingual barriers. However, Focke’s work citing Mendel
is found in C. Darwin’s archive but no copy of Men-
del’s work is found (Berry and Browne, 2022). Per-
haps the scientific community at that time was far
more influenced by C. Darwin’s theory of evolution
and focussed more in explaining continuously varying
traits insisting that “Natura non facit saltum”, as
opposed to the never-seen-before concept of discrete
inheritance as suggested by G. Mendel (Howard,
2009). G. Mendel accounted for similarities among
organisms through heredity, while C. Darwin
accounted for the differences in the form of evolution
(Dobzhansky, 1965). G. Mendel focussed on salta-
tions while C. Darwin was convinced by the idea of
gradual changes. Moreover, at that point in time, no
physical elements of the cell, like chromosomes, were
known, with which G. Mendel’s factors could be asso-
ciated. Also, the mathematical ratios used by G. Men-
del, were unfamiliar to the-then evolutionary biolo-
gists (East, 1923). Botanists during those times such as
C. Darwin, worked by observation, rather than by
experiment (Ayala, 2009).

Nevertheless, on political grounds, the notion of
him being a monk or his idea of integrating statistics
into biology was quite ahead of time for his contempo-
raries (Huminiecki, 2020). Moreover, G. Mendel was
not well known among the scientific communities. In
contrast, C. Darwin was associated with the presti-
gious Royal Society of London. Lastly, C. Darwin’s
focus on pigeon breeding at that time was hailed by
pigeon fanciers in the Victorian era (Secord, 1981).
Mendelian work accomplished completion of Dar-
winian theory, although after their deaths (Berry and
Browne, 2022); when R.A. Fisher constructed mathe-
matical bridge that an underlying discontinuous varia-
tion at many loci along with environmental effects can
result in superficially continuous distribution (Fisher,
1919). Thus, his path to achieve this title was not easy,
and traveled the course of the black age, until it was
rediscovered by the aforementioned researchers.

4. MENDEL−FISHER CONTROVERSY

It has been said that some of the statisticians (Wel-
don, 1902; Fisher, 1936) during the transition phase to
the 19th century argued that G. Mendel’s results were
not statistically significant, as the probability of getting
a typical 9 : 3 : 3 :1 phenotypic ratio in dihybrid cross
was 1 in every 15000 experiments! (Weiling, 1986).
R. Fisher speculated that an assistant of G. Mendel
must have falsified a portion of the data to agree to the
approximate expectations, dismissing them as too
good to be true and finally pleaded to end the debate,
giving due honor to Mendel for his contribution
(Franklin et al., 2008; Weeden, 2016).
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5. EXCEPTIONS OF MENDEL’S LAWS
Specifically, G. Mendel’s laws dictate that a locus

must have two allelic variants whose effects on cate-
gorical traits must be discrete and countable, and they
must show complete dominance on each other. How-
ever, these strict conditions are rarely met in real sys-
tems (Hou et al., 2016). The term “non-Mendelian
inheritance” is used to describe the violation of Men-
del’s laws. It is also important to note that, from a
broad perspective, nearly all inheritance systems dis-
play non-Mendelian inheritance (at least to some
degree) (Mittelsten Scheid, 2022), hence practically
following quasi-Mendelian inheritance. Discoveries
like gene drives are solid examples of exceptions to
quasi-Mendelian inheritance. Gene drives based on
gene editing biology, CRISPR (Clustered Regularly
interspaced short palindromic repeats) (Noble et al.,
2017; Searle and Villena, 2022) in particular, are self-
propagating mechanisms by which desired genetic
variants can be spread through a population faster than
traditional Mendelian inheritance (Rode et al., 2019).
We have been taught in popular books that limitations
to Mendel’s laws are incomplete dominance, linkage,
and epistasis. But some discrepancies were noted
while reviewing the literature. In hybridization experi-
ments in ornamental plants in past years, Mendel
already produced evidence in forms intermediate to
the parents, as an aspect of incomplete dominance
(Abbott and Fairbanks, 2016). In the interspecific
cross between P. nanus L. (with white f lowers) and
P. multifloris W. (with coloured f lowers), Mendel
noted partial dominance for f lower colour and
reduced fertility in the F1 hybrids thereby identifying
interaction between characters, which is now known
as epistasis today (Abbott and Fairbanks, 2016).

