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INTRODUCTION

Powerful sources of X-ray radiation, that is,
specific third-generation synchrotron sources and
X-ray free-electron lasers, find increasing application
for studying the structure of various systems. The
brightness of these sources leads to a substantial
increase in thermal load on both forming X-ray optics
components and studied objects themselves.

In spite of the relatively low intensity of radia-
tion of X-ray tubes, the experimental technique for
determination of objects heating by X-ray radiation
was developed as early as the 1940s (for example, [1,
p. 408]). However, in classical works, i.e., “bibles”
on the physics of X rays and X-ray structural analy-
sis [2–7], X-ray heating was not considered.

The first work known to the author of this paper
that was devoted to X-ray heating was published in
2008 [8]. In [8], based on a numerical solution to the
heat conductivity equation, the thermal field profile in
a silicon crystal with a size of 30 × 10 × 2 mm, which
was at 293 K and was irradiated by X-ray synchrotron
radiation with an energy of 10 keV and energy density
0.23 W/mm2, was calculated. It was shown that the
crystal surface heated to a maximum temperature of
approximately 296 K.

The next step was made in [9, 10], where, based on
an analytical solution to the heat conductivity equa-
tion with boundary conditions of the first kind, the
space–time distribution of temperature in the crystal
under the influence of X-ray free-electron laser was
analyzed. In this case, thermal properties of a model
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diamond crystal were described not by a tensor, but
by the heat conductivity factor, i.e., the crystal had
isotropic thermal properties. This approach is justified
for evaluation of the thermal influence on X-ray optics
components, which are equipped with a cooling sys-
tem, but is not applicable in other cases.

Since, crystals have substantially anisotropic
thermal properties [11] the description of their thermal
properties by a single scalar heat conductivity factor
is a rather rough simplification.

Unfortunately, the author of this paper is not aware
of other papers that are devoted to the study of X-
ray heating of crystals that have anisotropic thermal
properties. At the same time, as mentioned above
and separately noted in [9, 10], this problem is of
significant interest.

1. PROBLEM STATEMENT

When X rays fall on a substance part of the radia-
tion is reflected from the surface, part of the radiation
is scattered on the atoms of the substance, part of
the radiation passes through the substance, and the
remaining part is absorbed. The X-ray absorption is
described by the law

I(x) = I0 exp(−μx), (1)

where I0 is the X-ray intensity on the surface, μ =
τ + σ is the linear attenuation factor, τ is the true
absorption factor, which corresponds to the extinction
of the initial X-ray photon, σ is the scattering factor,
which corresponds to changing the direction of the
initial X-ray photon, and x is a coordinate that is
directed deep into the material.
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The X-ray photon extinction during true absorp-
tion occurs due to the photoelectric effect, when the
photon energy is spent on atomic ionization. As
a result of the true absorption, the radiation energy
is transformed into the energy of photo- and Auger
electrons and the energy of the secondary radiation.
Electrons that hit the irradiated substance, when in-
teracting with atoms of this substance, give them
their energy, which is transformed into other forms of
energy (depending on the properties of the absorbing
body, thermal, chemical energy, energy of radiation,
and ionization).

Following (1), in a layer of the substance with a
thickness x the energy

W (x) = W0{1− [1−R] exp(−μx)}
is absorbed, where R is the X-ray reflection factor:
the specular reflection under sliding angles of the
incidence of the radiation on the crystal surface (in
the region of the total external reflection), away from
the diffraction conditions, the diffraction reflection, at
large angles of the radiation incidence on the surface
under the diffraction conditions, and the specular-
diffraction reflection when conditions of diffraction for
atomic crystalline planes and the specular reflection
for the surface are simultaneously fulfilled for incident
X rays. In the most general case, the reflection factor
will be a function of two spatial coordinates y, z, as
well as time t: R(y, z, t) [12–14]. A linear attenuation
factor can be represented in the form [1, 6]

μ = (τe + τS) + (σe + σS),

where the coefficient τe takes the energy that is trans-
formed into the energy of photoelectrons into ac-
count, τS takes the energy of a characteristic X-ray
that occurs upon ionization of atoms into account, σe
takes the energy that is transformed into the kinetic
energy of recoil electrons into account, and σS takes
the energy of the scattered X rays into account.

Therefore, the part of the absorbed energy of the
incident X rays that is transformed into the energy
of electrons is characterized by a linear coefficient of
electron transformation γ = τe + σe [1].

