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Abstract—Results of classical and structural bioinformatical research allow to predict casein kinase 2 depen-
dent phosphorylation of conservative residues of Ser94 and Ser419 in Trypanosoma and Arabidopsis α-tubu-
lin. Location of these residues in the region of internal contact of α-/β-tubulin heterodimer has been demon-
strated. It is hypothesized that phosphorylation of Ser94 can affect dimerization of α-/β-tubulin in Trypano-
soma and Arabidopsis. Most likely, potential phosphorylation of Ser419 does not have a direct effect on
microtubule structure but is related to interaction with associated proteins, in particular with kinesins.
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INTRODUCTION
Casein kinase 2 (CK2) is a ubiquitous enzyme of

eukaryotes. In general it is a tetramer containing two
isozyme catalytic (CK2α and CK2α') and two regula-
tory subunits [1]. Moreover, an additional catalytic
subunit isoform, CK2α'', was found in mammals [2, 3].
Only one isoform of the regulatory subunit of this
enzyme was found in humans. However, additional
isoforms of CK2β were found in other organisms
(Saccharomyces cerevisiae for example) [1].

CK2 is involved in the regulation of various cellular
processes, such as cell cycle, circadian rhythm, apop-
tosis, malignant transformation, carcinogenesis, etc.
[4, 5]. Moreover, data of many studies indicate that
CK2 is involved in control of cell morphology, polar-
ity, and regulation of microfilaments and microtu-
bules as well [6, 7]. The last fact was demonstrated on
various model systems from yeast to mammals [8–13].
Thus, the role of CK2 in regulation of cell morphol-
ogy, polarity, and cytoskeleton organization and func-
tion is evident.

The first data indicating relations between CK2
and mammalian tubulin were obtained in experiments
on intact microtubules isolated from rabbit brain [12, 14].
Later coimmunoprecipitation and western blot demon-
strated that catalytic CK2α and CK2α′ subunits are
capable for direct interaction with animal tubulin,
whereas colocalization of free regulatory CK2β sub-
units and tubulin was not observed [15]. The RNA
interference demonstrate that CK2 associate with
microtubules and mediate their integrity [10]. Incuba-
tion of rat retina with CK2 inhibitors caused disinte-
gration of microtubules and arrest nucleus migration
in juvenile cells of retinal precursors [16]. Incubation

of culture of human astrocytes and vesicular endothe-
lial cells in the presence of CK2 inhibitors caused
alteration of cell shapes and damages in cytoskeleton
organization [17]. This indicates that phosphorylation
of microtubule proteins by CK2 favors assembly of
microtubules and affects their dynamics directly [18].

In recent experiments with tubulin and casein
kinase 2 (CK2α) carrying radioactive labels on the one
hand and experiments with tubulin- and CK2α-spe-
cific antibodies on the other hand, colocalization of
CK2 and microtubules was demonstrated. Moreover,
the capability of this enzyme to phosphorylate α-tubu-
lin in Trypanosoma equiperdum was discovered [18].
Immunoblotting of radioactively labeled tubulin and
CK2 revealed only one phosphorylated fraction iden-
tified with CK2α- and tubulin-specific antibodies
[18]. This indicates the physical association between
pools of tubulin and CK2 in T. equiperdum. However,
despite evidence of this interaction, CK2-dependent
phosphorylation sites in α-tubulin has not yet been
identified. Data obtained in experiments on Trypano-
soma indicate the possible involvement of CK2-
dependent phosphorylation of tubulin in stabilization,
integrity control, and dynamics of microtubule rear-
rangement [18].

The α-chain of plant CK2 contains a conservative
catalytic site, and tetramer holoenzyme of CK2 is
composed of two α- and β-subunits [19]. As in ani-
mals and fungi, plant CK2 phosphorylates casein in
vitro and its activity is typical for other kingdoms [20].
Moreover, it was detected that plant CK2 phosphory-
late transcriptional factor GBFl. This triggers its inter-
action with DNA [21]. For plant transcription factor
PIF1 it was demonstrated light-dependent phosphor-
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ylation by CK2. This induces proteasome degradation
of PIF1 and photomorphogenesis activation [22].
Since plant CK2 phosphorylates transcription initia-
tion factors, it is possible CK2 involvement in transla-
tion initiation is hypothesized [23, 24]. Casein kinase
2 is involved in the regulation of plant circadian
rhythms and phosphorylate transcription factor CCA1
(Circadian Clock Associated 1). The last is the major
oscillator in angiosperms, and phosphorylation of
CCA1 stabilizes it [25]. It was demonstrated that CK2
is important for maintenance and stability control of
genome and chromatin structure [26]. Moreover, CK2
has ectokinase activity and phosphorylates a number
of extracellular proteins [19]. In experiments with Sola-
num berthaultii, plant CK2 colocalized with microtu-
bules and phosphorylate SB401. The last interacts with
microtubules and F-actin [27]. Phosphorylation by
CK2 inhibits SB401 interaction with microtubules.
Scientists hypothesize that CK2 regulates microtu-
bules and actin filaments via phosphorylation of
SB401 [27]. Nevertheless, literature contains only data
suggesting an indirect interaction between CK2 and
tubulin, and there are no data on direct interaction
between CK2 and tubulin.

