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Abstract—The influence of an external magnetic field on the phase-transition temperature for antiferro-
magnetic thin films is investigated. The computer modeling method for the antiferromagnetic Ising model
with a thin film geometry is used. Films with thicknesses from 4 to 16 layers have been investigated. It
is shown that the temperature of the antiferromagnetic phase transition decreases according to the square
law as the external magnetic intensity increases. The rate of decrease of the phase-transition temperature
depends on the film thickness and on the relationship between the exchange integrals on the surface
and the bulk of the system. For each system, there is a limit value of the magnetic intensity such that
no antiferromagnetic phase transition occurs if it is exceeded. The dependence of the limit value of the
magnetic intensity on the relationship between the exchange integrals obeys the square law as well.
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1. INTRODUCTION

The character of phenomena observed under phase
transitions in thin antiferromagnetic films differs from
that of phenomena in infinite or semi-infinite systems.
Unlike infinite systems, thin films have two free sur-
faces, which leads to the necessity to take the surface
antiferromagnetism into account. In semi-infinite
systems, the situation is similar. However, the phase
transition in the bulk of a semi-infinite system is the
same as that for an infinite one because the contribu-
tion of a free surface to total-system thermodynamic
parameters is infinitesimal. The only possible anti-
ferromagnetic effect occurs when the spin-ordering
temperature on the surface differs from the Neel tem-
perature. As a result, an additional phase and the
corresponding two phase transitions appear on the
phase diagram. A qualitatively different situation is
observed in thin films. The total number of layers
is low and two surface layers substantially affect the
thermodynamic functions of the entire system.

Two main distinctions of spins located on the sur-
face from spins located in the bulk of the system can
be noted. First, a surface that spins has a lower
number of nearest neighbors. In all spin models,
only the nearest neighbors are taken into account
because exchange integrals decrease very rapidly as
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the distance increases. As a result, less thermal-
motion energy is required to flip the spin. Secondly,
the exchange-coupling energy on the surface might
differ from that in the bulk of the system. As an
example, the interatomic distance for Gd, computed
in [1], is equal to 3.52 Å in the crystal bulk and to
3.64 Å on the surface. As a result, the exchange
integral is equal to JS = 1.25 on the surface and to
JB = 1.51 in the crystal bulk.

The computer modeling of ferromagnetic and an-
tiferromagnetic films (see [2] and [3], respectively)
shows that no phase transition is observed for thin
films: the system as a whole passes from the para-
magnetic phase to the antiferromagnetic one. The
corresponding increase of the surface exchange in-
tegral leads to the growth of the Neel temperature.
The growth of the phase-transition temperature is a
decreasing function of the film thickness. This effect
is caused by the higher spin-ordering temperature
of surface spins. Ordered structures on the surface
affect close layers substantially (see [4, 5]). However,
due to the small thickness of the film all of the layers
are close to the surface.

The influence of external magnetic fields to phase
transitions in antiferromagnetic systems is substan-
tial (see [6, 7]). For infinite antiferromagnetic sys-
tems, the increase of the magnetic field leads to the
the decrease of the phase-transition temperature. The
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Neel temperature depends quadratically on the inten-
sity of the magnetic field (see [8–10]). This motivates
the investigation of the joint influence of the value
of the surface exchange integral and of the magnetic
field on the phase-transition temperature in antiferro-
magnetic films.

The goal of the present paper was to investi-
gate phase transitions in the antiferromagnetic Ising
model with a thin-film geometry via computer mod-
eling.

2. SYSTEM DESCRIPTION

The Hamiltonian of the system for thin antiferro-
magnetic films in the magnetic field described by the
Ising model has the form

H = −JB
∑

B

SiSj − JS
∑

S

SiSj

− JS
∑

SB

SiSj + μhv
∑

Si,

where Si is the spin in the ith node (+1/2 or −1/2),
JB is the exchange integral in film layers that differ
from boundary layers, JS is the exchange integral
free surfaces of the film and interaction of surface
spins and spins of the first subsurface layer, hv is the
intensity of the external magnetic field, and μ is the
Bohr magneton. In the initial three terms of the free
energy, only pairs of nearest neighbors are taken into
account under the summing. In the first term, spin
pairs such that no spin is located on the free surface of
the thin film are considered. In the second term, spin
pairs such that each both spins are located on a same
free surface are considered. In the third term, spin
pairs such that one spin is located on a free surface
and another one is located in the first subsurface layer
are summed. Dimensionless relative values

R = JS/JB and h = μhv/JB

are more convenient for computer modeling. In this
case, the Hamiltonian takes the form

H/JB = −
∑

B

SiSj −R
∑

S

SiSj

−R
∑

SB

SiSj + h
∑

Si.

It is more convenient to consider the dimensionless
value

T = kt/JB ,

where k is the Boltzmann constant, instead of the
temperature t.

For the computer modeling, thin films with linear
dimensions L×L×D, where D is the film thickness,
are used. The system is located between the {z = 0}

and {z = D − 1} planes. Periodic boundary-value
conditions are used along the directions of the OX
and OY axes. The Metropolis algorithm is used to
perform the computer modeling.

To describe the magnetic properties of the system,
two order parameters (volume one and surface one)
are introduced. The surface order parameter mS is
computed as the chess magnetization of spins located
in the plane {z = 0}. By virtue of the system sym-
metry, it is pointless to introduce the second surface
parameter for the plane {z = D − 1}. A volume pa-
rameter m computed as the chess magnetization as
well is used to describe the collective behavior of the
remaining spins located outside surfaces.

For both order parameters, the dependence of the
fourth-order Binder cumulants (see [11]) on the tem-
perature is computed:

U = 1− 〈m4〉
3〈m2〉2 , US = 1− 〈m4

S〉
3〈m2

S〉2
,

where angular brackets denote the thermodynamic
averaging over system states.

