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Abstract—This paper shows the existence and asymptotic Lyapunov stability of solutions with a moving
inner layer (front) in a boundary value problem for a singularly perturbed parabolic reaction–advection–
diffusion equation with the periodicity condition in time. In addition, the existence of solutions of this type
for the corresponding initial boundary value problem is proved and a sufficient condition for their attraction
to a periodic solution is proposed. For each problem, an asymptotic approximation of the solution is
constructed and the existence and uniqueness theorems for such a solution with the constructed asymptotic
behavior based on the asymptotic method of differential inequalities are proved.
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INTRODUCTION

In many systems described by equations of the
reaction–advection–diffusion type and having two
stable equilibrium positions, sharp transition layers
occur between these positions provided that the dif-
fusion coefficient is small as compared to the reaction
coefficient. Such equations are singularly perturbed
and have a small parameter at the highest derivative.
They appear in many applied problems, in particular,
in physics of semiconductors when modeling the field
distribution and density of carriers inside the semi-
conductor [1] (see the work and references therein).
Note that the problem posed in Section 2 arises in the
search of the electric field strength distribution inside
a semiconductor with a region of negative differen-
tial conductivity by use of the drift–diffusion model
(see [2], Sect. 2).

The problem of transition layer motion in singu-
larly perturbed equations of the reaction–diffusion
and reaction–advection–diffusion types was studied
in works [3–5, 7, 8]. To my knowledge, the last
results related to spatially inhomogeneous problems
with coefficients periodically dependent on time are
contained in [5, 7].

In [6], the existence of a stable periodic internal
layer was shown in the reaction–diffusion problem
with periodic coefficients, where, in contrast to Eq. (1)
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studied in this work, the coefficient ε2 stands at the
time derivative. It is also known (see [5]) that in
the initial boundary value problem corresponding to
the equation from [6] in which the front at the initial
time instant is already formed and is situated at a
finite distance from the stable periodic front, the rate
of attraction of this front to the periodic one exceeds
the periodic motion speed of the latter by an order of
magnitude. In [5], such two motions were called fast
and slow.

It turns out that the layer for Eq. (1) moves with
a speed the order of which at any time instant coin-
cides with the order of the speed of the periodic layer
motion, i.e., only slow motion occurs. As well, the
abovementioned passage to another time scale leads
to a significant change in the condition of asymptotic
stability of the periodic solution (cf. the inequality in
requirement Y3 in [6] and condition (A4) of this work).

1. FORMULATION OF THE PROBLEM

In this work, we are interested in solutions of
the following singularly perturbed boundary value
problem

Nu := ε2
∂2u

∂x2
− ε

∂u

∂t
− εA(x, t, ε)

∂u

∂x
− f(u, x, t, ε) = 0,

x ∈ (−1, 1),
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∂u

∂x
(−1, t, ε) = 0,

∂u

∂x
(1, t, ε) = 0, (1)

which is considered at t ∈ R and condition of period-
icity in time

u(x, t, ε) = u(x, t+ T, ε), x ∈ [−1, 1], t ∈ R

or at t > 0 with the initial condition

u(x, 0, ε) = u00(x, ε), x ∈ [−1, 1].

Here, ε ∈ (0, ε0], ε0 > 0 is a small parameter.
We suppose that the following conditions are sat-

isfied:
(A1) Functions A(x, t, ε) and f(u, x, t, ε) are

T -periodic in t and sufficiently smooth in their do-
mains of definition.

(A2) Let the degenerate equation f(u, x, t, 0) =
0 have exactly three T -periodic in t solutions u =

ϕ(±,0)(x, t), and for any (x, t) ∈ [−1, 1]× R the fol-
lowing inequalities are satisfied:

ϕ(−)(x, t) < ϕ(0)(x, t) < ϕ(+)(x, t),

fu(ϕ
(±)(x, t), x, t, 0) > 0,

fu(ϕ
(0)(x, t), x, t, 0) < 0.