6. THE SEVEN MARKERS THAT MADE 
MENDEL LUCKY

What made Mendel successful can be traced to the
type of characters he studied, i.e., qualitative traits
which are controlled by one or in some cases few
genes. Researchers from past centuries like Walter
Frank Raphael Weldon to present century like Greg-
ory Radick questioned Mendel’s work due to the qual-
itative nature of traits (Weldon, 1902; Radick, 2015;
2022). Of note, 12 yr is a long time dedicated to an
experiment, with no priori known and no posteriori
expected, yet G. Mendel continued his series of plant
hybridization experiments against all odds. This was
possible because garden peas are easy to grow and
cross-pollinate, have clear and distinct traits, and have
a shorter generation interval of about 2 months (Ellis
et al., 2011). However, pea has not been an easy model
species for molecular genetics research as compared to
smaller and hence more prioritized Arabidopsis
genomes (Sussmilch et al., 2022). Interestingly, the
characters, indirectly the genes studied by G. Mendel
in garden peas, are located in different chromosomes
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except for seed color and flower color genes which are
located in 1st chromosome and flower position and
stem length on the 4th chromosome but not in near
sight to inherit as haplotypes (Novitski, 1978). The
release of pea genome assembly helped to characterize
the loci which contributed to the traits studied by
G. Mendel (Kreplak et al., 2019). These include locus
A for seed coat and flower color, locus LE for tall ver-
sus short, locus I for yellow versus green cotyledons, R
locus for round versus wrinkled seeds, locus GP for
green versus yellow pod, V/P locus for inflated versus
constricted pod and FA/FAS locus for axial versus ter-
minal f lowers (Ellis et al., 2011; Reid and Ross, 2011;
Smykal, 2014; Sussmilch et al., 2022).

7. GENESIS OF GENETICS
The high points in the history of Genetics after the

resurfacing of G. Mendel’s work had to be surveyed, as
this was the time when his work began to be discussed
and cited. There were only two citations of his work
until the 1900s (MacRoberts, 1984; Berger, 2022) viz.,
Focke (1881) and Bailey (1892). The priors in popula-
tion genetics were characterized as “beanbag genetics”
as termed by Ernst Mayr in 1959 because the early
Mendelians were using beans of various colors in bags
to study Mendelian inheritance (Mayr, 1959). While it
is obvious that genetics can be classified into different
branches, viz., classical, cyto-, molecular, population,
quantitative, etc., it is difficult to deal with their ori-
gins separately as different researchers contributed to
different branches at different times and contributions
span around contemporary researchers. For the sake
of simplicity, they are briefly reviewed in two main
sections as the classical-to-molecular group and the
population-quantitative-selection theories group. The
third section deals with applied genetics which mainly
includes application of discoveries mentioned in sec-
tions 1 and 2 in various fields.

