
ISSN 0027-1349, Moscow University Physics Bulletin, 2019, Vol. 74, No. 2, pp. 115–123. c© Pleiades Publishing, Ltd., 2019.
Russian Text c© The Author(s), 2019, published in Vestnik Moskovskogo Universiteta, Seriya 3: Fizika, Astronomiya, 2019, No. 2, pp. 24–31.

ASTRONOMY, ASTROPHYSICS, AND COSMOLOGY (REVIEW)

Optimal Integration of the Components of the Global Network
of Gravitational-Wave Antennas

A. V. Gusev1* and V. N. Rudenko2**

1Sternberg Astronomical Institute, Moscow State University, Moscow, 119991 Russia
2Department of Physics, Moscow State University, Moscow, 119991 Russia

Received October 16, 2018; revised November 6, 2018; accepted November 8, 2018

Abstract—This paper considers the problem of optimal integration of the components of the global network
of laser gravitational-wave antennas in order to improve the detection efficiency and to better estimate the
parameters of astrophysical gravitational-wave signals. A quasi-harmonic burst (chirp) that accompanies
the merger of a relativistic binary star at the end of its evolution has been selected as a signal. The shape
of such a signal is known up to a set of parameters to be estimated against the background of large
coherent and stochastic noise. An alternative possibility of taking into account the coherent excitation
phase of individual detectors (component integration by input) is analyzed in addition to the well-known
method for filtering output signals by coincidence in time (component integration by output). Statistical
detection characteristics for both modes are calculated. The method typical for problems of distinguishing
deterministic signals in radar systems is used. A significant increase in detection efficiency during the input
integration of network components is shown.
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INTRODUCTION

In September 2015, LIGO laser detectors for the
first time sensationally detected a burst of gravitational-
wave (GW) radiation from the merger of a relativistic
binary star with black hole (BH) components [1].
Other similar signals have been detected since then
(until the end of 2017). A total of approximately
five events have been recorded to date [2, 3]. The
detection of the GW170814 signal from two merging
black holes (M∼30 M) from a distance of ∼540 Mpc
by three detectors (including the Virgo interferome-
ter) [4] elevated the research to a qualitatively different
level. It made it possible to to reduce the area of
localization of the source on the sky by an order of
magnitude, to ∼60 square degrees. Finally, the GW
signal from the neutron star (NS) merger was de-
tected. It coincided with the GRB170817A gamma-
ray burst (with a delay of 1.7 s) [5] and confirmed the
hypothesis of generation of short gamma bursts as a
result of the binary NS merger. All these facts make
it possible to speak about that the real appearance
of the new GW channel of astrophysical information
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and the heuristic meaning of multichannel astronomy,
i.e., the strategy of parallel observation of transients
on detectors of different physical nature.

In this case, the problem of constructing an op-
timal network of GW antennas acquires new rele-
vance, both in terms of their geographical location
and in terms of the nature of their interconnection and
pickup and interpretation of their common signals
against the background of local and global noise.
The geographic location of laser GW antennas in
the Einstein Telescope configuration with an axially
symmetric (cylindrical) sum pattern [6] was optimized
in [7, 8] by numerical Monte Carlo simulations with
Markov chains. The optimization criteria were the
most accurate polarization values of the GW signal,
the angular localization of the source on the celestial
sphere, and the parameters of its chirp form. At the
current stage, the creation of a European–Asian net-
work of four antennas in the Northern Hemisphere is
occurring: VIRGO in Italy, KAGRA in Japan, Indigo
in India, and the planned antenna in Novosibirsk [9];
there is discussion of taking them into these works.

Two approaches are known regarding the nature
of the relationship of the individual network compo-
nents and the specifics of the pickup (processing)
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of the multichannel signal. The first classic We-
berian analysis of coincidences, in which all links
of the network operate independently and their out-
puts are examined (processed) for the presence of
coincidences [10], i.e., simultaneous emissions that
can be generated by a common global perturbation
(conventionally, “component integration by output”),
and the second one, which takes the phase coherence
of the input excitations of the network components
into account. The signals of each link are processed
according to this coherence. Next, an integral ob-
servable of the network is generated (synthesized)
according to the maximum likelihood estimate. The
statistics of this observable is used to detect GW
perturbations (conventionally, “component integra-
tion by output“). Theoretically, such an approach
was considered in [11], where an example of a simple
network of two detectors was calculated in addition
to the general description. It was shown that with a
given (selected) error of the first kind (probability of
the case) the probability of correct detection turns out
to be much higher in the mode of integration by input.
However, this is true in the case of a moderate SNR
(SNR). For large SNR values, both approaches are
equivalent in principle, i.e., they should yield the same
results.

