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Visualization of Black Hole Images
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Abstract—A fast progress in the observational technologies in astrophysics provides the unique possibility
for detailed observations of black holes in the nearest future. It would be possible to verify general relativity
and its numerous modifications in the strong field limit by using observational data from the advanced
cosmic interferometric observatories. We review the modeled images of the rotating black hole in different
appropriate cases: the luminous distant background, the thin accreting disk and the luminous moving hot
spots in relativistic jets along the black hole rotation axis.
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1. INTRODUCTION

What is the genuine gravity theory? Nowadays
we do not know the answer as on the quantum level
and also on the classical one. General relativity
perfectly explain all gravitational phenomena in the
weak field limit. Meantime numerous modified gravity
theories were proposed for understanding the physi-
cal properties of relativistic astrophysical objects and
expanding Universe. The first serendipitous obser-
vation by the Event Horizon Telescope collabora-
tion in 2019 of the black hole shadow opens the
unique window for verification of the general relativity
and its modifications in the strong field limit. Here
we shortly review the possible forms of astrophysical
black hole images by using numerical models for
photon geodesics (trajectories) in the Kerr metric.

2. INTEGRAL EQUATIONS
FOR TEST PARTICLE MOTION

In our numerical calculations we use the integral
form for the equations of motion for test particle
geodesics (trajectories) in the Kerr metric derived by
Brandon Carter [1]:
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It is used the standard Boyer–Lindquist coordinates
(t, r, θ, φ) [2] and τ is a proper time of the massive
(μ �= 0) particles or a corresponding affine parametri-
zation for the massless (μ = 0) particles. In these
equations Δ = r2 − 2Mr + a2, M is a black hole
mass, a = J/M is a black hole spin. We use the
dimensional values: r ⇒ r/M , t ⇒ t/M and sim-
ilar ones. For example, GM/c2 is the used unit
for the radial distance, and, correspondingly, GM/c3

is the used unit for the time intervals. Similarly,
a = J/M2 ≤ 1 (with 0 ≤ a ≤ 1) is the dimensionless
value of the black hole spin. The event horizon radius
of the rotating black hole in these units is rh = 1 +√
1− a2. The test particle geodesics depend on the

integrals of motion: μ is the particle mass, E is the
particle total energy, L is particle azimuth angular
momentum, and the very specific Carter constant Q,
defining the non-equatorial motion of the test particle.
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Fig. 1. Classical black hole shadow [3] is viewed, which is a capture photon cross-section in the black hole gravitational field,
if there is a luminous background far behind the black hole with respect to a distant observer. Schwarzschild case (a = 0) is at
left and extreme Kerr case (a = 1) is at right. The disk inside a black hole shadow is an image of the black hole event horizon
globe in the imaginative Euclidean space without gravity. Numerically calculated photon trajectories, producing the shadow
edge, start from the luminous background far behind the black hole and finish very far from black hole.
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Fig. 2. Lensed images (direct and two light echoes) of a compact star on the equatorial circular orbit with radius rs =
20MhG/c2 around extreme Kerr black hole, observed by a distant telescope in discrete time intervals. Images of the first
and second light echoes are projected on the sky close to position of the classical black hole shadow [4]. The dashed circle
here and in the all similar figures is an image of the black hole event horizon globe in the imaginative Euclidean space without
gravity.

The effective radial R(r) and polar Θ(θ) potentials
here are

R(r) = (E(r2 + a2)− aL)2

−Δ[μ2r2 + (L− aE)2 +Q], (5)

Θ(θ) = Q− cos2 θ[a2(μ2 − E2) + L2 sin−2 θ]. (6)

The integrals in (1)–(4) are the path integrals along
the test particle trajectories. For example, the path
integrals in (1) reduce to the ordinary ones in the
absence of both the radial and polar turning points

along the particle trajectory:

rs∫

r0

dr√
R(r)

=

θs∫

θ0

dθ√
Θ(θ)

. (7)

Here, rs and θs are the initial radial and polar coordi-

nates of the particle (e.g., photon), while r0 � rh and
θ0 is the corresponding final (finishing) points on the
trajectory (e.g., the photon detection point by a dis-
tant telescope). A little bit more complicated is a case
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Fig. 3. Reconstruction of the lensed event horizon image by detecting of photons emitted some probes very near to the event
horizon in the Schwarzschild case (at left) and in extreme Kerr case (at right) [5–7]. The lensed event horizon image is projected
on the sky inside the position of classical black hole shadow.

Fig. 4. Infall of the star into rotating black hole viewed by a distant observer in discrete time intervals [8].

with the only one turning point in the polar direction,
θmin(λ, q) (derived from the equation Θ(θ) = 0). The
corresponding line integrals in (1) are reduced to the
following ordinary ones:

r0∫

rs

dr√
R(r)

=

θs∫
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dθ√
Θ(θ)

+

θ0∫

θmin
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. (8)

The most cumbersome complicated case, which we
consider here, is a particle trajectory with the one

turning point in the polar direction, θmin(λ, q) (derived
from the equation Θ(θ) = 0), and the one turning
point in the radial direction, rmin(λ, q) (derived from
the equation R(r) = 0). The corresponding path in-
tegrals in (1) in this case are reduced to the following
ordinary ones:
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dr√
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+
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Fig. 5. Direct image and first light echoes of the moving hot spot in the jet from black hole SgrA* (left) and M87* (right) in
discrete time intervals [9, 10]. In the nearest future a crucial information for the verification of strong gravity will be provided
by the detailed observations of black hole images including the motion of bright spots in jets.
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It is clear that the path integrals in Eqs. (1)–(4) for
particle trajectories with additional turning points are
reduced to the ordinary ones in similar ways.

3. IMAGES OF ASTROPHYSICAL BLACK
HOLES

See in Figs. 1–5 images of astrophysical black
holes modeled with using of the integral equations
of motion for photons (1)–(4). Shapes of black hole
images depend on the distribution of emitting matter
around black holes. Classical black hole shadow,
which is a capture photon cross-section [3], is viewed
if there is a luminous background far behind the black
hole. Meantime, the lensed image of the event horizon

globe is viewed if there is luminous accreting matter
near the event horizon.
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