We are interested in solutions having a moving
sharp internal transition layer near a certain point
x = x̂(t, ε), which occurs from the root ϕ(−)(x, t) of
the degenerate equation to the root ϕ(+)(x, t). Such
solutions are called step-type contrast structures.

To start with, we clarify the conditions of the ex-
istence of periodic solutions that are asymptotically
stable in the sense of Lyapunov.

2. PERIODIC SOLUTIONS

The statement of the problem in the periodic case
has the form

ε2
∂2u

∂x2
− ε

∂u

∂t
− εA(x, t, ε)

∂u

∂x
− f(u, x, t, ε) = 0,

(x, t) ∈ Dt = (−1, 1)× R,

∂u

∂x
(−1, t, ε) = 0,

∂u

∂x
(1, t, ε) = 0, t ∈ R,

u(x, t, ε) = u(x, t+ T, ε), x ∈ D̄t. (2)

2.1. Construction of the Formal Asymptotics
of the Solution

The asymptotics of the solution of problem (2) is
sought in the standard form [9, 10]:

U (±)(x, t, ε) = ū(±)(x, ε) +Q(±)(ξ, t, ε)

+R(±)
(
η(±), t, ε

)
, (x, t, ε) ∈ D±

t × (0, ε0]. (3)

Here, D
(−)
t := [−1, x̂]× R, D

(+)
t := [x̂, 1]×

R, ū(±) (x, ε) = ū
(±)
0 (x) + εū

(±)
1 (x) + ... is the regu-

lar part of the expansion, the functions Q(±) (ξ, t, ε) =

Q
(±)
0 (ξ, t, ε) + εQ

(±)
1 (ξ, t, ε) + ... describe the be-

havior of the solution in a neighborhood of the tran-

sition point x̂(t, ε), ξ =
x− x̂(t, ε)

ε
is the stretched

variable of the transition layer; the functions
R
(
η(±), t, ε

)
= R0

(
η(±), t

)
+ εR1

(
η(±), t

)
+ ... de-

scribe the behavior of the solution in neighborhoods
of the boundary points of the segment [−1; 1], and
η(±) = x∓1

ε are the stretched variables near the points
x = ±1, respectively.

Note that the functions ūi(x, t) and R
(
η(±), t

)
are determined in the standard way (see [9])) and

ū
(±)
0 (x, t) = ϕ(±)(x, t), R

(
η(±), t

)
= O(ε) by virtue

of the Neumann boundary conditions, i.e., there ap-
pears a weak boundary layer.

The position of the internal transition layer is de-
termined from the condition of C1-joining of asymp-
totic representations U (−)(x, t, ε) and U (+)(x, t, ε) at
the transition point x̂(t, ε) :

U (±) (x̂(t, ε), t, ε) = ϕ(0)(x̂(t, ε), t), (4)

ε
∂

∂x
U (−)(x̂(t, ε), t, ε) = ε

∂

∂x
U (+)(x̂(t, ε), t, ε). (5)

The transition point x = x̂(t, ε) is sought in the form
of expansion in powers of the small parameter ε:

x̂(t, ε) = x0(t) + εx1(t) + . . . . (6)

Coefficients of this expansion are determined when
constructing the asymptotics. Note that, in contrast
to the approach expounded, e.g., in [8], we do not
begin with expansion of the transition point x̂(t, ε) in
powers of ε in the asymptotics of the solution. This
simplifies the algorithm of constructing the asymp-
totics.