That is why we focus our study on the search of prob-
able CK2-specific phosphorylation sites in α-tubulin
from Trypanosoma equiperdum and analysis of the pos-
sibility of similar interactions in Arabidopsis thaliana. The
probability of such interactions is quite high consider-
ing significant interspecies similarity of tubulin mole-
cules and conservative structure of CK2 subunits in
Trypanosoma and Arabidopsis.

MATERIALS AND METHODS

Amino acid sequences used in this study were
taken from UniProtKB (Protein KnowledgeBase,
www.uniprot.org) [28]. Homology search for A. thaliana
was performed using SIB BLAST Network Service
BLASTp algorithm (BLASTP ver. 2.2.31+). The fol-
lowing parameters were used: BLOSUM62 compari-
son matrix, expectation value threshold E-value = 10
(number of expected matches in a random database)
with filtration for low-complexity regions or numer-
ous gaps in alignment (http://web.expasy.org/blast/;
http://blast.ncbi.nlm.nih.gov) [29, 30]. Potential
plant homologs were selected based on percentage of
identity and sequence similarity, percentage of gaps,
and E-value [29]. Multiple alignments of amino acid
sequences were done in ClustalX (v. 2.0.10)
(www.clustal.org) [31] using BLOSSUM substitution
matrixes [31].

Cladistics analysis of tubulin molecules and clustering
of interaction sites were based on coclustering of amino
acid sequences using neighbor-joining algorithm [32–
34]. Dendrograms were built and analyzed using MEGA7
software (http://www.mega-software.net/) [34].
Potential tubulin phosphorylation sites were iden-
tified using a local version of GPS 3.0 software
(http://gps.biocuckoo.org) [35, 36].

Our 3D-models of α-tubulin molecules from
T. equiperdum (A0A1G4I5D2_TRYEQ) and the near-
est homolog from A. thaliana (TBA4_ARATH,
Q0WV25) were built using the Swiss-Model server
(https://swissmodel.expasy.org/) [37]. 3D-models of
A0A1G4I5D2_TRYEQ and TBA4_ARATH was built
out using template PDB structures: 5kx5.1 (chain A—
Tubulin alpha chain, 2,5 Å)⎯Crystal structure of tubu-
lin-stathmin-TTL-Compound 11 complex (89.07%
identity) [38]; and 3e22.1 (chain A—Tubulin alpha-1C
chain, 3,8 Å)⎯Tubulin-colchicine-soblidotin: Stath-
min-like domain complex (85.97% identity) [39],
respectively.

Topology of phosphorylation sites identified for
α-tubulin was detected via structural superposition
and comparison with the chimeric complex 5KX5
(Crystal structure of tubulin-stathmin-TTL-Com-
pound 11 complex, X-Ray diffraction, 2,5 Å) from
RCSB Protein Data Bank: Tubulin alpha chain (Uni-
ProtKB: D0VWZ0_ SHEEP) and Tubulin beta chain
(UniProtKB: D0VWY9_SHEEP) from Ovis aries,
Stathmin-4 (UniProtKB: STMN4_RAT, P63043)
from Rattus norvegicus [38].

Visualization, superposition of structural models,
and analysis of protein complexes and phosphoryla-
tion site topologies were performed using PyMOL
v.1.5.0.5 software (www.pymol.org).

RESULTS AND DISCUSSION
The search for T. equiperdum α-tubulin sequences

in a database was the starting point of our study. Pro-
ceeding from data of Boscán et al. [18], we chose
sequence A0A1G4I5D2 (A0A1G4I5D2_TRYEQ, Last
modified June 7, 2017) from the UniProtKB database.