Note that the modern understanding of detection
by the “coincidence circuit” is not limited only to
recording the simultaneous power overshoot on in-
dividual detectors. It is also required that the noise
threshold by mutual power (cross-correlation) is ex-
ceeded, which means an additional restriction on the
selection of signal coincidences (similarity of pulse
shapes) [5]. In other words, there is a so-called
“precision coincidence selection” (criteria of excess
power and cross power).

This quality of precision selection of coincidences
should be preserved in the approach (operation mode)
which is called “integration by input” above. Here,
however, it should be remembered that a consis-
tent and correlation reception is used for detecting
chirp signals when the input “signal + noise” passes
through a filter with a frequency response propor-
tional to the spectrum of the signal that is assumed to
be known. A noise spike at the output of such a filter
will also have a spectrum similar to that of the “chirp”
(for the white input noise model), but it will have to
be distinguished from the case of the arrival of a real
GW signal accompanying the binary merger. For
this reason, it is reasonable to formulate the detection
problem in the case of the integration of network
components by input as the problem of distinguishing
external influences (coherent for all network detec-
tors) from signals of the same shape but generated
by the local noise background of a individual link. In

the general filtering theory, this corresponds to the so-
called “minimax criterion” that leads to a majorizing
estimate of the probability of a correct detection of a
GW signal [12, 13]. This approach is used in this
paper, which is a fundamental difference from [11]
cited above.

The paper has the following structure. First, the
detection of GW signals from the merger of relativis-
tic binaries by a network of GW antennas is investi-
gated within the maximum likelihood criterion when
they are integrated by input (Sections 2, 3, and 4).
Section 5 presents the algorithm for such detection
in the non-Bayesian formulation, when the signal
parameters are deterministic but unknown. Next,
as an alternative, the problem of detection when the
outputs of individual network components are opti-
mally integrated is investigated (Section 6). Then, a
typical case of filtering GW perturbations using the
coincidence circuit is considered (Section 7). Finally,
the relative efficiency of various detection circuits is
evaluated in Section 8. The results and the planned
Euro-Asian network of four detectors including the
Russian link near Novosibirsk are discussed in the
concluding section [9].

1. NETWORK DETECTION AS A PROBLEM
OF DISTINGUISHING COHERENT

AND STOCHASTIC PERTURBATIONS

We use the results of the theory of detecting vector
signals against the background of Gaussian noise in
deriving the network detection algorithm [14–16].

Let a vector random process be observed using an
antenna system of l elements

y(t) =

∥
∥
∥
∥
∥
∥
∥
∥
∥

y1(t)
...

yl(t)

∥
∥
∥
∥
∥
∥
∥
∥
∥

= ||y1(t) . . . yl(t)||T

= λs(t) + (1− λ)η(t) + n(t),

−∞ � t � ∞, (1)

where λ = (0, 1) is the so-called state parameter that
formalizes the presence (absence) of perturbations,
s(t) is the useful GW signal, η(t) is the quasi-
deterministic noise, n(t) is the additive Gaussian
background noise. In the further analysis, we will as-
sume that the Gaussian background is uncorrelated
in time (white noise) and by individual elements of the
antenna system (in space). Therefore, the correlation
matrix of the random process n(t) is simplified

K(t, τ) =
〈

n(t)nT(τ)
〉

= N0Iδ(t− τ),
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where I is the identity matrix. In this case, the
logarithm of the conditional likelihood ratio can be
represented as follows [15]

ln Λ(y|s) = 1

N0

T∫

9

yT(t)s(t)dt− 1

2
qs, (2a)

ln Λ(y|η) = 1

N0

T∫

9

yT(t)η(t)dt − 1

2
qη, (2b)

where

qs =
1

N0

T∫

0

sT(t)s(t)dt, qη =
1

N 0

T∫

0

ηT(t)η(t)dt

are SNRs for the signal and quasi-determined noise,
and T is the observation interval. General formulas
(2a), (2b) are further refined by substituting a specific
waveform of the astrophysical GW perturbation and
associated noise bursts.

2. CHIRP SIGNALS

Only astrophysical GW bursts that accompany
the merger of the components of the relativistic binary
star at the end of its evolution have been successfully
detected to date. The shape of such a GW signal
s(t) = ||s1(t) . . . sl(t)||T has been analyzed in detail
in the literature and can be found in monographs.
In particular, one of the first is the monograph [17]
in which the spiral phase of the binary star was cal-
culated in the Newtonian approximation, and the
loss of rotational energy was calculated using the
GRT quadrupole formula for GW radiation. Post-
Newtonian trajectory corrections are omitted here.
Such a simplified shape of a GW chirp signal, which is
a quasi-harmonic oscillation with an increasing am-
plitude and carrier frequency by its type, is sufficient
for the purposes of this paper, so that

si(t) = afi(tc − t;M,ϕ), i = 1, l, (3a)

where tc is the time of merger (coalescence) , which
means the end of the spiral phase of the GW burst,
M is the so-called chirp mass, a = M/d is the scale
factor: d is the distance to the source calculated by
GW luminosity

fi(t;M,ϕ) = γiA(t;M) cos [Ψ(t;M) + ψi + ϕ] ,

A(t;M) =

[
5

256

M

t

]1/4

,

Ψ(t;M) = −2

[
t

5M

]5/8

, t � 0,

γi and ψi are the coefficients that determine the radi-
ation pattern and ϕ is the initial phase.

