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Abstract—Xanthopappus subacaulis (Asteraceae) is a medicinal plant endemic to the alpine meadows from the
middle east region of the Qinghai-Tibet Plateau in China. In this study, we sequenced and analyzed its whole chlo-
roplast (cp) genome using Next Generation Sequencing techniques, representing the first complete cp genome for
the genus Xanthopappus. Our results show that the cp genome of X. subacaulis contains 153297 base pairs (bp) with
a relatively high A + T content (62.28%) and has a standard quadripartite structure, where the large (LSC,
84142 bp) and small (SSC, 18769 bp) single copy regions are separated by two copies of inverted repeats (IRs,
25193 bp each). The cp genome encoded a total of 131 genes of which 87 are protein-coding genes, 36 are
tRNA genes and eight are rRNA genes. The majority (85) of these genes occur within the LSC region. When
comparing these results with the previously published cp genome of a related taxon from Asteraceae (genus
Arctium), both species share similar number and type of genes, and A + T content. In addition, a Maximum
Likelihood and Maximum Parsimony phylogenetic analyses based on 33 chloroplast genomes of Asteraceae
suggested that X. subacaulis forms an independent and well supported clade paraphyletic to all the other
members within tribes Carduinae, Carlininae and Centaureinae of Asteraceae.

Keywords: plastome assembly, Cirsium, Saussurea, Synurus, subfamily Carduoideae, tribe Carduinae, tribe
Centaureinae, tribe Cynareae, tribe Carlininae
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INTRODUCTION

The Qinghai-Tibet Plateau (QTP) is the largest,
highest and youngest plateau in the world, covering
2.5 million km2 and an average elevation of approxi-
mately 4000 m (Zheng, 1996). The QTP and its adja-
cent regions comprise a major hotspot for global bio-
diversity, supporting numerous endemic species (Wu,
1988; Mittermeier et al., 2005). This wide variety of
species has evolved in part due to the combination of
rapid and extensive uplifts of the QTP and the climatic
oscillations experienced in the region during the Pleis-

tocene, which have promoted allopatric speciation
(Wang et al., 2009a, 2009b; Jia et al., 2012). Xantho-
pappus subacaulis C. Winkl. (Asterales: Asteraceae) is
an alpine-endemic monotypic species mainly found in
dry hillsides, meadows and grasslands of northern and
western Sichuan, southeast Gansu, northwest Yun-
nan, and most parts of Qinghai at the QTP in China,
within an altitudinal range from 2400 to 4000 m (Liu
and Shi, 1987; Liu, 1996). This species is adapted to
resist the harsh environmental conditions from high
mountain elevations such as drought, cold, barren and
disease, and as reported in other lineages of Asteraceae
77
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such as Senecio, this tolerance could have been a key
factor to promote its reproductive isolation and subse-
quent speciation (Chapman et al., 2016).

In China, the entire plant of X. subacaulis is used in
the traditional herbal Tibetan medicine to treat a vari-
ety of conditions such as duodenal ulcers, food poi-
soning, gastric ulcer, hematemesis, idiopathic throm-
bocytopenic purpura, and uterine bleeding (Du,
2006). Previous research on the phytochemistry of this
species has been limited and include a phytochemical
report on the isolation of several thiophene acetylenes
(Tian et al., 2006), which are aromatic compounds
often found in the Asteraceae family (Bohlmann et al.,
1973; Harborne, 1984). Thiophene acetylenes have
been shown to have a broad diversity of pharmacolog-
ical activities that involves antifungal, antibacterial
(Young et al., 2006), antiviral (Rashid et al., 2001),
phototoxic and insecticidal agents (Tian et al., 2006). A
more recent study also reported thiophene acetylenes
and furanosesquiterpenes from X. subacaulis and con-
firmed its antibacterial activities (Zhang et al., 2014).

In spite of its medicinal value, we still lack compre-
hensive genomic resources for X. subacaulis. The only
sequences available to date for the genus are a handful
of barcoding regions used in previous phylogenetic
studies (Wang et al., 2007; Barres et al., 2013). There-
fore, we lack studies characterizing the structure of the
complete chloroplast (cp) genome of X. subacaulis,
and subsequent phylogenetic analyses based on it.

The typical complete chloroplast genome in plants has
separate transcription and transport systems, and a cova-
lently closed circular structure of about 120–160 kilobases
in length (Gray, 1989; Howe et al., 2003). Because the
structure and sequence composition of cp genomes are
highly conserved and have low evolution rates, they can
provide a rich source of genetic information.

