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Abstract—The existence of time-periodic solutions of the boundary-layer type to a two-dimensional
reaction–diffusion problem with a small-parameter coefficient of a parabolic operator is proved in the case
of singularly perturbed boundary conditions of the second kind. An asymptotic approximation with respect
to the small parameter is constructed for these solutions. The set of boundary conditions for which these
solutions exist is studied and the local uniqueness and asymptotic Lyapunov stability are established for
them. It is shown that, unlike the analogous Dirichlet problem, for which such a solution is unique, there
can be several solutions of this kind for the problem under consideration, each of which has its domains of
stability and local uniqueness. To prove these facts, results based on the asymptotic principle of differential
inequalities are used.
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INTRODUCTION

Periodic parabolic boundary value problems have
been being intensively studied from both the theoret-
ical and applied standpoints. A number of problem
classes that are important for applications can be
found, for example, in [1]. Evolution and periodic
problems with analogous higher differential opera-
tors were considered in [3–6] based on the operator
method under development, as well as their applica-
tion in a number of applied physical problems. In ap-
plications, equations of this kind are called reaction-
diffusion equations or reaction–diffusion–advection
equations when they involve a term that describes
transport. These equations are widely and success-
fully used in nonlinear wave theory and fluid dynamics
(see, for example, [2–8]). In many cases, singularly
perturbed problems of the considered type are used to
describe processes with an intense reaction (source),
namely, problems with a small-parameter coefficient
of the higher differential operator. A characteristic
feature of these problems is the existence of solutions
with boundary and inner transition layers [9–11].
We also note that an analogous method was applied
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in [12] to study the asymptotic stability. Reaction–
diffusion–advection equations often occur in appli-
cations, for example, in ecology when the variation
in temperature or gas concentration in surface layers
of the atmosphere is mathematically simulated, as
well as in chemical kinetics and biological kinetics.
In this work, we consider a new class of problems
that have not been studied earlier, more precisely,
problems multidimensional with respect to the spa-
tial variable with boundary conditions singular with
respect to the small parameter. This work develops
and generalizes the result obtained in [13] for the one-
dimensional case to the more complicated class of
problems multidimensional with respect to the spatial
variable. Problems with singularly perturbed con-
ditions arise in many applications where reaction–
diffusion equations are used as mathematical mod-
els. In particular, boundary conditions of such a type
occur in the hydrodynamic variant of the Burgers
equation (see, for example, [14]).

1. PROBLEM STATEMENT

We consider the following reaction–diffusion equa-
tion with a second-kind singularly perturbed bound-
ary condition that naturally occurs in mathematical
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models with rapid flow across a boundary:

Nε(u) := ε2
(
�u− ∂u

∂t

)
− f(u, x, t, ε) = 0,

(x, t) ∈ Dt := {(x, t) ∈ R3 : x ∈ D, t ∈ R},

ε
∂u

∂n
(x, t, ε) = uΓ(x, t), x ∈ Γ, t ∈ R,

u(x, t, ε) = u(x, t+ T, ε), x ∈ D̄, t ∈ R, (1)

where � = ∂2

∂x1
2 + ∂2

∂x2
2 , ∂

∂n is the derivative with re-
spect to the inner normal to the smooth boundary Γ
of a given two-dimensional simply connected domain
D, and ε > 0 is a small parameter.

The small parameter ε in the boundary condition
can be interpreted as intense sources at the boundary
of the domain. Boundary conditions of this type are
called singular, since the small parameter is in the
denominator when the Neumann boundary condition
is written in the standard form. Unlike the standard
Neumann condition, when the boundary layer is weak
(of order ε), the boundary layer occurring in this case
is of order 1 and as shown below has a more complex
structure than that in the case of Dirichlet boundary
conditions.

We assume that the following conditions hold:
(A1) Let f(u, x, t, ε) and uΓ(x, t) be sufficiently

smooth T -periodic (with respect to t) functions in the
considered domain.

(A2) Let the degenerate equation f(u, x, t, 0) = 0
have a T -periodic (with respect to t) solution u =
ϕ(x, t) such that

fu(ϕ, x, t, 0) > 0, x ∈ D̄, t ∈ R.