In the absence of chemical and ionization pro-
cesses in the substance, as well as phase transi-
tions, the entire energy of electrons W0{1− [1−
R] exp(−γx)} heats the irradiated substance and is
transferred deep into the substance by the heat con-
ductivity. The kinetics of this process are described by
an inhomogeneous heat conductivity equation with
an internal thermal source [15–19]:

c(r)ρ(r)[∂T (r, t)/∂t]

= div[Λ(r, t) × gradT (r, t)] + F (r, t), (2)

where c(r) is the specific heat capacity, ρ(r) is the
density, T (r, t) is the temperature field, Λ(r, t) is

the heat conductivity tensor, F (r, t) is the density of
internal thermal sources, r is the spatial coordinate,
and t is time. In the framework of this model, it
is assumed that the specific heat capacity and heat
conductivity tensor do not depend on temperature.
In a real situation, this, in fact, implies the approx-
imate solution to the problem only within a certain
temperature interval ΔT , in which, one can neglect
the change of c(T ) and Λ(T ). In this case, it is of
particular note that Eq. (2) itself was obtained in the
following approximations [19].

1. The deformation of the considered volume,
which is related to the change of temperature,
is very small compared to the volume itself.

2. Macroscopic particles of the body are motion-
less with respect to each other.

Moreover, the heat conductivity equation (2) is the
general mathematical model for a set of heat con-
ductivity phenomena and by itself, is not indicative
of development of the heat transfer process in the
body. This is explained by the nonuniqueness of the
solution to partial differential equations. In order to
derive a single partial solution, which corresponds to
a certain problem, one needs to have additional data
that are not contained in the initial equation. These
data include:

1. Geometric conditions that give the shape and
size of the body in which heat exchange pro-
cesses take place;

2. Physical conditions that give not only the heat
and temperature conductivity but also the den-
sity of internal thermal sources;

3. Boundary conditions that give the thermal in-
teraction of the surface of the body with the
environment;

4. Initial conditions that give the distribution of
teh temperature at any point of the body at a
certain initial time.

We will consider ideal dielectric or semiconduc-
tor crystals as the objects of study, where, follow-
ing [20, 21], one can consider the specific heat capac-
ity and the density to be independent of the coordinate
and the heat conductivity components to be indepen-
dent of the coordinate and time.

Changing to the principal axes (x′, y′, z′) of the
heat conductivity, the components of a symmetric
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second rank tensor Λ(r, t) take the diagonal form [13,
16, 19, 22]:

Λ′(r′) =

⎛
⎜⎜⎜⎝

λ1 0 0

0 λ2 0

0 0 λ3

⎞
⎟⎟⎟⎠ ,

and the heat conductivity equation (2), in view of this,
is simplified:

cρ
∂T

∂t
= λ1

∂2T

∂x′2
+ λ2

∂2T

∂y′2
+ λ3

∂2T

∂z′2
+ F.

Further, we will work in the system of principal
axes of the heat conductivity and omit the symbol ′

at coordinates, and present the studied crystal itself
in the form of a rectangular parallelepiped with a size
of l1 × l2 × l3 along the principal axes of the heat
conductivity.

In most X-ray experiments the studied sample is
small, and the time of mounting, adjustment, and
equipment alignment is large. In this case, if temper-
ature experiments are not performed, then the sample
is under conditions of convective and radiative heat
exchange with the environment. Consequently, the
temperature distribution of the studied sample at the
initial instant of time can be considered uniform and
equal to the environment temperature, which is a
constant and does not depend on time:

T (r, t) = T0 = const.

In the most general case, the boundary condi-
tions of the formulated problem are inhomogeneous
boundary conditions of the third kind [16, 17, 22]:

α(T0 − T )|S + λn
∂T

∂n

∣∣∣∣
S

= Ψ(r, t), (3)

where n is the unit outer normal to the surface
(boundary) S of the body, α is the heat exchange
factor, and Ψ(r, t) is the energy density of thermal
sources on the surface. Thus, in [8], it is assumed that
Ψ(r, t) = μaqr − σμeT

4, where μa and μe are surface
factors of absorption and emission, qr is the surface
density of the incident heat flux, σ is the Stefan–
Boltzmann constant, and T is the surface tempera-
ture. Following [8, 17], we neglect changing the heat
exchange factor α on time and its dependence on the
thermophysical properties of the body, i.e., we will
assume α = const on all edges of the sample.