In fact, cp genomes are considered to be the most
promising resource to obtain phylogenetically infor-
mative sites (e.g., barcoding regions) suitable for
molecular systematics, especially to elucidate relation-
ships among plant species (Odintsova and Yurina,
2006; Jansen et al., 2007). Up to May 31th, 2020, the
number of cp genomes of green plants uploaded to
NCBI was 4115 of which almost 3625 represent angio-
sperms. About half (57.5%) of these cp genomes com-
prise dicotyledons, and only 5.9% are from Astera-
ceae. As expected, the cp genome of a rare monotypic
genus such as Xanthopappus has not been sequenced
Table 1. Base composition per genomic region in the complet

Abbreviations are as follows: LSC: Large single copy; SSC: Small si

A, % C, % G, %
LSC 31.86 17.59 18.25
SSC 34.04 14.88 16.78
IRA 28.63 22.39 20.72
IRB 28.25 20.72 22.39
Total 31.00 18.56 19.15
yet. Therefore, having available a complete and well-
characterized cp genome for this taxon has theoretical
and practical significances because will reveal its
genomic structure, characteristics and functions, and
can serve as base to explore functional molecular
mechanisms, among others. In addition, the plastid
sequences of Xanthopappus will be valuable to conduct
phylogenetic analyses to help resolve its position
within Asteraceae and to prepare future studies on the
biogeography and evolution of the genus.

Thus, our objective here is to report the sequencing,
assembly, and annotation of the complete cp genome of
X. subacaulis using Next Generation Sequencing tech-
niques. This resource will not only help to promote future
studies on the genetic diversity on the species, but will
also serve as an important reference to develop genetic
markers to assess the genetic structure of populations and
to design effective conservation plans to mitigate any
overharvesting for its medicinal uses.

MATERIALS AND METHODS
Plant Material

We sampled fresh and healthy leaves from a single
representative individual of X. subacaulis present at
Xinghai County in Qinghai, China (35.88° N, 96.68° E;
alt. 3856 m). The reference specimen collected
(voucher no. X. Su 2019H7) was deposited at the Her-
barium of the Northwest Plateau Institute of Biology
(HNWP), Chinese Academy of Science, Xining, Qin-
ghai Province, China.

DNA Extraction, Sequencing, Assembly and Annotation
First, we extracted total genomic DNA from silica

gel-dried leaves using a modified 2× CTAB procedure
(Doyle and Doyle, 1990). We sheared the total DNA
to fragments between 400–500 bp using a Covaris
M220 Focused-ultrasonicator (Covaris, Woburn, MA,
USA). Then, we prepared the DNA library with a
TruSeqTM DNA Sample Prep Kit using dual-indexing
TruSeq HT, and performed a 150 bp paired-end
sequencing of the library using an Illumina HiSeq
4000 platform (HiSeq 3000/4000 SBS Kits).

The Illumina sequencer produced 7576864 raw
paired-end reads, which were quality-trimmed using
Trimmomatic (version 0.33) (Bolger et al., 2014).
From the clean reads, we assembled the complete cp
CYTOLOGY AND GENETICS  Vol. 56  No. 1  2022
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ngle copy; IRA: Inverted repeat A; IRB: Inverted repeat B.

T/U, % Length, bp GC, %
32.30 84142 35.84
34.31 18769 31.65
28.25 25193 43.11
28.63 25193 43.11
31.28 153297 37.72
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Fig. 1. Gene map of the chloroplast genome of Xanthopappus subacaulis (Asteraceae: tribe Cynareae). Gene colors indicate their
functional groups, and the inner circle shows their locations within the LSC, SSC, IRA and IRB regions of the plastome. The
dark-gray bars in the inner circle corresponds to G + C content, while the light-gray ones show the A + T content.
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genome using a de novo approach with Novoplasty
software (Dierckxsens et al., 2017) using the complete
cp genome sequence of Synurus deltoides (MN518847)
as reference. The resultant circular plastome was
annotated with GeSeq (Tillich et al., 2017) and
AGORA (Jung et al., 2018) using again the cp genome
of S. deltoides as reference. The results of both annota-
tions were compared and visually verified in Geneious
Prime (2019.1.3). Finally, the annotated circular cp
genome of X. subacaulis was drawn with OGDRAW
(Greiner et al., 2019) and submitted to GenBank
under the accession number MT643189.
CYTOLOGY AND GENETICS  Vol. 56  No. 1  2022
Phylogenetic Analysis
We estimated the phylogenetic position of X. subacau-

