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Abstract—A method for constructing eigenmodes of an infinite waveguide of a constant rectangular cross
section with low losses in the walls, which are described by the Shchukin–Leontovich boundary conditions,
is discussed. The dispersion characteristics of these waveguides are constructed.
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INTRODUCTION

The problem of calculating complex waveguide
systems with impedance walls [1] described by the
Shchukin–Leontovich boundary conditions is a nat-
ural generalization of the problem for the case of an
ideally conducting boundary when the impedance of
the walls is zero. With a zero impedance, a com-
plete orthonormal basis is constructed in a transverse
cross section of the waveguide by using the eigen-
functions of the section for the Laplace operator; in
this basis, the transverse components of the electro-
magnetic field are expanded [2, 3]. The issue of the
presence of hybrid modes arises during the transition
to impedance walls; therefore, the electromagnetic
field can no longer be divided into fields of electric
and magnetic types and also the classical basis no
longer satisfies the new boundary conditions. Thus,
for a problem with losses, one has to use various
approximative methods or proceed to a generalized
formulation of the problem, in which the boundary
conditions are also satisfied in a general sense [4].

In [5], a method to accurately account for losses
in walls was proposed. This method consists in the
construction of a special basis that allows one to
satisfy boundary conditions exactly. The new basis
is the classical basis upgraded by adding to it supple-
mentary elements that provide the fulfillment of the
boundary conditions, in which case the coefficients at
these additional basis elements in the field expansion
are solutions of algebraic equations. The coefficients
at the standard basis functions solve a system of linear
ordinary differential equations with a rigid matrix. Its
calculation requires one to apply special methods, for
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example, the method of directed orthogonalization [6].
This allows one to increase the stability of the algo-
rithm but does not solve the problem completely.

In this paper, we construct a system of basic func-
tions with low impedance, which are a generaliza-
tion of the classical basis for a regular waveguide.
They satisfy Maxwell’s equations accurately and obey
boundary conditions with a sufficiently high accuracy
and thereby permit us to avoid the occurrence of rigid
matrix problems.

1. PROBLEM FORMULATION

An infinite waveguide with a constant rectangular
cross section S = {x ∈ (−a, a), y ∈ (−b, b)} is con-
sidered; z is the waveguide axis. The electromagnetic
field inside the waveguide is described by the system
of Maxwell’s equations:

curl E = ikH, (1)

curl H = −ikE. (2)

System (1), (2) is combined with the Shchukin–
Leontovich boundary conditions [4] on the side wall:

[n,E] = −W [n, [n,H]] , (3)

where n is the outer normal to the boundary ∂S
and W is the surface impedance. For a rectangular
waveguide, these conditions take the form

Ex = −WHz, Ez = WHx, y = b, (4)

Ex = WHz, Ez = −WHx, y = −b, (5)

Ey = WHz, Ez = −WHy, x = a, (6)

Ey = −WHz, Ez = WHy, x = −a. (7)
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2. THE SYSTEM OF MAXWELL’S
EQUATIONS

Problem (1)–(3) for the waveguide of constant
rectangular cross section has symmetry about the
axes x and y. Each projection of the field can be
both even and odd in x and in y, which allows us to
distinguish four types of solutions, namely,

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

Ex = C(ex) cos(px) sin(qy) exp(iγz),

Ey = C(ey) sin(px) cos(qy) exp(iγz),

Ez = C(ez) sin(px) sin(qy) exp(iγz),

Hx = C(hx) sin(px) cos(qy) exp(iγz),

Hy = C(hy) cos(px) sin(qy) exp(iγz),

Hz = C(hz) cos(px) cos(qy) exp(iγz),

(8a)

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

Ex = C(ex) cos(px) cos(qy) exp(iγz),

Ey = C(ey) sin(px) sin(qy) exp(iγz),

Ez = C(ez) sin(px) cos(qy) exp(iγz),

Hx = C(hx) sin(px) sin(qy) exp(iγz),

Hy = C(hy) cos(px) cos(qy) exp(iγz),

Hz = C(hz) cos(px) sin(qy) exp(iγz),

(8b)