7.1. Molecular and Allied Genetics

Although G. Mendel’s work was rediscovered by
H. De Vries, C. Correns, and E. Tschermak; it was
popularized by William Bateson, an English Biologist.
Perhaps he would have been renowned as the first re-
discoverer of Mendelian principles unless his study
material were plants. William Bateson was keenly
interested in embryology and investigated the devel-
opment of Balanoglossus. In 1906, W. Bateson, now
known as “the father of modern Genetics” now,
coined the term “genetics” for the newly developing
branch of science dealing with the science of heredity
at the 3rd Conference on hybridization. W. Bateson is
also credited with the nomenclature of terms like
homozygote, heterozygote, and allelomorph (later
known as Allele), “zygote”, “homozygote”, “hetero-
zygote”, F1 and F2. W. Bateson appears to be the first
evolutionary biologist as he agrees that biological vari-
ation exists both continuously (Darwinism), for some
characters, and discontinuously (Mendelism) for oth-
ers, naming the two types as “meristic” and “substan-
tive”, respectively. Many consider him the real father
of Genetics after Mendel’s original discoveries, as he
was the pioneer to translate G. Mendel’s paper in
English for a better outreach and nevertheless, also the
first to show the extension of principles of Genetics to
animals, for example, through his crossing experi-
ments in domestic fowl. W. Bateson’s book was trans-
lated into German in 1914 and helped to bridge the gap
between Mendel’s work and works on chromosomes
during that time (Berger, 2022). In his honor,
W. Bateson’s chair was titled as the chair of Biology
(Gayon, 2016). He, along with C. Correns and Regi-
nald C. Punnett, came up with the principle of
“genetic linkage”, the tendency of several factors to be
associated together on chromosomes in 1906 (Pie-
gorsch, 1986). However, he failed to explain this phe-
nomenon precisely (Bateson and Mendel, 1902).
Until then, the study of Mendelian genetics was con-
centrated in England, popularized and dominated by
W. Bateson and R. Punnett.

7.1.1. Narrating the role of chromosome. Walter
Sutton and Theodor Boveri in “Chromosomal Theory
of Inheritance” explained the parallel relationship
between the behavior of chromosomes and the Men-
delian factors transmitting across the generations
during meiosis (Sutton, 1903). The race was then to
convert chromosomal theory into a fact, beginning
with Thomas Hunt Morgan. Starting around the year
1910, the center of scientific contributions to the field
of genetics started shifting from Europe to the United
States. This needs a special mention of the lab of
T. Morgan at Columbia University, New York, USA,
which is also known as “the fruit f ly room”, a small
room of 23' × 16', where extensive experimentation on
Drosophila melanogaster, the fruit f ly, was carried out
(Brah, 2013). In 1910, T. Morgan, who was skeptical
about the chromosomal theory of inheritance, which
was incidentally proposed by W. Sutton, a PhD stu-
dent working in the other laboratory in the same
department studied, worked on the sex-linked inheri-
tance of white eyes in Drosophila, for which he was
awarded Nobel Prize later in 1933. He insisted that
genes are located linearly on the chromosomes and
some genes are located and transmitted closely over
and above the average, also called “linked genes”.
T. Morgan noticed that “linked” traits would separate
occasionally, while other traits on the same chromo-
some were not, which may be due to recombination
between the paired chromosomes to exchange infor-
mation, also known as crossing over (Morgan, 1911).
Today, we know that recombination occurs during the
prophase of meiosis 1, and leads to different combina-
tions of alleles in the gametes. Thus, T. Morgan ruled
out the fallacies related to the chromosomal theory of
Inheritance and gave wings to the concept of “gene” to
fly which established the connection among diverging
CYTOLOGY AND GENETICS  Vol. 57  No. 5  2023
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Fig. 1. Past, present, and way forward vis-a-vis mendelian genetics. The pictures of scientists were assembled from the public
domain for this illustration.
branches of genetics (molecular genetics, cytogenet-
ics, biometrical genetics) at the beginning itself. Gene
term was coined by Wilhelm Johannsen in 1909. Later,
W. Johannsen, who criticized Mendelism as well as
Darwinism, proposed yet another theory, “the geno-
type theory”, which distinguished genotype and phe-
notype and evolved as pure line theory of heredity
(Johannsen, 1911).