lis using a multiple sequence alignment of 33 complete
cp genomes from species within tribe Cynareae
(Asteraceae: subfamily Carduoideae) and using three
genera from other tribes of Asteraceae as outgroups
(Anaphalis sinica Hance [tribe Gnaphalieae], Aster
tataricus L. f. [tribe Astereae], and Cichorium intybus L.
[tribe Cichorieae]). All sequences were aligned with
the MAFFT (Katoh and Standley, 2013) plugin imple-
mented in Geneious (version 10.0.5). A Maximum-
Parsimony (MP) phylogenetic tree was constructed
with PAUP* (version 4.0b10) (Swofford, 2002), while
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Table 2. Functional categories for the genes present in the complete chloroplast genome of Xanthopappus subacaulis (Asteraceae)

a Genes containing introns; * Duplicated genes (genes present in the IR regions).

Gene Category Gene Group Gene Name

Genes for photosynthesis Subunits of photosystein I psaA, psaB, psaC, psaI, psaJ
Subunits of photosystein II psbA, psbB, psbC, psbD, psbE, psbF, psbH, 

psbI, psbJ, psbK, psbL, psbM, psbN, psbT, 
psbZ

Subunit of cytochrome b/f complex petA, petBa, petDa, petG, petL, petN
Subunits of ATP synthase atpA, atpB, atpE, atpFa, atpH, atpI
Subunits of NADH dehydrogenase ndhAa, ndhBa*, ndhC, ndhD, ndhE, ndhF, 

ndhG, ndhH, ndhI, ndhJ, ndhK
Large subunit of rubisco rbcL
ATP-dependent protease subunit p gene clpPa

Self-replication DNA dependent RNA polymerase rpoA, rpoB, rpoC1a, rpoC2
Small subunit of ribosome rps2, rps3, rps4, rps7*, rps8, rps11, rps12a*, 

rps14, rps15, rps16a, rps18, rps19
Large subunit of ribosome rpl2 a*, rpl14, rpl16 a, rpl20, rpl22, rpl23*, 

rpl32, rpl33, rpl36
Transfer RNA genes trnA-UGCa*, trnC-GCA, trnD-GUC,

trnE-UUCa*, trnF-GAA, trnG-GCC,
trnH-GUG, trnK-UUUa, trnL-CAA*,
trnL-UAAa, trnL-UAG, trnM-CAU*,
trnN-GUU*, trnP-UGG, trnQ-UUG,
trnR-ACG*, trnR-UCU, trnS-CGAa,
trnS-GCU, trnS-UGA*, trnT-CGU, trnT-UGU, 
trnV-GAC*, trnY-GUA, trnW-CCA,

Ribosomal RNA genes rrn4.5S*, rrn5S*, rrn16S∗, rrn23S*
Translation initiation factor infA

Other genes Maturase matK
Envelop membrane protein cemA
Subunit of  acetyl-CoA carboxylase accD
c-type cytochrome synthesis gene ccsA

Genes of unknown function Conserved open  reading frames ycf1*, ycf2*, ycf3a, ycf4, ycf15*
a Maximum-Likelihood (ML) phylogenetic analysis was
performed in RAxML (Stamatakis, 2014) under the
GTR-GAMMA model with 1000 bootstrap replicates.

RESULTS AND DISCUSSION

Our results of the assembled complete cp genome
of X. subacaulis indicate a length of 153297 bp (Fig. 1)
with an overall A + T content of 62.28% (Table 1).
Chloroplast genomes of other angiosperms have been
reported with consistent higher A + T content and
lower G + C content (Feng et al., 2020; Tian et al.,
2020). This situation has been also observed in the cp
genome of Arctium lappa L. (MH375874), a related
genus also from tribe Cynareae (Xing et al., 2019). The
overall structure of the cp genome is a standard quad-
ripartite comprising a large (LSC, 84142 bp) and a
small (SSC, 18769 bp) single copy regions separated
by two inverted repeat regions (IRA and IRB, 25193 bp
each) (Fig. 1). The A + T content values in the LSC,
SSC and IR regions were 64.16, 68.35 and 56.89%,
respectively. The A + T content value in the IR region
is lower than that both LSC and SSC region, which is
mainly caused by rRNA genes with four high G + C
content (Table 1).