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

Ex = C(ex) sin(px) sin(qy) exp(iγz),

Ey = C(ey) cos(px) cos(qy) exp(iγz),

Ez = C(ez) cos(px) sin(qy) exp(iγz),

Hx = C(hx) cos(px) cos(qy) exp(iγz),

Hy = C(hy) sin(px) sin(qy) exp(iγz),

Hz = C(hz) sin(px) cos(qy) exp(iγz),

(8c)

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

Ex = C(ex) sin(px) cos(qy) exp(iγz),

Ey = C(ey) cos(px) sin(qy) exp(iγz),

Ez = C(ez) cos(px) cos(qy) exp(iγz),

Hx = C(hx) cos(px) sin(qy) exp(iγz),

Hy = C(hy) sin(px) cos(qy) exp(iγz),

Hz = C(hz) sin(px) sin(qy) exp(iγz),

(8d)

where p, q, and γ are now complex numbers, unlike
the lossless case.

Without loss of generality, we consider the solu-
tion of form (8a). Solutions with other parity types are
constructed in the same way, and all further reasoning
for them can be repeated without changes.

The set of solutions (8) contains the basis func-
tions of the electric and magnetic types of an ideal
waveguide, which will be convenient to study the
limit transition W → 0. Due to the symmetry with
respect to rotation by π around the axis, the boundary
conditions (5) and (7) are automatically satisfied if
conditions (4) and (6) are fulfilled.

Without loss of generality, we look for waves that
propagate in the positive direction of the axis z. This
leads to the condition

Re γ ≥ 0, Im γ ≥ 0. (9)

Waves that propagate in the negative direction
are symmetrical to the former waves with respect to
rotation by π around the axis x or y.

Substituting (8) into equations (1) and (2) for the
z-component of the curl, we can express C(ez) and
C(hz) in terms of of the transverse field coefficients:

C(ez) = − ip

k
C(hy) +

iq

k
C(hx), (10)

C(hz) = − ip

k
C(ey) +

iq

k
C(ex). (11)

After substituting (8), (10), and (11) into the ex-
pressions for the transverse components of the curl
from (1) and (2), we obtain

MC = kγC, (12)

M(p, q, k)

=

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

0 0 pq k2 − p2

0 0 q2 − k2 −pq

−pq p2 − k2 0 0

k2 − q2 pq 0 0

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

, (13)

C =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

C(ex)

C(ey)

C(hx)

C(hy)

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

. (14)

The eigenvectors and eigenvalues of problem (12)
can be written as functions of parameters p, q, and k:

C1 =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

pq

k
√

k2−p2−q2

q2−k2

k
√

k2−p2−q2

1

0

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

,

C2 =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

k2−p2

k
√

k2−p2−q2

−pq

k
√

k2−p2−q2

0

1

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

, (15)
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C3 =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

pq

k
√

k2−p2−q2

k2−q2

k
√

k2−p2−q2

1

0

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

,

C4 =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

p2−k2

k
√

k2−p2−q2

−pq

k
√

k2−p2−q2

0

1

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

. (16)

Vectors C1 and C2 correspond to the eigenvalue
γ =

√
k2 − p2 − q2, while C3 and C4 correspond to

γ = −
√
k2 − p2 − q2.

Since we are seeking the solutions for waves prop-
agating along the positive direction of the z-axis, we
should leave the pair of solutions C1 and C2 with the
corresponding eigenvalue γ. Any linear combination
of eigenvectors (15) is also an eigenvector with the
same eigenvalue γ:

C = S1C1 + S2C2 = V S, (17)

where S = (S1, S2)
T and V = (C1,C2) is a 4× 2

matrix composed of two columns C1 and C2.
Thus, given the parameters p, q, and k, the set of

solutions satisfying Maxwell’s equations (8) takes the
form

C(p, q, k) = V (p, q, k)S, (18)

where S is an arbitrary column of height 2.

3. BOUNDARY CONDITIONS

We proceed to the consideration of the boundary
conditions. As has been stated above, due to sym-
metry, only four equations (4), (6) out of the eight
boundary conditions remain.

