
ISSN 0027-1349, Moscow University Physics Bulletin, 2020, Vol. 75, No. 6, pp. 623–630. © Allerton Press, Inc., 2020.
Russian Text © The Author(s), 2020, published in Vestnik Moskovskogo Universiteta, Seriya 3: Fizika, Astronomiya, 2020, No. 6, pp. 92–98.

OPTICS AND SPECTROSCOPY.
LASER PHYSICS

The Coupled Wave Thickness Method
as a Universal Method for Synthesizing Interference

Antireflection Coatings (π-Structures)

A. V. Kozar*

Department of Physics, Moscow State University, Moscow, 119991 Russia
Received October 1, 2020; revised October 12, 2020; accepted October 13, 2020

Abstract—A method is proposed and a universal algorithm is constructed on its basis. The algorithm
includes a complete set of all structural solutions encountered in the synthesis of antireflection multilayer
structures. Exact analytical relations are obtained that make it possible to synthesize antireflection
structures with the minimum possible number of layers for any real values of the refractive indices of both
matched media and materials of layers of such structures. Their structural and matching properties are
analyzed and generalized. The correctness of the obtained exact solutions and the efficiency of the method
are confirmed by a numerical experiment.
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INTRODUCTION

A large number of articles have been devoted to
theoretical development of methods for the analysis
and synthesis of multilayer periodic structures due to
the relevance of these issues for solving a number
of problems of both applied and fundamental physics
[1–6]. The results relating to periodic structures con-
sisting of quarter-wave, half-wave, or layers close to
them in optical thicknesses have been sufficiently well
developed and generalized with sufficient complete-
ness. However, the development of modern physics
and technology, the intensive development of such
regions of the electromagnetic spectrum as the mid-
and far-infrared ranges, and the need to solve the
problems of diagnosis and synthesis of layered het-
erogeneous media with a given Nyquist plot and with
different periods of heterogeneity all require the de-
velopment of a new approach to both analytical and
numerical analysis of the properties and features of
layered structures in a more general formulation of
the problem and, as a result, the development of a
method that makes it possible to find an algorithm
analytically for synthesizing layered structures with
structural and amplitude-phase properties which dif-
fer from the classical ones.

The analytical solution of such a problem is ex-
tremely important because the analytical form makes
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it possible not only to synthesize a multilayer struc-
ture with the given Nyquist plot on the whole contin-
uous set of their possible values without resorting to
special numerical methods and applied programs [7–
11] but also to carry out a generalized analysis of its
structural and wave properties depending on different
kinds of physical factors (the influence on its Nyquist
plot of the variation of layer thicknesses, refractive
indices, the presence of losses in the layers of the
structure, the order of alternation, etc.). In addition,
the analytical form of the algorithm for synthesizing
multilayer structures makes it possible to establish
general patterns of its Nyquist plot from different
structural solutions and find optimal solutions for dif-
ferent criteria (the number of layers, their thicknesses,
period contrast, spectral characteristics, etc.).

1. THE METHOD OF COUPLED WAVE
THICKNESSES

In order to solve this problem, the normal inci-
dence of a plane monochromatic wave on a system
consisting of a multilayer structure with the refractive
indices of the layers in the two-layer (most com-
mon in practice) period n1 and n2 (the layer adjacent
to a medium with the refractive index nS) which,
being located between two media with real refrac-
tive indices nL (the medium from which the wave
propagates) and nS (the antireflection medium), pro-
vides a zero reflection factor for a given wavelength
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624 KOZAR

λ, i.e., the simultaneous fulfillment of the amplitude
|rC | = |rS | and phase ϕC = ϕS + π(2k + 1), (k =
0, 1, 2, . . . ) matching conditions (where |rC |, ϕC are
the modulus and phase of the reflection coefficient of
the wave from the structure when the wave comes
from the layer with the refractive index n2 in the
absence of the matched medium, |rS |, and ϕS is
modulus and phase of the reflection coefficient of the
wave from the matched medium in the absence of the
matching structure).