To identify possible phosphorylation sites, GPS 3.0
local version software with CK2a1 group limits was
used. Two scanning modes—medium and high hit
reliability thresholds (Table 1)—were used. Three pos-
sible phosphorylation sites in the α-tubulin molecule
were identified using the average threshold limit for
the search. Those sites correspond to five various CK2
profiles (GPS 3.0 software library). Subsequent eleva-
tion of the threshold value up to the maximum
reduced the number of the potential sites to two (Ser94
and Ser419). Those sites correspond two alternative
CK2-specific phosphorylation sites in the α-tubulin
molecule (Table 1, Fig. 1).

BLASTp-search of plant homologs for
A0A1G4I5D2_TRYEQ against the full UniProtKB
collection of A. thaliana amino acid sequences con-
firmed quite complete identity between α-tubulin
from T. equiperdum and six α-tubulin isotypes from
Arabidopsis (Table 2). TBA4_ARATH (Tubulin alpha-4
chain) and TBA2_ARATH (Tubulin alpha-2 chain)
CYTOLOGY AND GENETICS  Vol. 52  No. 2  2018
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Table 1. Potential phosphorylation sites of α-tubulin from T. equiperdum (according to GPS 3.0 software analysis data)

Score is calculated according to a GPS algorithm and reflects phosphorylation probability (the higher the score value, the higher the
phosphorylation probability). Cutoff is the threshold value (the threshold value reflects resolution, sensitivity, and specificity).

Site Profile match Consensus peptide Score Cutoff

Medium threshold
Ser94 CMGC/CK2/CK2a1 FHPEQLISGKEDAAN 3.056 1.947
Ser419 CMGC/CK2 GMEEGEFSEAREDLA 11.121 7.389

CMGC/CK2/CK2a1 GMEEGEFSEAREDLA 2.583 1.947
Ser439 CMGC/CK2 YEEVGAESADMDGEE 7.628 7.389

CMGC/CK2/CK2a1 YEEVGAESADMDGEE 2.104 1.947
High threshold

Ser94 CMGC/CK2/CK2a1 FHPEQLISGKEDAAN 3.056 2.848
Ser419 CMGC/CK2 GMEEGEFSEAREDLA 11.121 9.894

Position of sites in amino acid sequence
>tr|A0A1G4I5D2|A0A1G4I5D2_TRYEQ Tubulin alpha chain OS=Trypanosoma 
equiperdum GN=TEOVI_000891200 PE=3 SV=1
MREAICIHIGQAGCQVGNACWELFCLEHGIQPDGAMPSDKTIGVEDDAFNTFFSETGAGKHVPRAV
FLDLEPTVVDEVRTGTYRQLFHPEQLISGKEDAANNYARGHYTIGKEIVDLCLDRIRKLADNCTGL
QGFLVYHAVGGGTGSGLGALLLERLSVDYGKKSKLGYTVYPSPQVSTAVVEPYNSVLSTHSLLEHT
DVAAMLDNEAIYDLTRRNLDIERPTYPTLNRLIGQVVSSLTASLRFDGALNVDLTEFQTNLVPYPR
IHFVLTSYAPVISAEKAYHEQLSVSEISTAVFEPASMMTKCDPRHGKYMACCLMYRGDVVPKDVNA
AVATIKTKRTIQFVDWSPTGFKCGINYQPPTVVPGGDLAKVQRAVCMIANSTAIAEVFARIDHKFD
LMYSKRAFVHWYVGEGMEEGEFSEAREDLAALEKDYEEVGAESADMDGEEDVEEY
appeared to be the closest homologs. Alignment
between A0A1G4I5D2_TRYEQ and TBA4_ARATH
confirmed high similarity between them and complete
CYTOLOGY AND GENETICS  Vol. 52  No. 2  2018

Fig. 1. Alignment between α-tubulin from Trypanosoma equiper
bidopsis thaliana (TBA4_ARATH, Q0WV25). Positions of two p
are emphasized.
identity of sequences at the regions of Ser94 and
Ser419 sites, which we identified as most probable
CK2-dependent phosphorylation sites (Fig. 1).
dum (A0A1G4I5D2_TRYEQ) and closest homologs from Ara-
robable CK2 phosphorylation sites identified via profile search