Therefore, the problem is reduced to solving the
third inhomogeneous boundary-value problem for the
heat conductivity equation with a source in an or-
thotropic parallelepiped:

∂T

∂t
= a1

∂2T

∂x2
+ a2

∂2T

∂y2
+ a3

∂2T

∂z2
+

F (r, t)

cρ
,

r ∈ V, t > 0; (4)

T (r, t = 0) = T0 = const, r ∈ V ; (5)

α(T0 − T )|x + λ1
∂T

∂x

∣∣∣∣
x

= Ψ1(r, t),

x = 0, 0 < y < l2, 0 < z < l3, t > 0; (6.1)

α(T0 − T )|x + λ1
∂T

∂x

∣∣∣∣
x

= Ψ2(r, t),

x = l1, 0 < y < l2, 0 < z < l3, t > 0; (6.2)

α(T0 − T )|y + λ2
∂T

∂y

∣∣∣∣
y

= Ψ3(r, t),

y = 0, 0 < x < l1, 0 < z < l3, t > 0; (6.3)

α(T0 − T )|y + λ2
∂T

∂y

∣∣∣∣
y

= Ψ4(r, t),

y = l2, 0 < x < l1, 0 < z < l3, t > 0; (6.4)

α(T0 − T )|z + λ3
∂T

∂z

∣∣∣∣
z

= Ψ5(r, t),

z = 0, 0 < x < l1, 0 < y < l2, t > 0; (6.5)

α(T0 − T )|z + λ3
∂T

∂z

∣∣∣∣
z

= Ψ6(r, t),

z = l3, 0 < x < l1, 0 < y < l2, t > 0, (6.6)

where ai = λi/(cρ) are temperature conductivity fac-
tors (i = 1, 2, 3) and V is the parallelepiped volume.
An attempt to solve problem (4)–(6) was made
in [22]; however, in the course of solution, boundary
conditions were changed from third-kind boundary
conditions to second-kind boundary conditions.

Let X rays propagate along the x axis and fall on
the input surface x = 0. Then, the density of internal
thermal sources F (r, t) can be presented in the form

F (r, t)

= W0(y, z, t){1 − [1−R(y, z, t)] exp(−γx)},
where W0(y, z, t) determines the time dependence of
the X-ray intensity on the surface.

2. ANALYTICAL SOLUTION
TO THE PROBLEM

In view of the linearity of problem (4), we present
the function T (r, t) in the form of a sum:

T (r, t) = v(r, t) + w(r, t),

we substitute this expression into (3)–(5) and select
problems for functions w(r, t):

a1
∂2w

∂x2
+ a2

∂2w

∂y2
+ a3

∂2w

∂z2
= 0,

r ∈ V, t > 0; (7.1)
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λn
∂w

∂n

∣∣∣∣
S

− αw|S = Ψ(r, t)− αT0,

r ∈ S, t > 0, (7.1)

and v(r, t):

∂v

∂t
= a1

∂2v

∂x2
+ a2

∂2v

∂y2
+ a3

∂2v

∂z2
+

F (r, t)

cρ
− ∂w

∂t
,

r ∈ V, t > 0; (8.1)

v(r, t = 0) = T0 − w(r, t = 0), r ∈ V ; (8.2)

λn
∂v

∂n

∣∣∣∣
S

− α.v|S = 0, r ∈ S, t > 0. (8.3)

In fact, this implies that we presented the tem-
perature field T (r, t) inside the studied sample as a
superposition of “stationary” (since boundary con-
ditions depend on time) w(r, t) and nonstationary
with sources v(r, t) temperature fields.

In order to solve problem (7), we present the
sought function in the form of a sum w(r, t) =
w1(r, t) +w2(r, t) +w3(r, t), each term of which sat-
isfies the initial equation (7.1) and one-dimensional
boundary conditions of the third kind. In this case, for
function w1(r, t), homogeneous boundary conditions
of the third kind are given on the edges y = 0, y = l2,
z = 0, z = l3, for function w2(r, t), on edges x = 0,
x = l1, z = 0, z = l3, and for function w3(r, t), on
edges x = 0, x = l1, y = 0, y = l2:

a1
∂2w1

∂x2
+ a2

∂2w1

∂y2
+ a3

∂2w1

∂z2
= 0,

r ∈ V, t > 0; (9.1)