Consideration of the problem in this formulation
corresponds to the main goal of the research, because
finding structural solutions of the considered system
that satisfies the condition of zero reflection at dif-
ferent values of the refractive index of the matched
medium ns on the entire continuous set of its pos-
sible values means that the desired algorithm for syn-
thesizing a new class of multilayer structures with
structural-wave properties, which make it possible to
implement the solution of the problem.

When solving the initial equations, the wave
thicknesses of the layers in the period of the structure
were considered not fixed but being in the entire
continuous region of physically admissible values.
The exact solution of the considered problem in the
form of three coupled equations is as follows [12]:
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∣
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UK−1(x), UK−2(x) are the Chebyshev polynomials of
the second kind, where
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Ti ≡ tan(2πnidi/λ) (i = 1, 2),

d1,2 is the thickness of the physical layer.

1.1. The Coupling Condition of Wave Thicknesses

In order to obtain the coupling conditions of wave
thicknesses, let us rewrite Eq. (1) in the following
form:

T1 = AT2, (7)

then from relation (7) we obtain

D1 =
λ

2π

(

arctgA tg
2π

λ
D2 + πk

)

,

(k = 0, 1, 2, . . . ) (8)

where D2 =
λ
2π (arctg T2 +πk) (k = 0, 1, 2, . . . ), D1 =

n1d1, D2 = n2d2 are wave (optical) thicknesses of the
layers in a multilayer structure period.

Therefore, Eq. (1) is the coupling condition for
the wave thicknesses of the layers in the period of the
structure, and, as can be seen from (6), the coupling
coefficient A is invariant with respect to the number
of layers in the structure. Since coupling condition
(8) was obtained under the condition of the zero re-
flection coefficient from the considered system, the
independence of the coupling coefficient A from the
number of layers in the structure makes it possible
to conclude that such a class of multilayer structures
with a two-layer period has a fundamental property
which can be formulated as follows: for all multilayer
structures of such a class with a two-layer period,
which implement the mode of complete matching of
two media with real refractive indices nL and nS , the
wave thicknesses of the layers in the period of the
structure are always coupled according to relation (8).
That is, the fulfillment of coupling condition (8) and
its invariance on the number of layers means that for
any structures in which the wave thicknesses of the
layers in the period are associated with relation (8),
the phase matching condition is satisfied. Moreover,
it follows from relation (6) that for any real values
of nS ≥ nL and arbitrary values of the refractive in-
dices of the layers of the structure and their order of
alternation, there always exists a value A for which
the phase matching condition holds, regardless of the
number of layers in the structure and the fulfillment of
the amplitude matching condition.
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COUPLED WAVE THICKNESS METHOD 625

1.2. Basic Equations with Coupled Wave
Thicknesses

Finally, given coupling condition (7), the system
of initial equations (2), (3) can be rewritten as follows
[12]

N = 2K :

1− PT 2
2 =

UK−2(x)

UK−1(x)

√

(1 + T 2
2 )(1 +A2T 2

2 ), (9)

N = 2K + 1 :

1−BT 2
2 =

UK−2(x)

UK−1(x)

√

(1 + T 2
2 )(1 +A2T 2

2 ), (10)

Therefore, considering initially given valuesn1, n2,
and nL, the problem can be solved by finding the nu-
merical values of physical thicknesses d2 for a given
value of nS depending on the number of structure
periods K. The numerical values of d1 are determined
from relation condition of optical thicknesses (8).

Equations (9), (10) with respect to T2 are the fol-
lowing sum of terms of a convergent alternate power
series:

∞∑

K=1

(−1)KaKT 2K
2 = −1, (11)

where aK are the coefficients depending on n1, n2,
nL, nS, and K, and, in Eq. (11), the coefficient
a1 = K(Ψ +Q(K − 1)), where Ψ = P for N = 2K
and Ψ = B for N = 2K + 1.