S419

S94
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Table 2. Results of the search for A. thaliana A0A1G4I5D2_TRYEQ homologs via SIB BLASTP
UniProtKB Identifier
UniProtKB BLASTP

protein name recommended name alignment score E-value

Q0WV25 TBA4_ARATH Tubulin alpha-4 chain 807 0.0
B9DGT7 TBA2_ARATH Tubulin alpha-2 chain 807 0.0
P29511 TBA6_ARATH Tubulin alpha-6 chain 806 0.0
B9DHQ0 TBA5_ARATH Tubulin alpha-5 chain 806 0.0
Q56WH1 TBA3_ARATH Tubulin alpha-3 chain 806 0.0
P11139 TBA1_ARATH Tubulin alpha-1 chain 784 0.0
P12411 TBB1_ARATH Tubulin beta-1 chain 365 2e-121
Q9ASR0 TBB3_ARATH Tubulin beta-3 chain 361 4e-120
Q56YW9 TBB2_ARATH Tubulin beta-2 chain 361 4e-120
P29515 TBB7_ARATH Tubulin beta-7 chain 361 5e-120
P29513 TBB5_ARATH Tubulin beta-5 chain 360 1e-119
P29514 TBB6_ARATH Tubulin beta-6 chain 359 3e-119
P29516 TBB8_ARATH Tubulin beta-8 chain 358 8e-119
P29517 TBB9_ARATH Tubulin beta-9 chain 357 1e-118
P24636 TBB4_ARATH Tubulin beta-4 chain 352 1e-116
P38558 TBG2_ARATH Tubulin gamma-2 chain 223 9e-67
P38557 TBG1_ARATH Tubulin gamma-1 chain 221 5e-66

Fig. 2. (On the left). Superposition of structure models of
A0A1G4I5D2_TRYEQ and TBA4_ARATH. Yellow surfaces
demonstrate identity of localization of Ser94 and Ser419 in
homologs from Trypanosoma and Arabidopsis. Surface topol-
ogy of the residues confirms their accessibility to modifications.

β5β5β5

α17

S419

S94

To analyze topology of Ser94 and Ser419 residues

in α-tubulin molecules from Trypanosoma and Arabi-
dopsis, reconstruction of their 3D structure was per-
formed using initial amino acid sequences
A0A1G4I5D2_TRYEQ and TBA4_ARATH (see
Materials and Methods). Structural superposition of
the models and subsequent visualization of the possi-
ble phosphorylation sites indicate that Ser94 located
in the β5 sheet and Ser419 located in the α17 helix.
Both residues located at the surface of the globule and
have outward orientation. Thus, selected residues are
accessible for posttranslational modifications (Fig 2).

To clarify functional significance of α-tubulin
molecule modifications at Ser94 and Ser419, we have
carried out molecular modeling using the experimen-
tally confirmed 5KX5 complex (Crystal structure of
tubulin-stathmin-TTL-Compound 11 complex) from
the RCSB Protein Data Bank. The structure of the
5KX5 complex is chimeric and includes two α-tubulin
subunits from O. aries (UniProtKB: D0VWZ0), two
β-tubulin subunits from O. aries (Uni-ProtKB:
D0VWY9), stathmin-4 from R. norvegicus (UniProtKB:
P63043), and tubulin-tyrosine ligase (TTL) from Gallus
gallus (UniProtKB: E1BQ43) [38].

Structural superposition of previously built 3D
models of A0A1G4I5D2_TRYEQ from T. equiperdum
and TBA4_ARATH from A. thaliana and α-tubulin
subunits of the 5KX5 complex demonstrated that root
mean square values were less than 1 in both cases. This
indicates similarity of spatial coordinates and correct-
ness of complex reconstruction.

Analysis of the complex demonstrates location of
Ser94 and Ser419 residues at the proximity to the con-
CYTOLOGY AND GENETICS  Vol. 52  No. 2  2018
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Fig. 3. (On the right). Topology of Ser94 and Ser419 amino acid residues revealed via structural alignment between α-tubulin
from Trypanosoma and Arabidopsis and chimeric complex 5KX5 from the Protein Data Bank [38]: α-tubulin⎯models of α-tubu-
lin from T. equiperdum and A. thaliana; β-tubulin⎯β-tubulin from Ovis aries; Stathmin⎯Stathmin-4 from Rattus norvegicus;
TTL protein⎯fragment of tubulin-tyrosine ligase (TTL) from Gallus gallus. Positions of the residues indicate localization of
CK2-specific sites in the region of inner contact of α-/β-tubulin.