λ1
∂w1

∂x

∣∣∣∣
x=0

− αw1|x=0 = Ψ1(r, t)− αT0,

0 < y < l2, 0 < z < l3, t > 0; (9.2)

−λ1
∂w1

∂x

∣∣∣∣
x=l1

− αw1|x=l1
= Ψ1(r, t)− αT0,

0 < y < l2, 0 < z < l3, t > 0; (9.3)

λ2
∂w1

∂y

∣∣∣∣
y=0

− αw1|y=0 = 0,

0 < x < l1, 0 < z < l3, t > 0; (9.4)

−λ2
∂w1

∂y

∣∣∣∣
y=l2

− αw1|y=l2
= 0,

0 < x < l1, 0 < z < l3, t > 0; (9.5)

λ3
∂w1

∂z

∣∣∣∣
z=0

− αw1|z=0 = 0,

0 < x < l1, 0 < y < l2, t > 0; (9.6)

−λ3
∂w1

∂z

∣∣∣∣
z=l3

− αw1|z=l3
= 0,

0 < x < l1, 0 < y < l2, t > 0. (9.7)

The problems for functions w2(r, t) and w3(r, t) are
similar and we will not write them separately.

Using the method of separation of variables to
solve the problem (9) w1(x, y, z, t) = X(x, t)P (y, z),
we derive the following eigenfunction P (y, z) and
eigenvalue λ2 problem:

a2
∂2P

∂y2
+ a3

∂2P

∂z2
+ λ2P = 0,

0 < y < l2, 0 < z < l3; (10.1)

λ2
∂P

∂y

∣∣∣∣
y=0

− αP |y=0 = 0,

λ2
∂P

∂y

∣∣∣∣
y=l2

+ αP |y=l2
= 0; (10.2)

λ3
∂P

∂z

∣∣∣∣
z=0

− αP |z=0 = 0,

λ3
∂P

∂z

∣∣∣∣
z=l3

+ αP |z=l3
= 0. (10.3)

We will again solve the problem (10) by the method
of separation of variables P (y, z) = Y (y)Z(z):

a2Y
′′ + β2

2Y = 0,

λ2Y
′|y=0 − αY |y=0 = 0,

λ2Y
′|y=l2 + αY |y=l2 = 0; (11.1)

a3Z
′′ + β2

3Z = 0,

λ3Z
′|z=0 − αZ|z=0 = 0,

λ3Z
′|z=l3 + αZ|z=l3 = 0; (11.2)

β2
2 + β2

3 = λ2, (11.3)

where the primes traditionally denote teh derivatives.

The eigenfunction Y and eigenvalue β2 prob-
lem (11.1) has the general solution

Y (y) = C1 cos

(
β2√
a2

y

)
+ C2 sin

(
β2√
a2

y

)
,

and integration constants C1 and C2 are determined
from boundary conditions in (11.1) and connected
by relation C1 =

λ2√
a2

β2

α C2. In this case, eigenvalues
β2 are determined from a numerical solution to a
transcendental equation

cot

(
β2√
a2

l2

)
=

1

2

[
λ2√
a2

β2
α

−
√
a2
λ2

α

β2

]
, (12)

having an infinite number of roots β2,m.

The problem (11.2) is also solved similarly. More-
over, solving problem (9) for functions w2(r, t) and
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w3(r, t) in the same way, we obtain an analogous
expression for function X(x) as well. Therefore, we
can write eigenfunctions of the problem (11) in the
following most general form:

Xi,m(xi) = Di

[
λi√
ai

βi,m
α

cos

(
βi,m√
ai

xi

)

+ sin

(
βi,m√
ai

xi

)]
, (13)

where Di are arbitrary, for example equal to unity,
constants of integration, coordinates x, y, z
are renamed as xi (i = 1, 2, 3), and eigencalues

βi,m are roots of Eq. (12): cot
(
βi,m√

ai
li

)
=

1
2

[
λi√
ai

βi,m

α −
√
ai
λi

α
βi,m

]
.

It is easy to show that eigenfunctions Xi (13)
are orthogonal on segments 0 < xi < li and their
squared norm is determined by expression

||Xi,m(xi)||2 =
1

2

[
li +

2λiaiα

β2
i,mλ2

i + aiα2

]
.