2. THIN-LAYER INTERFERENCE
STRUCTURES (TIS)

In [12], the problem was set and solved to find such
solutions from the entire set of solutions of the system
of equations (9), (10) for which there are minimum
possible thicknesses of the layers in the period of the
multilayer structure. Since in this case the arguments
of the functions Ti are small, then, while neglect-
ing the terms with power exponents higher than the
second in the functions Ti from Eqs. (9), (10), the
following was obtained

N = 2K,
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λ

2πn2
arctg

(

K
(

P +Q(K − 1)
))−1/2

, (12)

N = 2K + 1,
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2πn2
arctg
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K
(
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where
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nLnS(n

2
2 − n2

1)
2

2n2
2(nLnS − n2

1)
2
, (14)

In this case, for K = 1, relations (12), (13) are exact,
and for K > 1, the performed approximation is quite
justified, because due to the inversely proportional de-
pendence of thickness of layers on their number, their
thickness can be tens times less than a quarter-wave;
moreover, the total wave thickness of the multilayer
structure appears to be less than a quarter-wave one
[12].

A sufficiently detailed analytical, numerical, and
experimental analysis of the fundamental structural
and spectral properties of such thin-layer structures
has been performed [12–21]. It showed that they are
preserved for this class of structures with two-, three-
, and multilayer periods as well as for aperiodic thin-
layer structures; in the case of small losses in the
layers of the structure and the matched medium; in
the case of oblique wave incidence; in small variations
of optical and geometric parameters of layers; and if
the wavefront of the incident wave is not a flat one.

As an example, the presence of such properties of
thin-layer structures as the matching invariance (re-
fractive index of the antireflection medium nS) on the
number of periods of the structure and, at the same
time, the inverse relationship of the layer thickness on
it, makes it possible to vary the thickness of layers of
the structure in a wide range (without changing the
total optical thickness of the entire structure), thus
meeting different kinds of physical and technological
requirements for the thickness of the layers in practi-
cal implementation.

The analysis and generalization of the results
of studies of the characteristics of such structures
showed that they have a number of unique structural
and wave properties inherent only to them, which
made it possible to allocate such structures to a sep-
arate class, that is, thin-layer interference structures
(TLIS).

However, in [12] it was shown that according to
the proposed algorithm all thin-layer solutions (the
thicknesses of both layers in the period of the struc-
ture are less than quarter-wave) are implemented for
the coupling coefficient A ≥ 0, i.e., for the values of
the refractive indices of the antireflection media nS in
the following interval:

n2
l ≤ nSnL ≤ n2

h, (15)

where nl, nh are the low and high refractive indices of
the layers in the period of the structure, respectively.
This circumstance limited the use of the proposed
method for matching media with refractive indices
outside this interval of values.

MOSCOW UNIVERSITY PHYSICS BULLETIN Vol. 75 No. 6 2020



626 KOZAR

3. π-STRUCTURES

In this article, we considered the possibility of syn-
thesizing antireflective structures using the proposed
method and algorithm (9), (10) outside interval (15).
In this case, the considered intervals of values nS
outside interval (15) are as follows:

nL ≤ nS < n2
l /nL and nS > n2

h/nL.

From expression (6) it can be seen that at any
of these intervals the coupling coefficient is A < 0
and, as follows from (7), the condition is fulfilled:
either T1 < 0 and T2 > 0, or vice versa. A negative
value of the function T1, e.g., means that the optical
thicknesses of layers of such a structure are in the in-
tervals of values λ/4 < n1d1 < λ/2 and 0 < n2d2 <
λ/4 (T1 < 0, T2 > 0), and the wave thicknesses of
the layers can be changed when changing the sign of
the function T (T1 > 0; T2 < 0) by simply subtracting
the corresponding arguments from π − 2πnidi/λ and
π − 2πn2d2/λ, or in expressions for thicknesses:

d′1 = λ/2n1 − d1 and d′2 = λ/2n2 − d2.

This structural feature is due to the proposed
method and the algorithm obtained on its basis in
the form of a special condition of coupled wave
thicknesses and, therefore, forms a separate class of
antireflection structures, which hereafter we will call
“π-structures.”