Branching out of different branches of genetics can
be affiliated with interactions between researchers
(Fig. 2). Since this topic is out of the scope of this
review article, readers are suggested to read “A Cen-
tury of Geneticists: Mutation to Medicine” book
(Dronamraju, 2018). Calvin Blackman Bridges gave
CYTOLOGY AND GENETICS  Vol. 57  No. 5  2023

Fig. 2. Roots and branches of genetics.
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the experimental proof for the chromosomal theory of
inheritance through sex chromosomes (Bridges,
1914), meanwhile, Alfred H. Sturtevant, based on
crossing over data, created the world’s first chromo-
some linkage map, showing the relative location and
distancing of the genes (Sturtevant, 1913). Hermann
J. Muller worked on position effects, gene evolution
and chromosomal aberrations (Morgan et al., 1925).
He pioneered radiation genetics through his classical
gene mapping experiments and received the Nobel
Prize for physiology, the very first Nobel for genetic
discovery. T. Morgan’s model of housing all the Dro-
sophila and the Drosophila workers in the same room
was replicated by his student H. Muller at the Univer-
sity of Texas in a still larger room (72' × 24'), which
later came to be known as the second fly room (Hales
et al., 2015). The fruit f ly, D. melanogaster, also known
as vinegar f ly, was the candidate of choice as they are
highly prolific, have a short life cycle of 12 days, show
a large number of prolific traits, and have large-sized
chromosomes that are easy to study. 1952 onwards,
Hughes, Hsu, and co-workers paved the way for mod-
ern cytogenetics. They described the procedure to
swell cells to make preparations whereby chromo-
somes could be separated and accurately counted. The
diploid count for human chromosomes was consid-
ered as 48 until 1956 when it was established as 46 by
their procedure (Hsu, 1952; Gartler, 2010; Tijo and
Levan, 1956).

7.1.2. Robustness to mutation theory. H. Muller
(1890–1967) was the founder of radiation genetics and
one of the early geneticists who exerted an expansive
impact on development of genetics in the first half of
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the twentieth century. One of H. Muller’s classic
works on truncated and beaded wings in Drosophila
demonstrated the complex relationship between the
gene and environmental modifiers (Altenburg and
Muller, 1920). This served as the first experimental
evidence for pure line theory of heredity, put forward
by W. Johannsen in 1911 which differentiated genotype
and phenotype and so the terms were coined. In 1926,
H. Muller conducted experiments with varied doses
of X-rays, using ClB stock (C-Crossover suppressor;
l-recessive lethal allele; B-Partially dominant Barr eye
phenotype), which he had found earlier in 1919 and
successfully transmuted the gene by artificial means
(Muller, 1927), which fetched him the Nobel Prize in
Physiology or Medicine in 1946. H. Muller also
restricted the term “mutation” to a change in the indi-
vidual gene and proved more than a decade ignored
English physician Archibald Garrod’s concept of
mutation linking to biochemical variants resulting in
diseases, which was the theme in his book “Inborn
errors of metabolism” in 1909. Mutation concept is
often interpreted as a link between Darwinism and
Mendelism (Dobzhansky, 1965). The atomic bombing
of Hiroshima and Nagasaki in 1945 was the first real-
world example of magnified risks by radiation that
Muller had observed earlier. A. Garrod at the begin-
ning of the 20th century, was the first to link the con-
nection between genes and metabolism in the body.
A. Garrod realized that his patients who had meta-
bolic diseases like alkaptonuria were related and sug-
gested genes were related to enzymes (Garrod, 1902).
Regrettably, A. Garrod’s idea, like G. Mendel’s work
went unnoticed in his lifetime. Later, two researchers,
George Beadle and Edward Tatum, conducted a series
of novel experiments in the 1940s that enabled A. Gar-
rod’s work to be rediscovered and appreciated.
G. Beadle and E. Tatum worked with a simple organ-
ism that can be grown on minimal media (one sugar,
salt and biotin) i.e., common bread mold, or Neuros-
pora crassa, and showed a clear connection between
genes and metabolic enzymes. This has been called the
one gene-one enzyme hypothesis (Beadle and Tau-
tum, 1941). This hypothesis later underwent certain
important updates: (1) Some genes encode proteins
that are not enzymes because enzymes are just one
category of protein and there are many proteins in
cells, which are also encoded by genes. (2) Some genes
encode a subunit of a protein, not the whole protein.
(3) Some genes don’t encode polypeptides, instead,
they code catalytic RNAs (Fedor and Williamson,
2005). Although the “one gene-one enzyme” concept
is not complete, its core idea—that a gene specifies a
particular protein in a one-to-one relationship -
remains helpful in its own way.