In turn, eigenfunctions of the problem (10), which
are determined by expression

Pnk(x2, x3)

= Dnk

[
λ2√
a2

β2,n
α

cos

(
β2,n√
a2

x2

)
+ sin

(
β2,n√
a2

x2

)]

×
[

λ3√
a3

β3,k
α

cos

(
β3,k√
a3

x3

)
+ sin

(
β3,k√
a3

x3

)]
,

are orthogonal in rectangle (0 < x2 < l2)× (0 <
x3 < l3), and their squared norm is

||Pnk(x2, x3)||2 = ||X2,n(x2)||2||X3,k(x3)||2.

From (9), in addition to problem (10) on eigen-
functions P (y, z) and eigenvalues λ2, we also obtain
equation

a1
∂2X(x1, t)

∂x21
− λ2X(x1, t) = 0,

which solution at known eigenvalues λnk is a function

Xnk(x1, t) = Ank(t) exp

{
λnk√
a1

x1

}

+Bnk(t) exp

{
− λnk√

a1
x1

}
.

Consequently, the solution to problem (9) has the
form:

w1(x1, x2, x3, t) =
∞∑

n,k=1

{[
Ank(t) exp

{
λnk√
a1

x1

}

+Bnk(t) exp

{
− λnk√

a1
x1

}]

×
[

λ2√
a2

β2,n
α

cos

(
β2,n√
a2

x2

)
+ sin

(
β2,n√
a2

x2

)]

×
[

λ3√
a3

3,k

α
cos

(
β3,k√
a3

x3

)
+ sin

(
β3,k√
a3

x3

)]}
.

(14)

Coefficients Ank(t) and Bnk(t) depend on time, since
they are determined from inhomogeneous boundary
conditions of the third kind (9.2), (9.3) with the right
sides, which depend on time.

In order to find coefficients Ank(t) and Bnk(t), we
substitute w1(x1 = 0, x2, x3, t) and w1(x1 = l1, x2,
x3, t), which are expressed from (14), into (9.2)
and (9.3). We multiply the obtained equalities by
eigenfunctions Pqs(x2, x3) with indices q, s and in-
tegrate over x2 within limits from 0 to l2, and over x3
within limits from 0 to l3. In view of the orthogonality
of eigenfunctions, all terms of the obtained series,
apart from the term at n = q and k = s, will be zero.
As a result, we obtain the system of equations to find
the sought coefficients:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Ank(t)
[
λ1

λnk√
a1

− α
]

+Bnk(t)
[
−λ1

λnk√
a1

− α
]
= Ψ̃1(t)

Ank(t)
[
λ1

λnk√
a1

− α
]
exp

{
λnk√
a1
l1

}

+Bnk(t)
[
−λ1

λnk√
a1

− α
]

× exp
{
− λnk√

a1
l1

}
= Ψ̃2(t),

(15)

where it is introduced the notation

Ψ̃1,2(t) =
1

||Pnk||2

×
l2,l3∫∫

0

{⎡
⎣Ψ1,2

⎛
⎝ x = 0

x = l1

, ξ2, ξ3, t

⎞
⎠− αT0

⎤
⎦

×
[

λ2√
a2

β2,n
α

cos

(
β2,n√
a2

ξ2

)
+ sin

(
β2,n√
a2

ξ2

)]

×
[

λ3√
a3

β3,k
α

cos

(
β3,k√
a3

ξ3

)

+sin

(
β3,k√
a3

ξ3

)]}
dξ2dξ3. (16)
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The solution to system (15) has the following sim-
ple form:

Ank(t), Bnk(t)

=

Ψ̃1(t)

[
λ1

λλnk√
a1

∓ α

]
exp

{
∓ λnk√

a1
l1

}

−
[
λ1

λnk√
a1

+ α

]2
exp

{
λnk√
a1
l1

}

+ Ψ̃2(t)

[
λ1

λnk√
a1

± α

]

+

[
λ1

λnk√
a1

− α

]2
exp

{ − λnk√
a1

l1

}. (17)

Therefore, the solution w1(r, t) of problem (9) is
determined by expression (14), where the coefficients
Ank(t) and Bnk(t) are given by (17), λ2

nk = β2
2,n +

β2
3,k, and βi,m are roots of Eq. (12).