3.1. Analytical Solutions of Equations
with Coupled Wave Thicknesses

Since it is impossible to obtain the exact analytical
solution of Eqs. (9), (10) in a form that is general and
convenient for analysis (for any K), let us consider the
exact solutions of Eqs. (9), (10) for different values of
the number of the layers of the structure N . From the
analysis of the obtained solutions, let us determine the
range of values of the refractive indices of the matched
media nS, in which for the given number of layers the
mode of complete matching is implemented. Consid-
ering n1, n2, and nL are a priori set and known values,
the main required parameters of such an antireflection
N-layer coating in this case are the thicknesses of
layers in the structure period at different values of the
refractive indices of the matched media nS .

Solutions of equations (9), (10) are real values of
the function T2, knowing which from relation (8) the
thicknesses of layers in the period of structure d1 and
d2 corresponding to these solutions are found.

3.1.1. Consider the case where N = 2.
The solution of Eq. (9) for N = 2, (K = 1) given

that U0(x) = 0 has the following form:

T2 = ±1/
√
P . (16)

The negative sign of the function T2 means that its
argument in this case is arg(−T2) = π − arg(T2).

In the interval of low values of the refractive indices
of antireflection media nL ≤ nS< n2

l /nL, given that
the real values of the thicknesses of the layers of the
structure are at P 〉0, we obtain from the analysis of
relation (4) that the real thicknesses of the layers are
at n2 < n1 (n1 = nh;n2 = nl) and when the following
condition is satisfied:

nh > n2
l /nL. (17)

In cases where the antireflection media has high
refractive indices such that nS > n2

h/nL, it follows
from the analysis of relation (4) that Eq. (16) has no
valid solutions for any values and order of alternation
of the refractive indices of the layers n1 and n2.

In particular, if it is possible to select the materials
with the refractive index n that satisfy the condition
n2 = n2

l = nSnL or n2 = n2
h = nSnL; the solution

of Eq. (16) in these cases is a classical quarter-
wave layer and for the values of the refractive indices
of the matching structure that satisfy the condition
(nh/nl)

2nL = nS the structure becomes two-layer
with quarter-wave wave thicknesses of layers.

Therefore, if condition (17) is fulfilled, the two-
layer structure can provide a mode of full matching
with media whose refractive indices are in the follow-
ing range:

nL ≤ nS ≤ n2
h/nL,

3.1.2. If N = 3, (K = 1), the solution of Eq. (10)
is as follows:

T2 = ±1/
√
B. (18)

In the interval nL ≤ nS < n2
l /nL for any real values of

n1, n2 provided that n2 < n1 (n2 = nl;n1 = nh), B〉0
and Eq. (18) has two valid solutions.

In the interval nS > n2
h/nL, there are two valid

solutions to Eq. (18) if n1 < n2 and nS < n4
h/n

2
l nL.

In particular, if the refractive indices of the layers
of the structure are such that the condition nS =
n4
h/n

2
l nL is satisfied, then the matching structure

becomes a three-layer structure with quarter-wave
wave thicknesses of the layers.

Therefore, the three-layer structure provides a
complete matching mode with media whose refractive
indices are in the following range:

nL ≤ nS ≤ n4
h/n

2
l nL,

and the wave thicknesses of the layers, in this case,
take values from zero (nS = nL) to quarter-wave
(nS = n4

h/n
2
l nL).
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3.1.3. If N = 4, (K = 2) from Eq. (9) for N = 4
(U0(x) = 1, U1(x) = 2x), we obtain:

a2T
4
2 − a1T

2
2 + 1 = 0, (19)

where: a2 = A(2Pp −A), a1 = 2(P +Q) and the
solution of Eq. (19) has the following form:

T2 = ±
(

a1 ±
√

a21 − 4a2
2a2

)1/2

. (20)

In the interval of values of the refractive indices
nS of antireflection media nL ≤ nS < n4

h/n
2
l nL, Eq.

(19) has four solutions for arbitrary values of n1 and

n2, and for values of (nh/nl)
4nL < nS ≤ n3

h
nlnL

for any
valid values of the refractive indices of the layers in the
structure period and their optimal alternation order
(n1 < n2), Eq. (19) has two valid solutions.