Due to the finite-dimensional scaling theory (see
[12]), the values of the Binder cumulants at the
phase-transition temperature do not depend on the
system parameters. To find the phase-transition
temperature, graphs of the dependence of the Binder
cumulant are constructed for systems of various
sizes; then their intersection point corresponding to
the phase-transition temperature is found. To find
the Neel temperature TN, the cumulants U are used;
the temperature TS of the surface phase transition is
determined on the base of US .

3. COMPUTER EXPERIMENT: RESULTS

In the computer experiment, systems with linear
dimensions from L = 20 to L = 36 with a step ΔL =
4 are investigated. Films of thicknesses from D = 4
to D = 16 with a step ΔD = 4 are considered. The
number of Monte-Carlo steps per spin is equal to 8×
105. The magnetic field varies from h = 0 to H = 5.0
with step ΔH = 0.5. The relationship between the
exchange integrals varies from R = 0.7 to R = 1.8
with step ΔR = 0.1.

According to the computations for the phase tran-
sition in thin antiferromagnetic films, the Neel tem-
perature depends quadratically on the intensity of the
external magnetic field. From the qualitative view-
point, the system demonstrates the same regularities
as infinite and semi-infinite antiferromagnetic sys-
tems. Figure 1 demonstrates a typical dependence of
the phase-transition temperature TN on the intensity
h of the external magnetic field under the assumption
that the thickness of the antiferromagnetic film is
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Fig. 1. The dependence of the phase-transition tempera-
tureTN on the intensity of the external magnetic field h for
the antiferromagnetic film of thicknessD = 12, where the
relationships of the exchange integral vary from R = 0.7
to R = 1.8.

equal to D = 12, while the value R of the relationship
between the exchange integrals varies. For other
values of the film thickness D, the dependencies of the
temperature on the magnetic field are qualitatively the
same.

The general dependence of the phase-transition
temperature TN on the intensity h of the magnetic
field can be described by the relationship

TN = T0(R,D)

(
1−

(
h

h0(D,R)

)2
)
,

where T0(D,R) the phase-transition temperature for
the film of thickness D with the relationship R of
the exchange integrals in the zero external magnetic
field, while h0(D,R) is the limit value of the external
magnetic field such that the phase-transition is equal
to zero. In the zero magnetic field, the dependence of
the phase-transition temperature on the relationship
R of the exchange integrals is provided (for films of
various thicknesses D) in Fig. 2.

From Fig. 2, we see that the phase-transition
temperature grows as the value of the relationship
between the exchange integrals grows. This depen-
dence is explained by the influence of the surface
energy of interactions of spins on the system as a
whole. We also note that the growth rate of the tem-
perature decreases as the film thickness increases.
This dependence is explained as follows: in the depth
of the sample, the influence of boundary layers on the
ordering of spins decreases. In the limit case of semi-
infinite and infinite systems, the Neel temperature of
the bulk does not depend on the spin-interaction on
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Fig. 2. The dependence of the phase-transition tempera-
ture T0 in the zero external magnetic field on the relation-
ship R of the exchange integral for films with thicknesses
that vary from D = 4 to D = 16.

the surface. In such a system, the surface layer begins
to behave as an independent system with its own tem-
perature of the surface phase transition. In the thin
films considered in the present paper no surface phase
transition is observed. The smallest film thickness
that provides the surface phase transition is still an
open problem.

Figure 3 displays the dependence of the limit value
of the external magnetic field on the relationship be-
tween the exchange integrals (for films of various
thicknesses).
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Fig. 3. The dependence of the limit value of the intensity
h0 of the external magnetic field on the relationship R of
the exchange integral for films with thicknesses that vary
from D = 4 to D = 16.
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Table 1. The values of the coefficients A(D) and B(D)

D A(D) B(D)

4 2.72± 0.02 0.87± 0.04

8 3.21± 0.03 0.59± 0.02

12 3.28± 0.02 0.57± 0.03

16 3.32± 0.01 0.55± 0.01

From the graphs in Fig. 3, we see that the limit
value of the intensity of the magnetic field increases
as the relationship between the exchange integrals in-
creases. If the film thickness increases, then the curve
of the growth of the limit value of the magnetic-field
intensity tends to the horizontal line h0 = 4.0 typical
for infinite systems. The curve of the dependence of
h0 on R can be approximated (with high accuracy) by
the quadratic function

h0(D,R) = A(D) +B(D)R2.

The values of the coefficients A(D) and B(D) are
provided in Table 1.

CONCLUSIONS

Thus, the influence of an external magnetic field on
a thin film is the same as its influence on each antifer-
romagnetic system. Under the action of a magnetic
field, the Neel temperature decreases quadratically.
The dependence of the rate of decrease of the temper-
ature on the intensity of the magnetic field depends
on the film thickness. The dependence of the rate of
increase of the Neel temperature under the growth
of the surface exchange integral depends on the film
thickness as well. This effect was experimentally
observed in [13–15]. In all these experiments, the
phase-transition temperature increases as the film
width becomes larger, which corresponds to values
R < 1.38.

A decreasing effect for the phase-transition tem-
perature in antiferromagnetic films under the action
of an external magnetic field has been experimentally

confirmed as well. As an example, it was shown in
[16] that the Neel temperature decreases in thin films
of BiFe0.9Zn0.1O3 from the value of 630 K to room
temperatures under the action of a magnetic field.
A phase diagram for the antiferromagnetic film of
FeF2 in an external magnetic field was experimentally
obtained in [17]. The dependence of the Neel tem-
perature on the external magnetic field qualitatively
coincides with the results of the present paper; its
form is close to a quadratic function.
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