We recall that the solution to problem (7) is
w(r, t) = w1(r, t) + w2(r, t) + w3(r, t). The proce-
dure to find w2(r, t) and w3(r, t) is similar to find-
ing w1(r, t) and will not be performed separately. We
only note that the results themselves can be obtained
from (14), (17) by circular permutation of coordinates
x1, x2, x3.

Problem (8) will be solved by the reduction method,
having presented v(r, t) = v1(r, t) + v2(r, t). The
substitution of this expression into (8) leads to a
homogeneous partial differential equation with in-
homogeneous initial and homogeneous boundary
conditions for function v1(r, t):

∂v1
∂t

= a1
∂2v1
∂x21

+ a2
∂2v1
∂x22

+ a3
∂2v1
∂x23

,

r ∈ V, t > 0; (18.1)

v1(r, t = 0) = T0 − w(r, t = 0), r ∈ V ; (18.2)

λn
∂v1
∂n

∣∣∣∣
S

− αv1|S = 0, r ∈ S, t > 0, (18.3)

and inhomogeneous partial differential equation with
homogeneous initial and boundary conditions for
function v2(r, t):

∂v2
∂t

= a1
∂2v2
∂x21

+ a2
∂2v2
∂x22

+ a3
∂2v2
∂x23

+
F (r, t)

cρ
− ∂w

∂t
, r ∈ V, t > 0; (19.1)

v2(r, t = 0) = 0, r ∈ V ; (19.2)

λn
∂v2
∂n

∣∣∣∣
S

− αv2|S = 0, r ∈ S, t > 0. (19.3)

In order to solve (18) we use the method of sepa-
ration of variables v1(r, t) = R(r)Q(t):

1

Q

∂Q

∂t
=

1

R

[
a1

∂2R

∂x21
+ a2

∂2R

∂x22
+ a3

∂2R

∂x23

]
= −λ2

(20.1)

⇒
{

dQ
dt + λ2Q = 0

a1
∂2R
∂x2

1
+ a2

∂2R
∂x2

2
+ a3

∂2R
∂x2

3
+ λ2R = 0,

(20.2)

λn
∂R

∂n

∣∣∣∣
S

Q− αR|SQ = 0

⇒ λn
∂R

∂n

∣∣∣∣
S

− αR|S = 0 at Q �= 0. (20.3)

Equation (20.2) with the homogeneous bound-
ary condition of the third kind (20.3) is the problem
on eigenvalues λ2 and eigenfunctions R(x1, x2, x3),
whose solving is performed by the method of separa-
tion of variables R(x1, x2, x3) = X(x1)Y (x2)Z(x3)

a1X
′′ + β2

1X = 0,

λ1X
′|x1=0 − αX|x1=0 = 0,

λ1X
′|x1=l1 + αX|x1=l1 = 0; (21.1)

a2Y
′′ + β2

2Y = 0,

λ2Y
′|x2=0 − αY |x2=0 = 0,

λ2Y
′|x2=l2 + αY |x2=l2 = 0; (21.2)

a3Z
′′ + β2

3Z = 0,

λ3Z
′|x3=0 − αZ|x3=0 = 0,

λ3Z
′|x3=l3 + αZ|x3=l3 = 0; (21.3)

β2
1 + β2

2 + β2
3 = λ2. (21.4)

The derived problems (21) are completely similar
to problems (11) and their solution is determined by
expression (13).

In turn, eigenfunctions of problem (20.2), which
are determined by expression

Rmnk(x1, x2, x3) = Dmnk

×
[

λ1√
a1

β1,m
α

cos

(
β1,m√
a1

x1

)
+ sin

(
β1,m√
a1

x1

)]

×
[

λ2√
a2

β2,n
α

cos

(
β2,n√
a2

x2

)
+ sin

(
β2,n√
a2

x2

)]

×
[

λ3√
a3

β3,k
α

cos

(
β3,k√
a3

x3

)
+ sin

(
β3,k√
a3

x3

)]
,

(22)

are orthogonal in the parallelepiped (0 < x1 < l1)×
(0 < x2 < l2)× (0 < x3 < l3), and their squared
norm is:

||Pmnk(x1, x2, x3)||2
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= ||X1,m(x1)||2||X2,n(x2)||2||X3,k(x3)||2.

The function Q(t) = exp{−λ2t} will be a solution
to equation, and the series over all eigenfunctions

v1(x1, x2, x3, t)

=

∞∑
m,n,k=1

Cmnk exp
{
−
(
β2
1,m + β2

2,n + β2
3,k

)
t
}

×Rmnk(x1, x2, x3)

will be a solution v1(r, t) of problem (18).