If the refractive indices of the layers of the struc-
ture satisfy the condition (nh/nl)

4nL = nS, the wave
thicknesses of the layers become quarter-wave.

Therefore, a four-layer structure can form a com-
plete matching mode with media whose refractive
indices are in the following range:

nL ≤ nS ≤ n3
h/nlnL.

3.1.4. We consider a five-layer structure: N = 5,
(K = 2).

In this case, from Eq. (10) we obtain:

b2T
4
2 − b1T

2
2 + 1 = 0, (21)

where b2 = A(2Bp−A), b1 = 2(B +Q) and the so-
lution of Eq. (21) is as follows

T2 = ±
(

b1 ±
√

b21 − 4b2
2b2

)1/2

. (22)

The analysis of relation (22) for the presence of
valid values of the function T2 shows that Eq. (21)
has four valid solutions for n2 > n1 and nL ≤ nS <
n4
h/n

2
l nL and only two solutions for n4

h/n
2
l nL ≤ nS <

n6
h/n

4
l nL.

When selecting the materials of the layers of the
matching structure with refractive indices satisfying
the condition nS = n6

h/n
4
l nL, all wave thicknesses of

the layers become quarter-wave.
The interval of possible values of the refractive

indices of the matched media, in the case of a five-
layer structure is as follows:

nL ≤ nS ≤ n6
h/n

4
l nL.

It is possible to find exact solutions of Eqs. (9),
(10) for N > 5, but from the point of view of solving
practical problems this problem is redundant because

for the entire range of materials used for synthesis of
multilayer interference structures, both in optical and
microwave ranges, the structures synthesized based
on the proposed algorithm with the number of layers
of N ≤ 5 can ensure that there is no reflected signal
from almost any material used in practice with real
refractive indices. As an example, for the materials
BaF2 (nl = 1.45) and ZnSe (nh = 2.55), which are
often used in the synthesis of multilayer interference
coatings, in the middle infrared range the structures
created on their basis have the following intervals of
the refractive indices of the matched media during
wave propagation in free space (nL = 1): (N = 2)
1 ≤ nS ≤ 6.50; (N = 3) 1 ≤ nS ≤ 20.11; (N = 4)
1 ≤ nS ≤ 11.43; (N = 5) 1 ≤ nS ≤ 62.20.

3.1.5. Matching capability of π-structures.
Taking the results presented in subsections 3.1.1–
3.1.4 and the additional numerical analysis of the
dependence of the matching capacity of π-structures
on the number of layers into account showed that
the maximum refractive index value of the matched
medium nSmax on the number of layers of the π-
structure in the case of the optimal order of their alter-
nation can be determined from the following relations:

N = 2K : nSmax =

(
nh

nl

)K nhnl

nL
, (23)

N = 2K + 1 : nSmax =

(
nh

nl

)2K n2
h

nL
, (24)

and the discrete set of values nSmax(K) has the
quarter-wave optical thicknesses of the layers as a
structural solution.

From relations (23) and (24), it is possible to
determine the minimum number of the layers of the
π-structure required to obtain zero reflection from
media with refractive indices in the range nL ≤ nS ≤
nSmax:

N = 2K :

Kmin =

[∣
∣
∣
∣
ln

(
nSnL

nhnl

)/

ln

(
nh

nl

)∣
∣
∣
∣

]

+ 1, (25)

N = 2K + 1 :

Kmin =

[∣
∣
∣
∣
ln

(
nSnL

n2
h

)/

2 ln

(
nh

nl

)∣
∣
∣
∣

]

+ 1, (26)

and, as can be seen from the comparison of relations
(25) and (26), π-structures with odd number of layers
implement the matching mode for the same value of
nS with fewer layers and are more efficient in terms of
this optimization criterion.

When only the phase matching condition is sat-
isfied, e.g., when K < Kmin, a local extremum of the
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dependence of the reflection coefficient on the wave-
length from the considered system is observed at a
given wavelength, which can be used as a way to
synthesize π-structures that provide a given reflec-
tion coefficient 0 ≤ |r| < 1 from the medium with the
refractive index nS .