7.1.3. DNA or RNA?. Frederick Griffith discov-
ered the ‘transforming principle’ in Diplococcus pneu-
moniae bacteria that inspired Oswald Theodore Avery,
Colin M. MacLeod, and Maclyn McCarty to prove
DNA as the genetic material (Griffith, 1928). In their
research with pneumococci using purified proteins
and nucleic acids (DNA and RNA), they concluded,
as follows: “the data obtained by chemical, enzymatic,
and serological analyses together with the results of
preliminary studies by electrophoresis, ultracentrifu-
gation, and ultraviolet spectroscopy indicate that,
within the limits of the methods, the active fraction
contains no demonstrable protein, unbound lipid, or
serologically reactive polysaccharide and consists
principally, if not solely, of a highly polymerized, vis-
cous form of deoxyribonucleic acid” (Avery et al.,
1944). Subsequently, Alfred Hershey and Martha
Chase demonstrated that the genetic material of bac-
teriophage T2 is DNA (Hershey and Chase, 1952)
while in 1957, Heinz Fraenkel-Conrat and Bea Singer
demonstrated in tobacco mosaic virus that the genetic
information can also be stored in RNA (Fraenkel-
Conrat and Singer, 1999). In the same period, the
work of Mahlon Bush Hoagland confirmed that a
fraction of cellular RNA was covalently bound to
amino acids, hinting that RNA can also be involved in
chemical reactions (Hoagland et al., 1958). Alexander
Rich in 1962, assumed a primitive RNA world, where
RNA served as the genetic material and catalyzed
chemical reactions. Walter Gilbert in 1986 coined the
term “RNA world” for the same (Gilbert, 1986).
Ribosomes made up of both RNA and proteins, were
believed to be remnants of this RNA world.

7.1.4. Genomes are a dynamic entity! The DNA in
all living beings basically has three functions, the
genotypic function viz., replication, phenotypic func-
tion (transcription and translation), and evolutionary
function (mutation and recombination). The fidelity
of genetic material inherited by the next generation is
checked at many levels, including the ultimate level of
repairs. It is interesting to note that recombination was
discovered prior to DNA structure discovery. Using
multiple genetic crosses, Barbara McClintock and
Harriet Creighton tracked an unusual knob structure
on certain maize chromosomes in 1931, establishing
the role of recombination in meiosis and the inheri-
tance of chromosomes (Creighton and McClintock,
1931). Later, B. McClintock discovered transposable
elements, also known as “jumping genes”, while
observing the behaviour of kernel colour alleles in
maize (McClintock, 1950). This discovery was revolu-
tionary as it suggested that an organism’s genome is
not static, but rather a dynamic entity. This also led to
the discovery that certain jumping genes are incorpo-
rated from viruses, having a role in the evolutionary
time scale. This concept of transposons initially
received criticism from the scientific community,
however, as their role became widely appreciated,
B. McClintock was awarded the Nobel Prize in 1983
in recognition of many of her contributions to the field
of genetics including “jumping genes”.