The problems for the functions Q
(−)
0 (ξ, t, ε) have

the form

∂2Q
(±)
0

∂ξ2
+

(
∂x̂(t, ε)

∂t
−A(x̂(t, ε), t, 0)

)
∂Q

(±)
0

∂ξ

= f(ϕ(±)(x̂(t, ε), t) +Q
(±)
0 , x̂(t, ε), t, 0),

Q
(±)
0 (0, t, ε) + ϕ(±)(x̂(t, ε), t) = ϕ(0)(x̂(t, ε), t),

Q
(−)
0 (±∞, t, ε) = 0. (7)

Let us introduce an operator D which acts by the
following rule:

Dx̂ :=
∂x̂(t, ε)

∂t
−A(x̂(t, ε), t, 0). (8)
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Let us introduce functions

ũ(±) (ξ, x̂, t) = ϕ(±)(x̂(t, ε), t) +Q
(±)
0 (ξ, t, ε),

ṽ(±) (ξ, x̂, t) =
∂ũ(±)

∂ξ
(ξ, x̂, t), ξ ∈ [0,±∞). (9)

Problems (7) in notations (9) take the form

∂2ũ(±)

∂ξ2
+Dx̂

∂ũ(±)

∂ξ
= f(ũ(±), x̂, t, 0),

ũ(±)(0, x̂, t) = ϕ(0)(x̂, t),

ũ(±)(±∞, x̂, t) = ϕ(±)(x̂, t). (10)

Together with problems (10), we consider the
problem

∂2û

∂ξ2
+W

∂û

∂ξ
= f(û, x̂, t, 0),

û(0, x̂, t) = ϕ(0)(x̂, t),

û(±∞, x̂, t) = ϕ(±)(x̂, t). (11)

Problem (11) was studied in detail in [3], and we
present the result we require as a lemma.

Lemma 1. For any x̂ ∈ (−1, 1), t ∈ R, there
exists a unique quantity W such that problem (11)
has a unique smooth monotonic solution û(ξ, x̂, t)
satisfying the estimate

|û(ξ, x̂, t)− ϕ(±)(x̂, t)| < C exp(−κ|ξ|),
where C and κ are some positive constants. The

function W (x̂, t) is determined by the following
expression:

W (x̂, t) =

ϕ(+)(x̂,t)∫
ϕ(−)(x̂,t)

f(u, x̂, t, 0)du

+∞∫
−∞

(
∂û
∂ξ (ξ, x̂, t)

)2
dξ

.

The smoothness of the function W (x̂, t) coincides
with the smoothness of the function f(û, x̂, t, 0)
with respect to the arguments (x̂, t).

Since the functions f and A are T -periodic in
t, the function W also has this property. Let the
following requirements be satisfied.

(A3) Let the problem
dx

dt
= W (x, t) +A(x, t, 0), (12)

x(t) = x(t+ T ) (13)

have a solution x = x0(t): −1 < x0(t) < 1, t ∈ R.
(A4) Let x0(t) satisfy the condition
T∫

0

∂

∂x

(
W (x, t) +A(x, t, 0)

)∣∣∣∣
x=x0(t)

dt < 0. (14)

It is well known that the inequality in condition
(A4) guarantees asymptotic stability in the sense of
Lyapunov for the periodic solution x0(t).

Let (10.a) denote problems (10) in which x̂ is
everywhere replaced by x0(t) or, in other words, ε =
0 is set. As follows from Lemma 1 and condition
(A3), problems (10.a) are uniquely solvable because
condition Dx̂0(t) = W (x0(t), t) is satisfied. At the

same time, ∂ũ(+)

∂ξ (0, x0(t), t)− ∂ũ(−)

∂ξ (0, x0(t), t) = 0,
t ∈ R. By virtue of the supposed smoothness of the
coefficients f and A (see condition (A1)), problems
(10) are a regular perturbation of problems (10.a)
and, therefore, they are also uniquely solvable. Note
that, by virtue of representation (6), we now have
∂ũ(+)

∂ξ (0, x̂(t, ε), t) − ∂ũ(−)

∂ξ (0, x̂(t, ε), t) = O(ε).

Thus, construction of the transition layer func-
tion in the zero order has been completed. The
transition layer functions of the first and subsequent
orders are found by the standard algorithm (for more
details, see, e.g., [8]) and their construction is not
presented here.