Substitute (8), (10), and (11) into (4) and (6):

BC = 0, (19)

B(p, q, k) =

⎛

⎝
B1(p, q, k) Θ

Θ B2(p, q, k)

⎞

⎠ , (20)

where Θ is a 2× 2 zero matrix,

B1(p, q, k)

=

⎛

⎝
sin qb+ iqW

k cos qb − ipW
k cos qb

− iqW
k cos pa sin pa+ ipW

k cos pa

⎞

⎠ ,

(21)

B2(p, q, k)

=

⎛

⎝
iq
k sin qb−W cos qb − iq

k sin pa

− iq
k sin pa ip

k sin pa−W cos pa

⎞

⎠ .

(22)

Substituting (18) into (19), we obtain an overde-
termined system of equations with respect to the col-
umn S as follows:

BC = BV S = QS = 0, (23)

where Q = BV is a 4× 2 matrix.

Thus, the original problem reduces to finding such
p, q and a nontrivial column S for which (23) is
satisfied.

In the general case, such p and q do not exist. In
fact, we divide matrix Q into two square 2× 2-blocks:

Q =

⎛

⎝
Q1

Q2

⎞

⎠ (24)

We require that the determinants of these blocks
are equal to zero

f1(p, q) = detQ1(p, q) = 0, (25)

f2(p, q) = detQ2(p, q) = 0. (26)

This system of two equations in p and q will pro-
vide a linear dependence of a pair of lines in each of the
blocks. Consequently, dependent lines of each block
can be thrown out of system (23), which results in the
square matrix

Q′(p, q)S = 0. (27)

In order for nontrivial solution (27) to exist, the
determinant of the latter matrix should also vanish,
which gives the third equation for p and q:

f3(p, q) = detQ′(p, q) = 0. (28)

In the general case, system (25), (26), and (28) is
inconsistent.

We will seek a solution that satisfies Maxwell’s
equations (1), (2) exactly and boundary conditions (3)
approximately. Let us consider two methods of its
construction: by minimizing the residual and using
the perturbation theory.
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4. RESIDUAL MINIMIZATION

Define the residual δ(p, q) of system (19):

Q(p, q)S = δ(p, q). (29)

Instead of solving the original problem (23), we
seek p, q, and column S, ||S|| = 1, such that the
residual norm ||δ|| attains its minimum. Here,
||·|| is understood as the standard norm in spaces of
columns of the proper height. We consider ||δ||2:

||δ(p, q)||2 = S∗Q∗(p, q)Q(p, q)S, (30)

U(p, q) = Q∗(p, q)Q(p, q), (31)

where matrix U is Hermitean. Let 0 ≤ λ1 ≤ λ2 be its
eigenvalues and let S1 and S2 be the corresponding
normalized eigenvectors ||S1|| = ||S2|| = 1. Then

min
||S||=1

||δ(p, q)||2 = λ1(p, q). (32)

Thus, the problem of finding the minimum of the
residual norm ||δ|| has been reduced to finding the
minimum of the eigenvalues of matrix U(p, q). Using
p, q, and S already found, we find γ =

√
k2 − p2 − q2

and C by formula (18).
Since W in the Shchukin–Leontovich boundary

conditions is assumed to be small, we can search for p
and q in the neighborhood of p and q for an ideal
waveguide.

5. CONSTRUCTION OF SOLUTIONS
USING PERTURBATION THEORY

For a small impedance |W | � 1, the values of p
and q can be found in a neighborhood of unperturbed
p and q of an ideal waveguide. Therefore, we look for
p and q in the form of an expansion series in the small
parameter W :

p = p0 +
W

a
p1 +O(W 2),

q = q0 +
W

b
q1 +O(W 2), (33)

where p0 =
πn

2a
and q0 =

πm

2b
correspond to the

modes of an ideal waveguide.