We study the problem of the existence of a smooth
periodic solution of problem (1) such that for any
time t, it tends to the root ϕ(x, t) in the interior of
the domain D bounded by the curve Γ as ε → 0 and
abruptly changes in a neighborhood of Γ, that is, that
has a boundary layer.

2. CONSTRUCTION OF THE ASYMPTOTICS

2.1. Asymptotic Expansion of the Solution

To describe the boundary layer in a standard way
we introduce a local system of coordinates. For the
curve Γ, we define the δ-neighborhood Γδ(t) := {P ∈
D : dist(P,Γ) < δ}, δ = const > 0. Furthermore, in
the δ-neighborhood of Γ, we introduce the local co-
ordinates (r, θ), where θ ∈ [0,Θ) is the coordinate of
the point M ∈ Γ such that dist{x,Γ} = dist{x,M};
r = dist{x,Γ}, x ∈ D. We assume that the curve Γ
is given parametrically as follows: xi = Xi(θ), i =
1, 2; n(θ) = {n1(θ), n2(θ)} is the inner normal to Γ
at M . With a sufficiently small δ (which is however

finite and independent of ε), there is a one-to-one
correspondence between the coordinates (x1, x2) and
(r, θ):

xi = Xi(θ) + rni(θ), i = 1, 2.

We seek the asymptotics of the solution to prob-
lem (1) in the form

U(x, t, ε) = ū(x, t, ε) + Π(ξ, θ, t, ε), (2)

where the regular part has the form

ū(x, t, ε) = ū0(x, t) + εū1(x, t) +

. . .+ εnūn(x, t) + . . .

and the boundary part in the neighborhood of Γ has
the form

Π(ξ, θ, t, ε) = Π0(ξ, θ, t)

+ εΠ1(ξ, θ, t) + . . .+ εnΠn(ξ, θ, t) + . . . ,

where

ξ =
r

ε
.

Such a structure of the asymptotics is standard for
problems with boundary layers and has been proposed
by Tikhonov and Vasil’eva in their classical works
(see [15]): the regular part of the asymptotics is in-
tended to approximate the solution in the interior of
the domain, while the boundary layer part is intended
to approximate the solution near the boundary. The
coefficients of the powers of ε in the boundary layer
part are called boundary functions.

In view of the features of a parabolic operator
(see [16, 17]), the standard algorithm of the bound-
ary function method (see [15, 16]) gives a sequence
of problems to determine the coefficients of asymp-
totic series (2). In particular, we obtain the relation
ū0(x, t) = ϕ(x, t), while the terms ūi(x, t) of higher
orders can be derived from simple algebraic equa-
tions.

We will consider constructing the boundary layer
functions in detail. The Laplace operator in the lo-
cal coordinates (r, θ) has the form (see [15]) � =
∂2

∂r2
+�r ∂

∂r + |∇θ|2 ∂2

∂θ2
+�θ ∂

∂θ . When acting on
the boundary layer functions, the differential operator
Dε := ε2

(
�− ∂

∂t

)
assumes the following form in the

variables (ξ, θ, t):

Dε =
∂2

∂ξ2
+ εs(εξ, θ)

∂

∂ξ

+ ε2
(
|∇θ|2 ∂2

∂θ2
+�θ

∂

∂θ
− ∂

∂t

)
,

where s(r, θ) := �r(r, θ). LetR0(θ) = {X1(θ),X2(θ)}
be the radius vector of a point of the curve Γ with
coordinate θ. We know (see [18]) that �r(r, θ) is
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Fig. 1. The possible location of separatrices on the phase
plane of problem (3). The upper and lower horizontal
dotted lines correspond to positive and negative values of
the function uΓ(θ, t).

the curvature of Γr := {x ∈ D : {x1, x2} = R0(θ) +
rn(θ)} at the point (x1(θ), x2(θ)).

We will determine the functions Πi using the
scheme of the algorithm proposed by A.B. Vasil’eva.