2.2. Asymptotic Approximation
of the Front Position

The unknown coefficients of the expansion xi(t),
i = 1, 2..., are determined from joining conditions (5)
for derivatives of asymptotic expansions. Let us in-
troduce a function

H(ε, t) := ε

(
∂U (+)

∂x
(x̂, t, ε) − ∂U (−)

∂x
(x̂, t, ε)

)

= H0(ε, t) + εH1(ε, t) + ε2H2(ε, t) + ..., (15)

where

H0(ε, t) =
∂Q

(+)
0

∂ξ
(0, t, ε) − ∂Q

(−)
0

∂ξ
(0, t, ε),

H1(ε, t) =
∂ϕ(+)

∂x
(x̂, t)− ∂ϕ(−)

∂x
(x̂, t)

+

(
∂Q

(+)
1

∂ξ
(0, t, ε) − ∂Q

(−)
1

∂ξ
(0, t, ε)

)
,

and so on. Condition of C1-joining (5) is expressed
by the equality H(x̂, t, ε) = 0. By virtue of Lemma 1
and condition (A3) with allowance for the expansion
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of the transition point (6), this equality is satisfied in
the order ε0.

Analysis of problems (10), (11) shows that the
function H0 can be represented in the form

H0(ε, t) = (Dx̂−W (x̂, t))
1

ṽ(0, x̂, t)

×
+∞∫

−∞

ṽ2(ξ, x̂, t)e(Dx̂)ξdξ +O(ε2). (16)

As follows from expansion (15) and representation
(16), the high-order terms xi(t), i � 1 in (6) can be
found from the following linear periodic problems:

dxi
dt

+

(
∂

∂x

(
W (x, t) +A(x, t, 0)

)∣∣∣∣
x=x0(t)

)
xi(t)

= Gi(t), (17)

xi(t) = xi(t+ T ), (18)

where Gi(t) are known functions. Solvability of these
problems is guaranteed by condition (A4).

2.3. Justification of the Formal Asymptotics

Let us put Xn(t, ε) =
∑n

i=0 ε
ixi(t), ξ =

x−Xn(t, ε)

ε
. The curve Xn(t, ε) divides the

domain D̄t into two subdomains D̄
(−)
tn : (x, t) ∈

[−1,Xn(t, ε)]× R and D̄
(+)
tn : (x, t) ∈ [Xn(t, ε), 1] ×

R. Let us define functions

U (±)
n (x, t, ε)

=
n∑

i=0

εi(ū
(±)
i (x, t) +Q

(±)
i (ξ, t, ε) +R

(±)
i (η(±), t)),

(x, t) ∈ D̄
(±)
tn ,

where x̂(t, ε) entering into the expressions for the
transition layer functions are replaced by Xn(t, ε). Let
us denote

Un(x, t, ε)

=

{
U

(−)
n (x, t, ε), (x, t) ∈ D̄

(−)
tn ,

U
(+)
n (x, t, ε), (x, t) ∈ D̄

(+)
tn .

(19)

To prove the existence of the solution in the form
of a moving front, we use the asymptotic method
of differential inequalities (see [11]). Let us define a
function xβ(t, ε) = Xn+1(t, ε) − εn+1δ(t), where the
positive function δ(t) > 0 is defined below. We con-
struct the upper solution βn(x, t, ε) in each of the

domains D̄(−)
tβ : (x, t) ∈ [−1, xβ(t, ε)]×R and D̄

(+)
tβ :

(x, t) ∈ [xβ(t, ε), 1] × R. Let us introduce a stretched

variable ξβ =
x−xβ(t,ε)

ε . The upper solution of prob-
lem (2) is constructed in the form

β(±)
n (x, t, ε) = U

(±)
n+1|ξβ + εn+1

(
μ+ q(±) (ξβ, t, ε)

)

