COLLIDER PHYSICS

PHENIX Results on Hadron Production in Large Collision Systems

Y. A. Berdnikov¹, A. Y. Berdnikov¹, D. O. Kotov¹, and D. M. Larionova^{1*} (for the PHENIX Collaboration)

¹Peter the Great St. Petersburg Polytechnic University, St. Petersburg, Russia Received April 1, 2022

Abstract—The paper presents recent PHENIX results on hadron production in heavy ion collisions. Comparison of light hadron (π^0 , π^{\pm} , K_s , K^{\pm} , K^* , $(p + \bar{p})/2$, η , ϕ , ω) nuclear modification factors in Au + Au, Cu + Au collisions at $\sqrt{s_{NN}} = 200$ GeV and U + U collisions at $\sqrt{s_{NN}} = 192$ GeV will be discussed.

Keywords: heavy ions, hadrons, QGP, nuclear modification factors

DOI: 10.3103/S0027134922020588

1. INTRODUCTION

Studying of quark-gluon plasma (QGP) properties in heavy ion collisions is the main part of PHENIX [1] experiment physics program. One of the common ways to study signatures of QGP formation in heavy-ion collisions is measurement of nuclear modification factors (R_{AB})—a quantitive characteristic of difference in hadron production in protonproton (p + p) and nuclei-nuclei (A + B) collisions [2]. The paper presents comparison of light hadron R_{AB} in Cu + Au collisions at $\sqrt{s_{NN}} = 200$ GeV.

2. RESULTS AND DISCUSSION

Figure 1 presents different light hadron $(\pi^0, \pi^{\pm}, K_s, K^{\pm}, K^*, (p+\bar{p})/2, \eta, \phi, \omega) R_{AB}$ measured in Cu + Au collisions at $\sqrt{s_{NN}} = 200$ GeV. At intermediate transverse momentum $(2 < p_T < 5 \text{ GeV}/c)$ the ordering can be seen: $R_{AB}^{\pi^0,\eta,\omega} < R_{AB}^{K^{\pm},K^*,\phi} < R_{AB}^p$. At high p_T $(p_T > 5 \text{ GeV}/c)$ R_{AB} values of all measured mesons are equal within uncertainties and much lower, than unity $(R_{AB} \approx 0.5)$. Previously similar R_{AB} patterns were observed in symmetric Au + Au collision system and were interpreted as signatures of QGP formation (baryon enhancement [2], strangeness enhancement [3] and jet quenching [3]). Hadron R_{AB} values in symmetric Au + Au, asymmetric Cu + Au collisions and collisions of deformed U + U nuclei were found to be in agreement at the same number of participant nucleons (N_{part}). As representative example Fig. 2 presents comparison of proton $\langle R_{AB} \rangle$ as a function of N_{part} in Cu + Au, Au + Au, and U + U collisions.

Fig. 1. Comparison of light hadron $(\pi^0, \pi^{\pm}, K_s, K^{\pm}, K^*, (p + \bar{p})/2, \eta, \phi, \omega) R_{AB}$ values in Cu + Au collisions at $\sqrt{s_{NN}} = 200$ GeV.

^{*}E-mail: dashalario@gmail.com

Fig. 2. Comparison of proton $\langle R_{AB} \rangle$ in Au + Au, Cu + Au collisions at $\sqrt{s_{NN}} = 200$ GeV and U + U collisions at $\sqrt{s_{NN}} = 192$ GeV.

3. CONCLUSIONS

Recent PHENIX results on hadron production in Cu + Au collisions at $\sqrt{s_{NN}} = 200$ GeV and U + U collisions at $\sqrt{s_{NN}} = 192$ GeV have been presented. Signatures of QGP formation (baryon enhancement, strangeness enhancement and jet quenching) have been observed and found to be similar to previous

Au + Au results at the same N_{part} values. That might indicate that light hadron production scales with the average size of the nuclear overlap region and do not depend on the details of its shape.

FUNDING

The research is partially funded by the Ministry of Science and Higher Education of the Russian Federation under the strategic academic leadership program "Priority 2030" (agreement 075-15-2021-1333 dated September 30, 2021).

CONFLICT OF INTEREST

The author declares that he has no conflicts of interest.

REFERENCES

- K. Adcox et al., "PHENIX detector overview," Nucl. Instrum. Methods Phys. Res., Sect. A 499, 469–479, (2003)
- D. M. Larionova et al., "Comparative analysis of proton production as a function of quark content and collision geometry," J. Phys.: Conf. Ser. 1697, 012140 (2020).
- Iu. M. Mitrankov, "Nuclear modification factors, small systems, light hadron production," Nucl. Phys. A 1005, 121878 (2021).