Recombination also plays an important role in
DNA repair and replication in both prokaryotes and
eukaryotes. Recombination also occurs in prokaryotic
CYTOLOGY AND GENETICS  Vol. 57  No. 5  2023
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cells, although bacteria do not undergo meiosis, they
do engage in a type of sexual reproduction called con-
jugation, was first described by Joshua Lederberg and
Edward L.e Tatum, as a phenomenon involving the
exchange of markers between closely related strains of
Escherichia coli (Lederberg and Tatum, 1946) for
which J. Lederberg was awarded the Nobel in 1958.
Norton Zinder and J. Lederberg described the other
mode of genetic material transfer between bacteria
i.e., transduction (Zinder and Lederberg, 1952).

7.1.5. Dissecting the structure of nucleic acids.
Nucleic acids were first discovered in the 1860s by
Friedrich Mieshner. American biochemist Phoebus
Levene, discovered the order of the components of a
single nucleotide as phosphate-sugar-base, then dis-
covered the ribose and deoxyribose as carbohydrate
components of RNA and DNA, respectively. Phoebus
Levene’s “nucleotide” model described DNA as a
tetranucleotide structure, wherein the nucleotides are
linked in the same order always. He was also the first
to recognize two basic categories of nitrogenous bases
i.e., two purines, each with two fused rings (adenine
[A] and guanine [G]) and two pyrimidines each with
single ring (cytosine [C], thymine [T], and uracil [U])
(Levene, 1919). Then, Erwin Chargaff, an Austrian
biochemist, born in Chernivtsi (Ukraine) expanded P.
Levene’s work, unravelling ancillary information
about the structure of DNA (Volkov and Rudenko,
2016). Influenced by Avery et al. (1944), he concluded
that composition of DNA varies among the species
and amount of adenine and guanine nucleotides
approximates the amount of thymine and cytosine
nucleotides (Chargaff, 1950) based on analysis of
DNA molecules from different species through his
newly developed paper chromatography technique.
Many generations later, works of P. Levene and
E. Chargaff, followed by X-ray crystallography work
of Rosalind Franklin and Maurine Wilkins, paved the
way for three-dimensional double helix structure.
American biologist James Watson and English physi-
cist Francis Crick in 1953 worked out the three-
dimensional, double-helical model for the structure of
B-DNA, the most common conformation in most liv-
ing cells. There are also two other conformations dis-
covered viz., A-DNA, a shorter and wider form usually
in dehydrated samples, and Z-DNA which is left-
handed conformation that exists in response to certain
biological compounds and confers immunity to the
host against some viral infections (Rich and Zhang,
2003). Later in 1962, J. Watson, F. Crick and
M. Wilkins were awarded the Nobel Prize for their
contributions to the elucidation of 3D-DNA struc-
ture. In 1955, Seymour Benzer published his
first paper on the fine structure of the RII gene locus
of phage T4, a virus of the common colon bacteria,
Escherichia coli. By examining a large number of prog-
eny viruses, S. Benzer was able to detect very rare
genetic events. He redefined genes in molecular terms
in view of function, recombination, and mutation,
CYTOLOGY AND GENETICS  Vol. 57  No. 5  2023
fundamentally called exon, recon, and muton, respec-
tively (Benzer, 1959). The further advances in the field
of molecular- and cyto- genetics and their applications
are tabulated keeping in view the length of review
(Table 1).