+ εn+1(eκ0η(+)
+ e−κ0η(−)

), (x, t) ∈ D
(±)
tβ . (20)

By U
(±)
n+1|ξβ we mean the functions U

(±)
n (x, t, ε) in

which the argument ξ in the transition layer func-
tions is replaced by ξβ and Xn+1 is replaced by xβ .
The functions q(±) (ξβ, t, ε) are necessary to elimi-
nate residual errors which appear when the operator
acts on the upper solution and are determined in the

standard way [8]. The lower solution α
(±)
n (x, t, ε) is

constructed similarly. All necessary conditions for the
upper and lower solutions are checked in the standard
way similarly to [6, 8]. Here, we check only the
derivative jump condition. We have

ε

⎡
⎣ ∂β

(+)
n

∂x

∣∣∣∣∣
x=xβ

⎤
⎦
+

−

= −εn+1 L(x0, t)

ṽ (0, x0, t)

(
dδ

dt
+

(
∂

∂x

(
W (x, t) +A(x, t, 0)

)∣∣∣∣
x=x0(t)

)
δ(t) +

F (x0, t)

L(x0, t)

)
+O(εn+2),

where F (x0, t) = μ

[
f̄ (±)
u (x0, t)

0∫

±∞

ṽ(±) (σ, x0, t) e
(Dx0)σdσ

]+

−
,

L(x0, t) =

+∞∫

−∞

ṽ2(ξ, x0, t)e
(Dx0)ξdξ > 0. (21)
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We define the function δ(t) as a solution of the
problem

dδ

dt
+

∂

∂x

(
W (x, t) +A(x, t, 0)

)∣∣∣∣
x=x0(t)

δ(t)

+
F (x0, t)

L(x0, t)
= σ, (22)

δ(t) = δ(t+ T ), (23)

where σ is a sufficiently large positive quantity. As can
be easily shown, it follows from condition (A4) that
the solution of this problem exists and is everywhere
positive. Therefore, the expression in the right-hand
side of equality (21) is negative due to σ > 0 at suffi-
ciently small ε.

Thus, based on the well-known comparison theo-
rems from [12], one can state that there exists a T -
periodic in t solution of the problem satisfying the
inequality αn(x, t, ε) � u(x, t, ε) � βn(x, t, ε). Using
the method of contracting barriers (see, e.g., [13]), it
is easy to prove that this solution is asymptotically
stable in the sense of Lyapunov with the attraction
domain of at least [α1(x, 0, ε);β1(x, 0, ε)] the width of
which is O(ε). Thus, the following theorem is proved:

Theorem 1. Suppose that conditions (A1)–
(A4) are satisfied. Then there exists a T -periodic
in t solution up(x, t, ε) of problem (2) for which the
estimate

|up(x, t, ε) − Un(x, t, ε)| = O(εn+1)

is valid.
In addition, the solution up(x, t, ε) is asymptoti-

cally stable in the sense of Lyapunov with the domain
of stability with a width O(ε), and, therefore, it is
unique in this domain.

3. THE MOTION OF THE FRONT
IN THE INITIAL BOUNDARY VALUE

PROBLEM

The following study of the initial boundary value
problem is a direct development of results from [8] for
the case of the presence of advection and a periodic
dependence of the reaction and advection coefficients
on time.

We suppose that conditions (A1)–(A4) are satis-
fied and study the motion of the formed front in the
presence of periodic solutions mentioned in Theo-
rem 1. We are interested in solutions that are at-
tracted to the periodic solution up(x, t, ε) as t → ∞
found in the previous section.