The term Π0(ξ, θ, t) is obtained from the problem

∂2Π0(ξ, θ, t)

∂ξ2
= f(ϕ(0, θ, t)

+ Π0(ξ, θ, t), 0, θ, t, 0), ξ > 0,

∂Π0

∂ξ
(0, θ, t) = uΓ(θ, t),

Π0(+∞, θ, t) = 0. (3)

The differential equation in (3) is an autonomous
second-order equation (θ and t are parameters),
which can be studied on the phase plane (Π0,Π

′
0),

where the origin (0, 0) is a saddle-type equilibrium
point (due to (А2)). Problem (3) has a solution
in the case when a separatrix passing toward the
saddle point (0, 0) intersects the horizontal line Π′

0 =
uΓ(θ, t). This problem can have several solutions
(see Fig. 1). We choose a solution according to the
following condition.

(A3) We assume that for any fixed (θ, t) ∈ [0,Θ)×
R, that problem (3) has a solution Π0(ξ, θ, t) that
is monotonic with respect to ξ and satisfies the
inequality

Π′′
0(0, θ, t) = f(ϕ(0, θ, t)

+ Π0(0, θ, t), 0, θ, t, 0) > 0(< 0),

Π0(0, θ, t) > 0(< 0).

Several solutions Π0(ξ, θ, t) satisfying (А3) can
exist. For example, when points A, B, C, and D
correspond to the argument ξ = 0 (Fig. 1), we obtain
phase trajectories that are solutions of problem (3)
that satisfy the condition (А3) when moving away
from them along the corresponding separatrix toward

the saddle point (0,0). The following estimates are
known to hold (see [19]):

|Π0(ξ, θ, t)| ≤ Ce−kξ, (4)

where C and k are some positive constants.
We will show how to obtain the functions Πi, i =

1, 2 . . ..
The functions Π1 are derived from the problem

∂2Π1

∂ξ2
− ∂f̃

∂u
Π1 = r1,

∂Π1(0, θ, t)

∂ξ
+

∂ū0
∂r

(0, θ, t) = 0,

Π1(+∞, θ, t) = 0,

r1(ξ, θ, t) := −∂Π0

∂ξ
(ξ, θ, t)s(0, θ)

+ ξ

(
∂f̃

∂u

∂ū0
∂r

(0, θ, t) +
∂f̃0
∂r

)

+ ū1(0, θ, t)
∂f̃

∂u
+

∂f̃0
∂ε

, (5)

where the symbol “∼” over a function means that
its value is taken at the argument (Π0(ξ, θ, t) +
ū0(0, θ, t), 0, θ, t, 0).

The solution of (5) under the condition that
(Π0(ξ, θ, t) is chosen according to the requirement
(А3) is explicitly representable as (see [13])

Π1(ξ, t) =
z(ξ, θ, t)
∂z
∂ξ (0, θ, t)

{
− ∂u0

∂r
(0, θ, t)

+
1

z(0, θ, t)

∞∫
0

z(χ, θ, t)r1(χ, θ, t)dχ

}
− z(ξ, θ, t)

×
ξ∫

0

1

z2(η, θ, t)

⎡
⎣

∞∫
η

z(χ, θ, t)r1(χ, θ, t)dχ

⎤
⎦ dη, (6)

where z(ξ, θ, t) = ∂Π0(ξ,θ,t)
∂ξ .

For Π1, the estimate

|Π1(ξ, θ, t, ε)| < C1e
−k1ξ

holds, where C1 and k1 are some positive constants.
The inner transition layer functions of higher or-

ders are derived from problems analogous to the prob-
lems for Π1:

∂2Πi

∂ξ2
− ∂f̃

∂u
Πi = ri,

∂Πi(0, θ, t)

∂ξ
+

∂ūi+1

∂r
(0, θ, t) = 0,

Πi(+∞, θ, t) = 0, (7)
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where ri(ξ, θ, t) are known functions. The solution of
(7) can be written in an explicit form analogous to (6).
We note that the inverse operator that specifies the
solution of the problems for Πi is monotonic, which
is essentially used in proving the existence of the
solution and its asymptotic Lyapunov stability.

We note that the Π-functions are formally defined
for ξ ∈ R; however, they actually make sense only
for |ξ| ≤ δ

ε . To smoothly extend them to the whole
of the domain D, the standard method of smoothing
functions is used (see, for example, [15]).