3.1.6. Structural properties. Increasing the
number of layers of the structure K > Kmin, if cou-
pling condition (8) is satisfied and nS is fixed, does
not violate the complete matching mode but only
increases the number of solutions and changes the
thickness of the layers in the structure period so
that the optical thickness of one of the layers of the
π-structure (depending on the selected sign of the
function T2) for K → ∞ tends to zero and the other
to (T2 > 0) n2d2 → 0, and n1d1 → λ/2. In addition,
increasing the number of layers of the structure in the
case under consideration leads to the removal of the
requirement of a certain alternation order of layers in
the period of the structure. As an example, in order to
obtain the real values of the thicknesses of the layers
in the period of the π- structure in the interval of
values of the refractive indices of the matched media
nL ≤ nS < n2

h/nL for nonoptimal alternation order of
the layers in the period, it is necessary to synthesize a
structure with the number of layers K > Kmin deter-
mined from the following relations:

N = 2K (n1 < n2) : K >
[

|P |/Q
]

+ 1,

N = 2K + 1(n1 < n2) : K >
[

|B|/Q
]

+ 1.

In analytical and numerical analysis of Eqs. (9),
(10) on asymptotic values of nS, it was found that for
limiting values of the refractive index of the matched
medium nS → nL or nS → ∞, in the first case T2 →
+0, T1 → −0 and the optical thicknesses of the layers
are either zero or λ/2, which is natural, because in
this case no matching is required. In the second
case, it follows from the analysis of the solutions of
Eqs. (9), (10) that T2 → +∞, and T1 → −∞, i.e., the
optical thicknesses of the layers of the structure tend
to quarter-wave values, which is also obvious.

Therefore, from the results given in subsections
3.1.1–3.1.6, the general conclusion can be drawn
that for any arbitrary real values of nL, n1, n2, and
nS in the considered medium–matching structure–
matched medium system, if the condition of coupling
of the wave thicknesses of the layers of the structure
according to relation (8) is satisfied, there always
exists such a minimum number of layers N of the
matching periodic structure starting from which the
reflection coefficient of the wave from the system be-
comes zero.

Furthermore, the universal nature of the proposed
method and the algorithm for the synthesis of an-
tireflection periodic structures with two-layer period

found on its basis should be noted, because the sys-
tem of Eqs. (9), (10) contains the complete set of all
structural solutions for the considered problem (half-
wave, quarter-wave, thin-layer, and π-structures).

From the practical point of view, the proposed
method and the algorithm obtained on its basis make
it possible to solve two main problems: first, to aban-
don the necessity of searching for the values of the
refractive indices of the layers of the matching struc-
ture depending on the value of the refractive index of
the matched medium and, secondly, to implement a
complete matching mode for any valid values of the
refractive indices of the matched media on the entire
continuous set of their values for any initially selected
materials of the layers of the structure.

4. NUMERICAL EXPERIMENT

Multilayer interference structures are widely used
to solve various kinds of problems, both applied prob-
lems and in basic research (from the ultraviolet to
the microwave range). Since the results are valid for
any of these ranges of the electromagnetic spectrum,
the choice of a particular range for the numerical
experiment determines only the requirements for the
materials of the layers of the matching structure that
meet the technological and physical requirements in
the chosen spectral range (strength, hygroscopicity,
adhesion properties, low absorption, spatial unifor-
mity, temperature stability parameters, etc.).

The following algorithm was used in the numerical
experiment and synthesis of the matching structures:
for the selected values of the refractive indices of the
layers of the matching structure nh and nl, the known
refractive index of the medium from which the wave
propagates nL, and the given refractive index of the
matched medium nS, from relations (25), (26) the
minimum number of the layers of the structure Nmin
is determined, then, having calculated the value of the
coupling parameter A from relation (6) all possible
values of d2 are determined from the exact analytical
relation for the obtained value Nmin and their corre-
sponding values d1 from relation (8).

The main goal of the numerical experiment was to
illustrate that the proposed algorithm can be used for
synthesizing antireflection coatings with a two-layer
period for fixed values of nh, nl for a wide range of
the values of the refractive indices nS of antireflection
media.