The statement of the initial boundary value prob-
lem has the form

Nu := ε2
∂2u

∂x2
− ε

∂u

∂t
− εA(x, t, ε)

∂u

∂x

− f(u, x, t, ε) = 0,

x ∈ (−1, 1), t > 0,

∂u

∂x
(−1, t, ε) = 0,

∂u

∂x
(1, t, ε) = 0, t > 0,

u(x, 0, ε) = u00(x, ε), x ∈ [−1, 1]. (24)

The asymptotics of the solution of problem (24)
for which we introduce a notation Ũn(x, t, ε) has the
same form as the asymptotics Un(x, t, ε) for the pe-
riodic solution up(x, t, ε); in the latter, however, the
transition layer coordinate is determined in a different
way: x̃(t) = x̃0(t) + εx̃1(t) + ε2x̃2(t) + ... . Let the
following condition be satisfied.

(A5) Let the problem{
dx
dt = W (x, t) +A(x, t, 0),

x(0) = x00 ∈ (−1, 1)
(25)

have a solution x = x̃0(t): −1 < x̃0(t) < 1 at t � 0;
along with this, lim

t→∞
(x̃0(t)− x0(t)) = 0.

The limit relationship in (25) is the requirement
that x00 must belong to the domain of influence of the
asymptotically stable periodic solution x0(t).

The functions x̃i(t), i = 1, 2, ..., are defined as
solutions of linear Cauchy problems for Eq. (17),
in which x0(t) is replaced by x̃0(t), with the initial
condition x̃i(0) = 0.

Let α̃n(x, t, ε) and β̃n(x, t, ε) denote the lower and
upper solutions for problem (24), respectively. The
upper and lower solutions for problem (24) are defined
similarly to the definition used in the previous section.
The main difference is only that the requirement of T -
periodicity in t is replaced by condition

(A6) Let the inequality α̃(x, 0, ε) � u00(x, ε) �
β̃(x, 0, ε), x ∈ [−1, 1], ε ∈ (0, ε0] be satisfied.

The last condition means that the front is already
formed at the initial time instant.

The upper solution is defined by expression (20)
in which (1) functions xi(t) are replaced by x̃i(t), (2)
function δ(t) is replaced by function δ̃(t) defined as a
solution of the Cauchy problem for Eq. (22) in which
x0(t) is replaced by x̃0(t) with the initial condition
δ̃(0) = δ̃0, where δ̃0 > 0 is a constant. One can show
that, by virtue of conditions (A3)–(A5)

δ1 < δ̃(t) < δ0, t � 0, (26)

where δ0 and δ1 are certain positive constants.
The lower solution α̃(x, t, ε) has a similar struc-

ture. It is seen that all conditions involved in the
definition of the upper and lower solutions for problem
(24) are satisfied for the functions α̃(x, t, ε) and
β̃(x, t, ε). It follows from the well-known comparison
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Fig. 1. (a–f) Solutions of periodic problem (27) and corresponding initial boundary value problem as a function of coordinate
x at different values of t with a step equal to 1. The dashed and dot-and-dash lines denote the numerical solutions of the
corresponding initial boundary value problem that are attracted to the solution with the internal transition layer. The solid line
is the zero-order asymptotics for the periodic solution up(x, t, ε). Figure (e) depicts the corresponding solutions of Eq. (12)
with the periodicity condition in time (the solid curve) and with the initial conditions x(0) = 0.9 (the dot-and-dash curve) and
x(0) = −0.9 (the dashed curve).

theorems (see [14]) that there exists a unique solution
of initial boundary value problem (24) u(x, t, ε) ∈
[α̃(x, t, ε), β̃(x, t, ε)], x ∈ [−1, 1], t � 0, ε ∈ (0, ε0].
As well, by virtue of condition (A5) and inequal-
ity (26), there exists t1 such that the inequalities
α1(x, t1, ε) < α̃2(x, t1, ε) � u(x, t1, ε) � β̃2(x, t1, ε) <
β1(x, t1, ε) are valid for t � t1. These mean that the
function u(x, t1, ε) lies in the domain of influence of
the stable solution up(x, t, ε). Thus, the following
theorem is valid:

Theorem 2. Suppose that conditions (A1)–
(A6) are satisfied. Then there exists a unique so-
lution u(x, t, ε) of problem (24) having an internal

transition layer for which the estimate

|u(x, t, ε) − Ũn(x, t, ε)| = O(εn+1)

is valid.
In addition,

lim
t→∞

|u(x, t, ε) − up(x, t, ε)| = 0.