Thus, we have completed a formal construction of
the asymptotics of the solution with a boundary layer
for problem (1).

3. JUSTIFICATION OF THE CONSTRUCTED
ASYMPTOTICS

Let Un(x, t, ε) =
∑n

i=0(ūi(x, t) + Πi(ξ, θ, t))ε
i.

The following theorem states the main result of this
section.

Theorem 1. If the conditions (А1–А3) are
satisfied, then for sufficiently small ε, for each
solution Π0(ξ, θ, t) of problem (3) chosen accord-
ing to the condition (А3), there exists a relevant
solution u(x, t, ε) of problem (1) with a boundary
layer such that the estimate

|Un(x, t, ε) − u(x, t, ε)| < Cεn+1,

x ∈ D̄, t ∈ R

holds.
Proof
We will prove this assertion based on the method

of differential inequalities. As an upper solution, we
choose the function

βn(x, t, ε) = ū0(x, t)

+ εū1(x, t) + . . . + εn+1ūn+1(x, t) + Π0(ξ, θ, t)

+ εΠ1(ξ, θ, t) + . . . + εn+1Πn+1(ξ, θ, t)

+ εn+1(γ +Πβ(ξ, θ, t)),

where the function Π0 is chosen according to the
condition (А3), γ > 0 is a constant that provides
the fulfillment of the necessary differential inequality
and the functions Πβ are needed to compensate the
changes due to γ; these functions are derived from the
problem

∂2Πβ

∂ξ2
− ∂f̃

∂u
Πβ = rβ,

∂Πβ(0, θ, t)

∂ξ
= −δ,

Πβ(+∞, θ, t) = 0, (8)

where δ > 0 is some constant and

rβ(ξ, θ, t) = γ

(
∂f

∂u
(Π0(ξ, θ, t)

+ū0(0, θ, t), 0, t, 0)

− ∂f

∂u
(ϕ, 0, t, 0)

)
−M exp(−kξ).

It is straightforward to see that the coefficient of
γ has an exponential estimate implied by (4). There-
fore, we can choose a sufficiently large M > 0 and a
sufficiently small k > 0 so that rβ(ξ, θ, t) < 0.

Problem (8) is analogous to problem (7) and has
the solution

Πβ(ξ, t) =
z(ξ, θ, t)
∂z
∂ξ (0, θ, t)

×
{
− δ +

1

z(0, θ, t)

∞∫
0

z(χ, θ, t)rβ(χ, θ, t)dχ

}

− z(ξ, θ, t)

ξ∫
0

1

z2(η, θ, t)

×

⎡
⎣

∞∫
η

z(χ, θ, t)rβ(χ, θ, t)dχ

⎤
⎦ dη. (9)

Due to (А3), if Π0(0, θ, t) > 0(< 0), then the fol-
lowing inequalities are valid: ∂z

∂ξ (0, θ, t) = Π′′
0(0, θ, t) >

0(< 0), z(ξ, θ, t) = Π′
0(ξ, θ, t) < 0(> 0), ξ ∈ [0,∞),

t ∈ R, θ ∈ [0,Θ). These inequalities and (9) imply
that Πβ(ξ, θ, t) > 0, ξ ∈ [0,∞), t ∈ R, θ ∈ [0,Θ).

The lower solution αn(x, t, ε) has an analogous
structure such that rα(ξ, θ, t) > 0, Πα(ξ, θ, t) < 0,
ξ ∈ [0,∞), t ∈ R, θ ∈ [0,Θ); therefore, the upper and
lower solutions are ordered.

To verify the necessary differential inequalities, we
directly compute them analogously to [13]. For the
upper solution, we have

Nεβn = ε2
(
�− ∂

∂t

)
βn − f(βn, x, t, ε)

= −εn+1

(
∂f̄

∂u
γ +M exp(−kξ)

)
+O(εn+2),

where the dash over a function means that its value is
taken at the argument (ū0, 0, θ, t, 0). Due to (А2), for
sufficiently small ε, the inequality Nεβn < 0 holds for
any γ > 0.