In this regard, by analogy with [12], wave prop-
agation in free space (nL = 1) was considered, with
λ = 10 μm as a working wavelength and BaF2 (nl =
1.45) and ZnSe (nh = 2.55) as materials of the lay-
ers of the structure materials frequently used in this
spectral range. The exact solutions of Eqs. (9),
(10) given in subsections 3.1.1–3.1.4 provided the
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minimum number of the layers of the structure that
ensure zero reflection from matched media with given
refractive indices nS were used in the calculation of
layer thicknesses.

In all the cases considered below, the reflection co-
efficient calculated numerically using exact formulas
was zero (“machine zero”).

The refractive indices of the matching media
ranged from nS = 1.1 to nS = 60 with a variable step
of ΔnS :

nS ∈ 1.1 − 2.1, ΔnS = 0.1;

nS ∈ 2.2 − 6.5, ΔnS = 0.5;

nS ∈ 7.0− 20, ΔnS = 1.5;

nS = 21− 60, ΔnS = 5.

In the interval of values 1.1 ≤ nS ≤ 2.1, the
matching structure consisted of two layers (n1 =
2.55;n2 = 1.45); in the interval 2.2 ≤ nS ≤ 6.5, also
N = 2 (n1 = 1.45;n2 = 2.55); in the interval 7.0 ≤
nS ≤ 20, N = 3 (n1 = 1.45;n2 = 2.55); and in the
interval 21 ≤ nS ≤ 60, N = 5 (n1 = 1.45;n2 = 2.55).

For brevity, we give the numerical values of the
thicknesses of the layers of the matching structure
(rounded to the third decimal place) for one arbitrary
value of nS for each of the intervals considered above:

nS = 1.5 (N = 2), d11 = 1.755 μm,

d21 = 1.115 μm; d12 = 0.257 μm, d22 = 2.333 μm;

nS = 4.0 (N = 2), d11 = 0.585 μm,

d21 = 0.416 μm; d12 = 2.863 μm, d22 = 1.545 μm;

nS = 20 (N = 3), d11 = 1.838 μm,

d21 = 0.952 μm; d12 = 1.610 μm, d22 = 1.008 μm;

nS = 60 (N = 5), d11 = 1.909 μm,

d21 = 0.925 μm; d12 = 1.539 μm, d22 = 1.036 μm.

In all cases considered above, Eqs. (16), (18),
and (21) each have two solutions with respect to
the thicknesses of layers in a period: {d11, d21} and
{d12, d22}, where the first index is the number of
the layer, and the second index is the number of the
solution.

If the refractive index of the matched medium nS =
4.0, there is a TLIS class structure (d11, d21).

Figure 1 illustrates the dependence of the energy
reflection coefficient R = |r|2 on the wavelength λ
for the case considered above for layer thicknesses
corresponding to {d11, d21}.

We consider a problem similar to the previous one
as an example illustrating that it is possible to select
the optimal thickness of the layers of the structure
by synthesizing a structure with the number of layers
N > Nmin and, accordingly, a larger number of so-
lutions, but in order to match the medium with the
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Fig. 1. The dependence of the reflection coefficient R on
the wavelength λ on the matching structure–matched
medium system.

refractive index nS = 4 (Nmin = 2), we synthesize a
five-layer structure, which according to Section 3.1.4
has in this case four solutions on layer thicknesses:

d1, d2 =

⎧

⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

0.280 μm, 0.209 μm (TLIS)

0.889 μm, 0.593 μm (TLIS)

2.559 μm, 1.368 μm

3.168 μm, 1.752 μm

⎫

⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎭

and since the function Ti is periodic each of all the
thicknesses calculated above can be increased by
(λ/2ni)k, where k = 0, 1, 2, . . . .

CONCLUSIONS

In conclusion, another possible application of the
proposed method can be noted. When numerically
solving the problems of synthesizing antireflection
structures with special spectral characteristics, the
proposed algorithm can be used as an initial approx-
imation, because the solutions found on its basis
correspond to the global minimum of the reflection
coefficient at a given wavelength.
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