The whole cp genome encoded a total of 131 genes
distributed into 87 protein-coding genes (PCGs),
36 transfer RNA (tRNA) genes, and eight ribosomal
RNA (rRNA) genes. Among them, the LSC region
encoded 85 genes of which 64 are PCGs and 21 are
tRNA genes. In SSC region, 12 PCGs and one tRNA
genes were present. Similarly, there are 17 genes
encoded in IR regions containing six PCGs, seven
tRNA genes and four rRNA genes (Fig. 1).
CYTOLOGY AND GENETICS  Vol. 56  No. 1  2022
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Fig. 2. Consensus cladogram from the combined Maximum Likelihood and Maximum Parsimony trees indicating the inferred
position of Xanthopappus subacaulis(Asteraceae).The ML and MP trees were constructed using 33 complete chloroplast genomes
from tribe Cynareae, and rooted using three outgroups from other tribes within Asteraceae (Anaphalis, Aster, and Cichorium).
Bootstrap support values from the ML and MP analyses are shown above branches (ML/MP). Stars (“w”) represents nodes with
100% bootstrap support, while dashes (“–”) represent nodes supported by bootstrap values of less than 80%.
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Among the 131 encoded genes, 98 were found in
the single copy region, whereas four protein-coding
genes (ndhB, rpl2, rpl23, rps7), seven tRNA genes
(trnA-UGC, trnE-UUC, trnL-CAA, trnM-CAU,
trnN-GUU, trnR-ACG, trnV-GAC), four rRNA genes
(rrn4.5S, rrn5S, rrn16S, rrn23S) and two unknown
functional genes (ycf2, ycf15) were duplicated within
the IRs (Fig. 1). In addition, the cp genome of X. sub-
acaulis can be divided into four categories, depending
on gene functions: (1) 66 genes related with expres-
sion; (2) 45 genes for photosynthesis; (3) four genes
for open reading frame and other protein coding activ-
ities; and (4) five genes of unknown function (Table 2).
Moreover, the genes related with expression can be
further divided into six sub-categories such as tRNA
genes, translation initiation factor, etc., while those for
photosynthesis can be catalogued into seven sub-cate-
gories (Table 2).

The MP analysis identified 927195 trees with 1162
steps, a consistency index (CI) of 0.96, and a retention
index (RI) of 0.98. The strict MP consensus tree (Fig. 2)
was generally congruent with the ML tree (–lnL =
CYTOLOGY AND GENETICS  Vol. 56  No. 1  2022
4536.1006 for the best model, GTR + G + I) (Fig. 2).
The resulting phylogenetic tree revealed that all spe-
cies of Cynareae were clustered into a well-supported
(BP = 100%) monophyletic clade comprising three sub-
clades with a high bootstrap value (BP = 99–100%).

Clade I consisted of 27 taxa from subtribes Cardu-
inae (genera Arctium, Cynara, Cirsium, Saussurea and
Silybum) and Centaureinae (genera Carthamus, Syn-
urus and Centaurea); Clade II only contains the
monotypic genus Xanthopappus; and Clade III com-
prise two species from genus Atractylodes. Interest-
ingly, Clade II with its sole representative, X. subacau-
lis, is placed in a basal position to subtribes Cardun-
inae and Centaureinae (i.e., Clade I), bringing a
possible answer to the long-raised question on the
identity of the sister lineage to these subtribes (Fig. 2)
(Häffner and Hellwig, 1999).

The phylogenetic position of the genus Xanthopap-
pus has important repercussions as seems to be basal to
the lineage of thistles, which are ecologically and eco-
nomically important herbs. Therefore, Xanthopappus
can be used as a suitable outgroup in phylogenetic
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studies of thistles. This illustrates the potential of using
cp genomes to infer phylogenies, and provide an
important reference for future studies on the systemat-
ics and evolution on the hyper-diverse Asteraceae
family. Future studies adding more taxa are essential
to confirm the results we report here, as not all genera
from tribe Cynareae and related groups were included
in this phylogeny.

This first whole cp genome from Xanthopappus not
only enriches the cp genomic database of angiosperms
and Asteraceae, but also provides a framework for the
comprehensive evaluation of germplasm resources of
Cynareae aimed to deepens our understanding on the
genetic diversity, species delimitation, biogeographi-
cal history, conservation genetics, and medicinal eval-
uation of X. subacaulis and other alpine herbs endemic
to the Qinghai-Tibet Plateau.
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