4. EXAMPLE

Let us consider the problem

ε2
∂2u

∂x2
− ε

∂u

∂t

+ εk(t)x
∂u

∂x
=

(
u2 − 1

) (
u− ϕ(0)(x, t)

)
,
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x ∈ (−1, 1), t ∈ R;

∂u

∂x
(−1, t, ε) = 0,

∂u

∂x
(1, t, ε) = 0,

u(x, t, ε) = u(x, t+ 2π, ε),

x ∈ [−1, 1], t ∈ R. (27)

For the zero-order asymptotics, we have an expres-
sion

U0(x, t, ε) = ũ(ξ, x0(t), t) =
C(x0, t) exp(

√
2ξ)− 1

C(x0, t) exp(
√
2ξ) + 1

,

C(x, t) =
1 + ϕ(0)(x, t)

1− ϕ(0)(x, t)
.

The problem for the determination of the transition
point x0(t) corresponding to the periodic solution
up(x, t, ε) has the form

dx

dt
=

√
2ϕ(0)(x, t)− k(t)x, t ∈ R, (28)

x(t) = x(t+ 2π). (29)

Let us put ϕ(0)(x, t) = b√
2
sin t, b = const <

√
2;

then, problem (28) takes the form
dx

dt
+ k(t)x = b sin t, t ∈ R, (30)

x(t) = x(t+ 2π). (31)

The solution of problem (30), (31) is written ex-
plicitly:

x0(t) := Φ(t)
Φ(2π)

1−Φ(2π)

2π∫

0

Φ−1(s)b sin sds

+Φ(t)

t∫

0

Φ−1(s)b sin sds,

Φ(t) = exp

⎛
⎝−

t∫

0

k(s)ds

⎞
⎠.

Let the 2π-periodic function k(t) be chosen such
that the inequality

2π∫

0

∂

∂x

(
W (x, t) +A(x, t, 0)

)∣∣∣∣
x=x0(t)

dt

= −
∫ 2π

0
k(t)dt < 0

is satisfied. In particular, if we choose k(t) = 1, we
have x0(t) =

b√
2
sin(t− π/4). It is evident that con-

ditions (A1)–(A4) are satisfied; therefore, the state-
ment of Theorem 1 is valid for problem (27).

Let us now consider the initial boundary value
problem corresponding to problem (27) with the ini-
tial condition

u(x, 0, ε) = ũ

(
x− x00

ε
, x00, 0

)
,

x ∈ [−1, 1], (32)

where x00 = x0(0) + Δ, Δ = const. By virtue of
linearity of problem (30) and fulfillment of condition
(A4), its periodic solution x0(t) is globally stable and,
therefore, condition (A5) is also satisfied (at the same
time, condition −1 < x̃0(t) < 1 is satisfied due to the
choice of a sufficiently small Δ). It is evident that
condition (A6) is also satisfied. Thus, for the initial
boundary value problem corresponding to problem
(27) with initial condition (32), the statement of The-
orem 2 is valid. The layer motion is shown in Fig. 1
(for k(t) ≡ 1 and ϕ(0)(x, t) = 1

2 sin t).

CONCLUSIONS

As a result of the investigation, the existence the-
orems have been proved for an asymptotically stable
periodic solution with an internal transition layer and
for a nonstationary solution of the same type. Con-
ditions providing the presence of an asymptotically
stable periodic layer and conditions under which the
solution in the form of the internal layer for the corre-
sponding initial boundary value problem is attracted
to it have been revealed. The further development of
studying these problems may consist in the study of
the layer generation problem, as well as in the passage
to the multidimensional case.
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