The inequality on the boundary is verified directly
as follows:

ε
∂βn
∂r

(xΓ, t, ε) =
∂Π0

∂ξ
+ εn+1∂Πβ

∂ξ
+ εn+2 ∂un+1

∂r
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= uΓ(θ, t) + εn+1

{
− δ +

1

z(0, θ, t)

×
∞∫
0

z(χ, θ, t)rβ(χ, θ, t)dχ

}
+O(εn+2) ≤ uΓ(θ, t).

The corresponding inequality for the upper solu-
tion can be verified analogously.

The known comparison theorems imply the ex-
istence of a solution of problem (1) that satisfies
the inequality αn(x, t, ε) ≤ u(x, t, ε) ≤ βn(x, t, ε),
where, as follows from the construction, we have
αn(x, t, ε)− βn(x, t, ε) = O(εn+1), which yields the
assertion of the theorem.

4. THE ASYMPTOTIC STABILITY
OF THE SOLUTION

Periodic solutions of problem (1) can be consid-
ered as solutions of the relevant initial boundary value
problem on the semi-infinite time interval:

Nε(v) := ε2
(
�v − ∂v

∂t

)
− f(v, x, t, ε) = 0,

(x, t) ∈ Dt+ := {(x, t) ∈ R3 : x ∈ D, 0 < t < ∞},

ε
∂v

∂n
(x, t, ε) = uΓ(x, t), x ∈ Γ, t ∈ R,

v(x, 0, ε) = v0(x, ε), (x, y) ∈ D̄. (10)

Evidently, if v0(x, ε) = u(x, 0, ε), where u(x, t, ε) is
a solution of periodic problem (1), then problem (10)
has the solution v(x, t, ε) = u(x, t, ε). Studying its
stability is based on the asymptotic method of differ-
ential inequalities. We will seek the upper and lower
solutions of problem (10) in the form α(x, t, ε) =

u(x, t, ε) + e−Λ(ε)t(αn(x, t, ε) − u(x, t, ε)) and
β(x, t, ε)=u(x, t, ε)+ e−Λ(ε)t(βn(x, t, ε)−u(x, t, ε)),
where Λ(ε) > 0 will be indicated below. It is obvi-
ous that α < β; to verify the classical theorems on
differential inequalities for parabolic systems in [1],
it suffices to show that Nεβ < 0 and Nεα > 0. By
substituting the above expressions for α and β and
taking the fact into account that u is a solution of
Eq. (1), we can easily derive the needed inequalities.
As an example, the expression for Nεβ is transformed
to the form (for brevity, we omit all arguments of
the functions f and fu except for the first one in the
following formulas):

Nεβ = e−Λt

{[
ε2
(
− ∂βn

∂t
+�βn

)
− f(βn)

]

+

[
ε2
(
− ∂u

∂t
+�u

)
− f(u)

]

0.5

1.0

1.5

2.0

2.5

3.0
z

A
B

0�2 �1�3�4
�0

Fig. 2. The solid line is a part of the separatrix passing
toward the saddle point (0, 0) on the phase plane (Π0,Π

′
0)

of relevant problem (12). The dotted line corresponds
to the initial condition for z = 2.2(1 + 0.05 sin(2πt/T )).
The parameter t is 0.

+ [f(βn)− f(u)− f∗
u · (βn − u)] + ε2Λ(βn − u)

}
.

Here, the symbol “∗” to the right of a function means
that its value is taken at the argument u(x, t, ε) +

θe−Λ(ε)t(αn(x, t, ε) − u(x, t, ε)), 0 < θ < 1.

We use the fact that ε2
(
− ∂βn

∂t +�βn
)
− f(βn) =

−εn+1
(∂f̄
∂uγ +M exp(−kξ)

)
+O(εn+2), where γ >

0, βn − u = O(εn+1), and f(βn)− f(u)− f∗
u(βn −

u) = O(ε2n+2); upon choosing Λ(ε) = Λ0 > 0 and
a sufficiently large γ, we obtain the relation Nεβ =

e−Λ0t(−εn+1(∂f̄∂uγ + M exp(−kξ)) + O(ε2n+2)

+Λ0O(εn+3)) < 0 for n ≥ 0. The inequality Nεα > 0
can be verified in an analogous way. Thus, each
of the solutions whose existence is guaranteed by
Theorem 1 is asymptotically Lyapunov stable with the
domain of attraction at least [α0(x, 0, ε), β0(x, 0, ε)],
whose width is a quantity of order O(ε1).