In this case, the coefficients should satisfy initial
condition (18.3), whereas boundary condition (18.3)
has already been used to determine eigenfunctions
Rmnk, i.e., coefficients Cmnk will have the form:

Cmnk =
1

||Rmnk||2

l1,l2,l3∫∫∫

0

[T0 − w(ξ1, ξ2, ξ3)]

×Rmnk(ξ1, ξ2, ξ3)dξ1dξ2dξ3.

Inhomogeneous partial differential equation with
homogeneous initial and boundary conditions (19)
will be solved by expansion of the function v2(r, t)

in series over eigenfunctions Řmnk(x1, x2, x3),
assuming that boundary condition (19.3), i.e.,
Řmnk(x1, x2, x3) ≡ Rmnk(x1, x2, x3), where Rmnk

is determined by (22), was used to determine the
eigenfunctions. We also expand function f(r, t) =
F (r,t)
cρ − ∂w

∂t in a similar series:

v2(x1, x2, x3, t)

=

∞∑
m,n,k=1

v2,mnk(t)Rmnk(x1, x2, x3), (23.1)

f(x1, x2, x3, t)

=
∞∑

m,n,k=1

fmnk(t)Rmnk(x1, x2, x3), (23.2)

and fmnk(t) are Fourier coefficients in expansion f(r, t)
over eigenfunctions:

fmnk(t) =
1

||Rmnk||2

l1,l2,l3∫∫∫

0

f(ξ1, ξ2, ξ3)

×Rmnk(ξ1, ξ2, ξ3)dξ1dξ2dξ3. (24)

To determine v2,mnk(t), we substitute (23) into
(19.1), (19.2) and taking

a1
∂2v2
∂x2

+ a2
∂2v2
∂y2

+ a3
∂2v2
∂z2

=

∞∑
m,n,k=1

v2,mnk(t)[−(β2
1,m + β2

2,n + β2
3,k)

×Rmnk(x1, x2, x3)]

into account, we transform (19.1), (19.2) to the form
(dot denotes derivative over time):

∂v2
∂t

−
[
a1

∂2v2
∂x2

+ a2
∂2v2
∂y2

+ a3
∂2v2
∂z2

+ f

]

=
∞∑

m,n,k=1

[v̇2,mnk(t) + (β2
1,m + β2

2,n + β2
3,k)v2,mnk(t)

− fmnk(t)]Rmnk(x1, x2, x3),
∞∑

m,n,k=1

v2,mnk(t = 0)Rmnk(x1, x2, x3) = 0.

In view of the orthogonality of eigenfunctions
Rmnk, we derived the Cauchy problem for an inho-
mogeneous differential equation of the first order with
a homogeneous initial condition:

v̇2,mnk(t) + (β2
1,m + β2

2,n + β2
3,k)v2,mnk(t)

− fmnk(t) = 0,

v2,mnk (t = 0) = 0.

The solution to this problem will be the function

v2,mnk(t) =

t∫

0

fmnk(t)

× exp{−(β2
1,m + β2

2,n + β2
3,k)(t− τ)}dτ, (25)

and we obtain a final solution to problem (19), substi-
tuting (24) into (25), and (25) into (23.1):

v2(x1, x2, x3, t) =

∞∑
m,n,k=1

1

||Rmnk||2

×
l1,l2,l3,t∫

0

[
f(ξ1, ξ2, ξ3, τ)Rmnk(ξ1, ξ2, ξ3)dξ1dξ2dξ3

× exp{−(β2
1,m + β2

2,n + β2
3,k)(t− τ)}dτ

]

×Rmnk(x1, x2, x3).

CONCLUSIONS

It has been shown in this paper that synchrotron
X-ray heating of crystals that have anisotropic ther-
mal properties and experience heat exchange with
the environment are described by a heat conductivity
equation with sources and boundary conditions of the
third kind. The analytical solution to this equation
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was found based on the example of a crystal that has
the shape of a rectangular parallelepiped.

In fact, these results are an analytical solution
to the heat conductivity equation with a source and
boundary conditions of the third kind in an orthotropic
rectangular parallelepiped and have both fundamental
importance and broad applications in heat conductiv-
ity problems of anisotropic media, such as the heat
conductivity of space and aircraft construction mate-
rials.
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