β5β5β5

α17α17α17

α-tabulin

β-tabulin
PDB: 5KX5

Stathmin
PDB: 5KX5

TTL protein
(fragment)

PDB: 5KX5

S419

S94

Fig. 4. Potential CK2 phosphorylation sites in Arabidopsis tubulin (*.fasta format). Fragments of sequences of all A. thaliana tubu-
lin isotypes that revealed varying similarity with a number of canonical sites of CK2. Fragments were saved in S/T ± 7 format.
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Fig. 5. Clusterization of potential CK2-dependent phosphorylation sites identified in plant tubulins based on profile analysis and
control fragments from T. equiperdum α-tubulin.
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tact region of α-tubulin with β-tubulin in the heterod-
imer. Thus, modifications of these amino acid resi-
dues might affect assembly/disassembly of the het-
erodimer.
In general, ninety potential sites that more or less
correspond to phosphorylation profiles of CK2 were
identified proceeding from the profile search for 17
A. thaliana tubulin isotypes. To make a final conclu-
CYTOLOGY AND GENETICS  Vol. 52  No. 2  2018
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Fig. 6. Alignment of control sequences of Ser94 and Ser419 sites from T. equiperdum (TRYEQ) α-tubulin and all A. thaliana α-
tubulin isotypes. Complete identity of the sites is demonstrated.

S419S94
sion about isotype specificity of sites at Ser94 and
Ser419, the sequences of all sites we represented in
S/T ± 7 form and saved in *.fasta format (Fig. 4). This
let us make clusterization of the sequences. Fragments
of T. equiperdum α-tubulin sequences corresponding
to Ser94 and Ser419 phosphorylation sites were used as
control. Clusterization of the sequences revealed two dis-
tinct clads, including control sequences (Fig. 5). Six
α-tubulin isotypes were clustered for Ser419 and
Ser94:TBA1, TBA2, TBA3, TBA4, TBA5, and TBA6.
At the same time, phylogenetic distance between con-
trol sequences of T. equiperdum and A. thaliana was
equal to zero (Fig. 5). Alignments of peptide sequences
from the clads confirmed their complete identity (Fig. 6).
Thus, it could be hypothesized that phosphorylation
of Ser94 and Ser419 are characteristic of all α-tubulin
isotypes if these residues are indeed phosphorylated.

The results of the search for peptide
 in the PhosphoSitePlus data-

base demonstrate that S419-p is a phosphorylation site
for a number of human α-tubulin isotypes (TUBA8,
TUBA3C, and TUBA3E). On the basis of a number of
experiments, the S419-p site was annotated as a phos-
phorylation site [40]. However, studies of effects of
mutations in TUBA1A (I188L, I238V, P263T, L286F,
V303G, R402C, R402H, and S419L) on cytoskeleton
did not reveal any anomalies in the formation of the
α/β-tubulin dimer, which could be associated with
S419L replacement; no deviations from wild type were
registered. Moreover, α-tubulin from the cell line car-
rying S419L mutation composes the interphase net-
work of microtubules without any visible anomalies;
the interphase network of microtubules is identical to the
wild type [41]. Nevertheless, there are data on the impor-
tance of S419 for interaction with kinesin, and mutations
in that position can affect the development of the α-tubu-
lin-kinesin complex [41, 42]. At the same time,

 (S94-p) motive coincide with
the conservative T94-p ( ) site
of human α-tubulin (TUBA1A, TUBA1B, TUBA1C,
TUBA3C, TUBA4A, TUBA4B, and TUBA8). The
site was identified many times via mass spectrometry.
It is annotated as the casein kinase 2 phosphorylation
site (information curated by PhosphoSitePlus) [40,

GMEEGEFSEAREDLA

FHPEQLISGKEDAAN
(FHPEQLITGKEDAAN)
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43, 44]. It is well known that phosphorylation of serine
residues prevails over phosphorylation of threonine
residues and there are more serine sites for the same
serine/threonine-specific protein kinase [45]. It could
be hypothesized that Ser/Thr exchange at position 94
of T. equiperdum and A. thaliana α-tubulin was appro-
priate as the CK2 recognition pattern.

Our analysis indicates that phosphorylation of the
S94 residue is an important factor affecting develop-
ment of α/β-tubulin dimer in Trypanosoma and Ara-
bidopsis. We believe that direct phosphorylation of
α-tubulin by CK2 in T. equiperdum [18] and A. thaliana
is definitely associated with the S94 residue. More-
over, the possibility of phosphorylation of S419 cannot
be excluded; however, this modification does not
directly affect the microtubule structure and is related
to interaction with associated proteins.
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