COLLIDER PHYSICS

Exploring Hadron Spectra in Small Collision Systems at PHENIX

Y. A. Berdnikov¹, A. Y. Berdnikov¹, D. O. Kotov¹, Iu. M. Mitrankov¹, M. M. Mitrankova¹, and V. S. Borisov^{1*} (for the PHENIX Collaboration)

¹Peter the Great Saint-Petersburg Polytechnic University, St. Petersburg, Russia Received January 16, 2022

Abstract—The paper presents the results on $\pi^0, \pi^{\pm}, K^{\pm}, K^*, \phi$ and $p(\bar{p})$ production in small collision systems at $\sqrt{s_{NN}} = 200$ GeV as a function of transverse momentum at midrapidity ($|\eta| < 0.35$) measured by the PHENIX experiment.

Keywords: heavy ions, hadrons, QGP, nuclear modification factors

DOI: 10.3103/S0027134922020175

1. INTRODUCTION

The quark-gluon plasma QGP [1] formation in the relativistic heavy ion collisions [2] was supported by observation of various QGP effects such as strangeness and baryon enhancement [1]. However, the influence of cold nuclear mater effects (CNM) on particle production in large collision systems is still under consideration [3]. The study of light hadron production in small collision systems might help to interpret the results obtained in large collision systems and additionally provide a study of the minimal collision system size sufficient for observation of the QGP effects. To study effects affecting the particle production in ultrarelativistic collisions, nuclear modification factors R_{AB} are used [2]. The R_{AB} value is defined as a ratio of hadron production in nuclei-nuclei (A + B) collisions to its production in p + p collisions, scaled by number of binary collisions. The deviation of R_{AB} value from unity, might indicate the presence of QGP or CNM effects.

2. RESULTS

Figure 1 presents various light hadron (π^0 , π^{\pm} , K^{\pm} , K^* , ϕ , and $p(\bar{p})$) R_{AB} measured in the most

central p + Al and ³He + Au collisions at $\sqrt{s_{NN}} =$ 200 GeV. In both collision systems in the whole available p_T range the R_{AB} values of K^{\pm} , K^* , and ϕ mesons, containing (anti)strange quarks, are consistent with R_{AB} values of π^0 , π^{\pm} mesons, that contain only first-generation quarks. In central p + Al collisions R_{AB} values of \bar{p} show conformity with light meson R_{AB} values. In ³He + Au collisions (anti)proton yields are enhanced relatively to the binary scaled yields in p + p collisions.

3. CONCLUSIONS

Values of R_{AB} for all light mesons fall in the same curve in both p +Al and ³He + Au collisions. This might indicate that CNM effects are not responsible for the differences between light hadron R_{AB} values seen in heavy ion collisions. Nonetheless, the proton R_{AB} values are larger then light meson R_{AB} values in ³He + Au collisions. This suggests the baryon enhancement might be observed and QGP could be formed in ³He + Au collisions, while p + Al system size might be insufficient for observation of this effect.

^{*}E-mail: borisov_vs@spbstu.ru

Fig. 1. The π^0 , π^{\pm} , K^{\pm} , K^* , ϕ and $p(\bar{p})$ nuclear modification factors in (left) p + Al and (right) ³He + Au collisions at $\sqrt{s_{NN}} = 200$ GeV at midrapidity ($\eta < 0.35$).

FUNDING

We acknowledge support from the Russian Ministry of Education and Science, state assignment for fundamental research (code FSEG-2020-0024) in the ϕ meson part of the analysis.

CONFLICT OF INTEREST

The authors declare that they have no conflicts of interest.

REFERENCES

- 1. K. Adcox et al., "Formation of dense partonic matter in relativistic nucleus-nucleus collisions at RHIC: Experimental evaluation by the PHENIX Collab.," Nucl. Phys. A **757**, 184–283 (2005).
- 2. A. Ya. Berdnikov et al., "Phi meson measurements in Cu+Au collisions at 200 GeV and in U+U collisions at 192 GeV," J. Phys.: Conf. Ser. **1135**, 012044 (2018).
- 3. M. M. Mitrankova et al., "Production of light flavor hadrons in small systems measured by PHENIX at RHIC," Phys. Scr. **96**, 084010 (2021).