We substitute expansion (33) into (19) and de-
compose matrix B of boundary conditions into a se-
ries in W :

B = B(0)(p0, q0)

+WB(1)(p0, q0, p1, q1) +O(W 2). (34)

Matrix B(0)(p0, q0) describes ideal boundary con-
ditions and becomes zero if p and q of an ideal waveg-
uide are substituted in it. Thus,

B = WB(1)(p0, q0, p1, q1) +O(W 2), (35)

�1 0 1
�0.500.511.5

lo
g(
��
�)

�9

�8

�7

�6

�5

�4

Fig. 1. Minima of the residual δ(p, q); W = 0.001(1− i),
n = 1, m = 1.
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0

Fig. 2. λ1(p, q) and λ2(p, q) along the line joining the
minima.

where

B(1) =

⎛

⎝
B

(1)
1 Θ

Θ B
(1)
2

⎞

⎠ , (36)

B
(1)
1 =

⎛

⎝
q1 +

iq0
k − ip0

k

− iq0
k p1 +

ip0
k

⎞

⎠ ,

B
(1)
2 =

⎛

⎝
iq0q1
k − 1 − ip0q1

k

− iq0p1
k

ip0p1
k − 1

⎞

⎠ . (37)

The condition on the boundary (19) in the first
order of expansion in W takes the form

B(1)(p0, q0, p1, q1)С = 0. (38)

Since matrix B(1) is block-diagonal, the determi-
nants of both blocks must be equal to zero for the
existence of a nontrivial solution containing nonzero
electric and magnetic fields:

{
det

(
B

(1)
1 (p1, q1)

)
= 0,

det
(
B

(1)
2 (p1, q1)

)
= 0.

(39)
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Fig. 3. Re(γ): ideal waveguide (blue), waveguide with
losses W = 0.01(1 − i) (red).

As a result, we obtain a system of equations for the
first-order corrections p1 and q1 as:

{
p1q1 +

ip0
k q1 +

iq0
k p1 = 0,

ip0
k p1 +

iq0
k q1 = 1.

(40)

System (40) can be reduced to a quadratic equa-
tion and, therefore, it has two solutions for the correc-
tions p1 and q1.

6. NUMERICAL EXPERIMENT

During mathematical simulation, the properties
of the basis functions obtained by the two methods
described above were investigated.

At high frequencies, i.e., for large values k >

kcrit(n,m) =
√

p20 + q20, the pairs of p and q obtained
by a numerical method, i.e., by solving (32), and
obtained from system (40) by the method of the
perturbation theory are consistent with each other
at high accuracy. For small k, a discrepancy in
the values found is observed, where the corrections
obtained by the perturbation theory give the values of
the residual (29) several times larger than the minima
found numerically.

Thus, for the analysis of running weakly decaying
modes, the perturbation method must be used, while
the minimization method must be used for strongly
decaying modes.

Figure 1 shows the complex plane passing through
two local minimums. The z-axis represents the
values of λ1(p, q) on a logarithmic scale. The value
of peaks can be used to estimate the residual order.
In this case, the order of the minimum of λ1 is
approximately exp(−27) ≈ 2× 10−12.

Figure 2 shows λ1(p, q) and λ2(p, q) on the line
containing two minima.

It is seen in Fig. 2 that two minima correspond to
two different eigenvalue branches.
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Fig. 4. Im(γ): ideal waveguide (blue colored), waveguide
with losses W = 0.01(1 − i) (red colored).

Dispersion characteristics of an infinite rectangu-
lar waveguide are constructed. In Figs. 3 and 4, the
real and imaginary parts of the modes corresponding
to n = 1 and m = 1 are presented.

A comparison of the calculated dispersion charac-
teristics with those obtained by the method from [1]
has been made. In the case of a small impedance, the
agreement of results is observed (Figs. 5 and 6).
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Fig. 5. Re(γ), dispersion characteristics obtained by the
method [1] (blue) and by the residual minimization (red);
W = 0.01(1 − i).
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Fig. 6. Im(γ), dispersion characteristics obtained by the
method [1] (blue) and by the residual minimization (red);
W = 0.01(1 − i).
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CONCLUSIONS

Two methods for constructing solutions that sat-
isfy Maxwell’s equations exactly and the Shchukin-
Leontovich conditions approximately with a small
impedance are considered: by minimizing the residual
and using the perturbation theory. At high frequen-
cies, both methods give high accuracy, while at low
frequencies it is preferable to apply the numerical
algorithm. Both methods for the corresponding range
of frequencies yield good agreement with the method
in [1]. Since the waveguide modes with losses are
distinguished independently of each other by the pro-
posed method, the use of these modes to describe
fields in sections of constant cross-section for waveg-
uides of complex shape will significantly reduce the
rigidity of the resulting matrix problems.
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