7.2. Population Genetics and Quantitative
Genetics go Hand in Hand

7.2.1. Neo-Darwinism. From the beginning of the
20th century, contradictions arose between the biome-
tricians and experimental geneticists as there was a
missing link between continuous variations of Biome-
tricians (Darwinians) and discrete inheritance of
Mendelian geneticists in explaining complex charac-
ter. Mendel’s results were in ratios while biometricians
presented results in terms of correlation and regres-
sion. The impeding gap between Darwinism and
Mendelism in understanding genetics, seems to have
been resolved by “Neo-Darwinism” or “Synthetic
Biology”. The concept was elaborated by R.A. Fisher,
Sewall Wright and John Burdon Sanderson Haldane
independently (Fisher, 1930a; Wright, 1931; Haldane,
1932). Neo-Darwinism was further extended by Dob-
zhansky (1937), Mayr (1942) and Simpson (1944).
R.A. Fisher laid the foundation stone of the amalga-
mation of Mendelian genetics with biometry and
pointed out the incompatibility of Mendelian inheri-
tance with quantitative variation (Fisher, 1919). He
proposed the concept of the “infinitesimal model”,
demonstrating that continuous variation amongst
phenotypic traits could be the result of a large to the
infinite number of discrete units (genes) and tried to
unite Darwinian ideas on natural selection with Men-
delian theory. R. Fisher explained that Mendelian
inheritance is responsible for conserving variation,
which makes natural selection a “force” of adaptive
evolution (Fisher, 1930a). Darwinism and Mendelism
thus proved to be complementary, indeed supple-
menting each other’s lacunae in explaining evolution
as a single concept. He also explained how the correla-
tions could be used to partition the variation into her-
itable and non-heritable fractions, in turn how the
heritable fraction could itself be broken down into fur-
ther fractions relatable to additive gene action, to
dominance, and to genic interaction with the help of
ANOVA (Fisher, 1919).

F. Galton had shown continuous variation to be
heritable. Udny Yule, among others, elucidated the
simultaneous action of many genes whose effects were
additive are responsible for the continuous variation.
R. Fisher’s book, The Genetical Theory of Natural
Selection (Fisher, 1930b), along with S. Wright’s
extensive paper “Evolution in Mendelian Population”
(Wright, 1931) and J.B.S. Haldane’s “The Causes of
Evolution” (Haldane, 1949) subsequently became
foundations of population genetics. S. Wright devised
a mathematical theory of evolution, showing how
allele frequencies and genotypes could respond to evo-
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lutionary forces such as natural selection, mutation,
and migration (Wright, 1932). S. Wright also probed
the effects of inbreeding and random genetic drift in
evolution (Wright, 1968). S. Wright made many con-
tributions in statistics, mammalian genetics, animal
breeding, population genetics, and the theory of evo-
lution. His legacy was such that in 1988 Science Cita-
tion Index listed some 500 articles referring to Wright’s
works (Dronamraju, 1990). Despite having no formal
academic qualifications in any field of science,
J.B.S. Haldane (1892–1964) made significant contri-
butions to the fields of physiology, genetics, biochem-
istry, statistics, biometry, cosmology, and philosophy
(Dronamraju, 2010). He developed a theoretical ver-
sion of population genetics, in the form of genetic
loads and the cost of natural selection (Haldane,
1957), infectious disease and selection, estimation of
human mutation rates, linkage, and human gene map-
ping, rates of evolution in units of “Darwin” (Hal-
dane, 1949), and the biochemistry of gene action, to
name a few. He introduced the terms “morgan” and
“centimorgan” as units of map distance; he invented
the idea of partial sex linkage. Recent advances in
genomics led to novel methods and software for quan-
tifying genetic diversity in addition to the conventional
diversity measures (Kanaka et al., 2023). These theo-
ries further led to the development of artificial selec-
tion and breeding strategies largely in agricultural and
allied sectors.