Therefore, the following theorem is valid.
Theorem 2. We assume that the conditions

(А1–А3) hold. Then, each solution u(x, t,ε) of
problem (1) whose existence is guaranteed by
Theorem 1 is asymptotically Lyapunov stable
with the domain of stability at least [α0(x, 0, ε),
β0(x, 0, ε)]; therefore, u(x, t, ε) is a unique solution
of problem (1) in this domain.

4.1. An Example of a Boundary Layer Solution

We consider the problem

Nε(u) := ε2
(
�u− ∂u

∂t

)
− u(u+ 2)(u+ 3) = 0,
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�1.0 �0.5 0.5 1.0
x1

�1

u

�2

�3

Fig. 3. The zero-order asymptotics U0(x1, 0, θ, 0, ε) for
both stable boundary layer solutions of problem (11).

(x, t) ∈ Dt := {(x, t) ∈ R3 :

x ∈ D = {(x1, x2) : x21 + x22 < 1}, t ∈ R},

ε
∂u

∂n
(x, t, ε) = 2.2(1 + 0.05 sin(2πt/T )),

x ∈ Γ, t ∈ R,

u(x, t, ε) = u(x, t+ T, ε), x ∈ D̄, t ∈ R, (11)

where T = 0.2, ε = 0.1.
We immediately note that this problem is radially

symmetric, which means that the solution must be
independent of the parameter θ, being the angle be-
tween the point (x, y) and the Ox axis.

The degenerate equation u(u+ 2)(u+ 3) = 0 has
three roots ϕ1 = −2, ϕ2 = −3, and ϕ = 0; it is well
known that the points (ϕ1, 0) and (ϕ, 0) on the phase
plane (Π0,Π

′
0) are saddle-type equilibrium points,

while ϕ2 = −3 is a center-type equilibrium point. We
seek boundary layer solutions that are close to the
root ϕ = 0 far from the boundary. The condition (А3)
is satisfied by exactly two solutions of problem (8)
corresponding to the phase trajectories started at the
points A and B of intersection of the line z = uΓ and
the separatrix passing toward the saddle point (0, 0)
(see Fig. 2).

The problem for Π0 assumes the form

∂2Π0

∂ξ2
= Π0(Π0 + 2)(Π0 + 3),

∂Π0

∂ξ
(0, θ, t) = 2.2(1 + 0.05 sin(2πt/T )),

Π0(+∞, θ, t) = 0. (12)

Then, the zero-order asymptotics of the solution is
expressed as follows:

U0(x1, x2, t, ε) = Π0

((
1−

√
x21 + x22

)
/ε, θ, t

)
.

Due to Theorems 1 and 2, there exist two asymp-
totically Lyapunov stable solutions u(x, t, ε) of prob-
lem (11) that correspond to the above two solutions
of problem (12) such that |U0(x, t, ε)− u(x, t, ε)| =
O(ε). Each of the solutions is locally unique in the
domain indicated in Theorem 2.

Figure 3 shows the zero-order asymptotics for
both solutions.

CONCLUSIONS

This paper considers a new class of nonlinear
problems in mathematical physics, which is impor-
tant for many applications. Strict results are obtained
concerning the stability of boundary layer solutions in
the case of singularly perturbed Neumann boundary
conditions. It is established that the behavior of the
solution in the boundary layer for problems of this
kind is much more complicated than that for prob-
lems with Dirichlet boundary conditions and common
Neumann conditions. The result can be extended to
singularly perturbed boundary conditions of the third
kind and is a basis to study new applied problems.
The results concerning the conditions of asymptotic
stability of boundary layer solutions are also impor-
tant in studying contrast structures (solutions with
inner transition layers), since the limit discontinuous
solution depends on the behavior in the boundary
layer as well (see, for example, [16]).
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