7.2.2. Neutral theory. The leading successor of this
great heritage, Moto Kimura in 1953 published his
first population genetics paper (which eventually
turned out very influential), describing a “stepping
stone” model for the structure of the population that
could explain more complex immigration patterns
than the “island model” of S. Wright. He introduced
“infinite alleles” and “stepwise mutation” models to
study genetic drift. By discovering the “quasi-linkage
equilibrium” phenomenon, he showed that a popula-
tion with loose linkage, produces just enough linkage
disequilibrium to cancel the epistatic variance, so it
can be eliminated in predictor equations, henceforth
response to selection could be better modeled by addi-
tive genetic variation (Kimura, 1954). His daring,
neutral theory of molecular evolution explains evolu-
tion at the molecular level. According to him most of
the evolutionary changes and variation within and
between species are not caused by natural selection
alone but along with genetic drift of neutral mutant
alleles. A neutral mutation is one that does not affect
an organism’s fitness (ability to survive and repro-
duce) (Kimura, 1983). However, the co-inheritance of
neutral mutants along with beneficial mutants is
known as a selective sweep, which leaves on the
genome distinctive patterns of reduced genetic diver-
sity, as relics of the selection process known as Selec-
tion signatures (Nielsen, 2005). Likewise, various
Genome wide association studies (GWAS) are rolling
to establish significant associations between genetic
markers (say, SNPs, CNVRs) and phenotypes. Phe-
nomics has risen to the levels of high throughput phe-
notyping, to increase the quality and quantity of phe-
notypic data. These advances in the quantitative
genetics field are making genomic selection a full-
fledged tool to improve agro-economic traits by bridg-
ing the gap between demand and supply of the same.

7.2.3. The way forward. G. Mendel’s work high-
lights the importance of going interdisciplinary over
being subject-centred, with a subtle mix of biology and
statistical science that yielded genetics. The subject of
bioinformatics is exemplary in this direction. Bioin-
formatics combines computer programming, big data
analysis and biological data in the form of nucleotides,
amino acids and corresponding annotations to these
sequences.

A genetic manipulation is the deliberate modifica-
tion of an animal’s genome, which codes for inherited
traits. These genetic interventions are needed for basic
fundamental research, bioreactors, xenotransplanta-
tion, vaccine safety and toxicity tests can be done with
better subject matter. Genetic gain can be accelerated
by Multiple-Ovulation Embryo Transfer (MOET),
Embryo sexing, In-vitro fertilization, cloning and
transgenesis. Besides these, Marker Assisted Selec-
tion/Breeding (MAS/MAB) and genomic
selection are being piloted in farm animals. Modern
studies deal with studies focusing on Oncogenes, anti-
body diversity, homeotic mutations, gene regulation
and r-DNA techniques. Genetic intervention in such
non-ventured fields holds immense hope. Novel
reverse genetics (RNA to DNA approaches) tools are
being optimized for functional studies such as
CRISPR/Cas9, Targeting-induced local lesions in
genomes (TILLING). CRISPR will no doubt revolu-
tionize all life forms by virtue of being able to make tar-
geted DNA sequence modifications rather than ran-
dom changes.

Consequently, genetic enhancement is expected in
the form of higher disease resistance, dietary benefits
like tolerance to lactose and gluten, and in improve-
ment of other traits of interest, such as designer babies.
Precision medicine configures tailored treatments
based on genetic testing, thus catering to genetic idio-
syncrasies. However, full-fledged usage of these tech-
niques also has elements of technical complexities,
high cost, ethical concerns and public acceptance. On
the same grounds, the CRISPR technique is banned
for clinical use due to ethical dilemmas and untoward
mishaps. Considering the pros and cons, the extant
efforts will cumulatively revamp the visions of preci-
sion nutrition envisioned by FAO and other organiza-
tions into an incredible reality.

8. CONCLUSIONS

The progress of a field is checked with the test of
time and the science of genetics was reinforced with
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contradictions and suggestions from different schools
of thought. In the genetic sense, Mendel is the primer
in the polymerization of Genetics, the subject which
has grown beyond the realms of leaps and bounds. As
a fitting tribute to Mendel on his 200th birthday, let us
loudly support evidence-based science and resist ide-
ology-based science, to which Mendel’s findings had
to succumb to for a span of not less than 34 years. As
American author Robert Heinlein said, “a generation
which ignores history has no past and no future”.
While writing this review, as we approached finalizing
the content, without realizing we had created a great
repository of original discoveries/inventions (in the
form of bibliography) in the field of genetics, enthusi-
astic students of genetics can access and read topics of
their choice to know the history in detail. Neverthe-
less, genetics has a long way to go.
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