It is necessary to introduce the delay Δti, which
depends on the position of the cell for each of them
to specify the reception of signal (3a) by an individ-
ual network cell. This correction should be formally
added to the characteristic time stamp of the signal
tc = t1 +Δti, for i = 2, 3, . . . l, where t1 is the label of
the first cell from which the delay is calculated. Then,
the reaction of an individual component (cell) of the
network will depend on its coordinates.

In the further analysis, we also use the signal
shape fi(t;M,ψ) in the complex record

fi(t;M,ψ) = Re [γ̃is̃(t;M) exp {jϕ}] , (3b)

where

γ̃i = γi exp {jψi} , s̃(t;M)

= aA(t;M) exp {jΨ(t;M)} . (3c)

In the non-Bayesian formulation, the chirp mass from
the bank of signal patterns M ∈ M is considered as
an unknown but nonrandom discrete parameter.

Let us now define local noises. When select-
ing the form of quasi-deterministic noises η(t) =

||η1(t) . . . ηl(t)||T under conditions of expected uncer-
tainty, let us use the minimax approach according
to which in the worst case the forms of gravitational
si(t) and nongravitational ηi(t) perturbations are the
same:

ηi(t) = aiRe [γ̃is̃(ti − t;Mi) exp {jϕi}] ,
Mi ∈ M. (3d)

The i index marks an individual network detector,
thus emphasizing the individuality of i noise in each
of its links.

3. GENERAL FORMULATION
OF THE DISTINGUISHING CRITERION

The solution λ = 1 (there is a GW signal) in the
Bayesian formulation is taken in accordance with the
likelihood ratio algorithm if the following condition is
met:

Λ(y|λ = 1)

Λ(y|λ = 0)
� P (λ = 1)

P (λ = 0)
, (4a)

where Λ(y|λ) is the unconditional likelihood ratio in
the state λ, and P (λ) are a priori probabilities of the
presence and absence of a useful GW signal. The
minimax approach is associated with the hypothesis
of equality of a priori probabilities P (λ = 1) = P (λ =
0) = 1/2, which leads to a majorizing estimate of the
probability of missing a GW signal [12, 13].

The probability of distinguishing between deter-
ministic GW signals and sporadic nongravitational
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noise against a white Gaussian background described
by statistical errors of the first and second kind of
α, β is defined by the following equation [15] (see also
Appendix)

α = β = 1− Φ

(
1

2

√
q

)

, (4b)

where α and β are probabilities of false positive (type
I error) and signal skip (type II error), and the param-
eter q is given by the following formula

q =
1

N0

T∫

0

[s(t)− η(t)]T[s(t)− η(t)]dt. (4c)

In the non-Bayesian formulation, the solution λ =
1 is taken if the following condition is met:

ln Λ∗(y|λ = 1) � ln Λ∗(y|λ = 0), (4d)

where Λ∗(y|λ) is the logarithm of the likelihood ratio
in which the unknown signal parameters and noise
in the states λ = 1, 0 are replaced by their maximum
likelihood estimates (the parameters tc, t1, . . . , tl and
ϕ,ϕ1, . . . , ϕl are considered nonenergy and irrele-
vant).

4. DISTINGUISHING CRITERION
FOR THE INPUT INTEGRATION
OF NETWORK COMPONENTS

In practice, the observer has only implementations
of output random processes of individual components
(cells) of the network. They should be inverted to
the input using the known transfer function of each
receiver. It will result in input vector process (1). After
this operation, the observer will be able to consider the
network detection algorithm (see Section 2) under
the optimal input integration of network components.

Let us now specify general relations (2a), (2b) by
substituting the waveform of the chirp signal s(t) and
the quasi-deterministic noise η(t) in them. For λ =
1 (there is a GW signal) we arrive at the following
expression

ln Λ(y|λ = 1)

=
1

N0

[

a

∞∫

−∞

l∑

i=1

yi(t)fi(tc − t;M,ϕ)dt

− 1

2
a2Es(M)

]

. (5a)

The signal energy is introduced above

Es(M) =
l∑

i=1

∞∫

−∞

f2
i (·)dt.

Next, the main unknown signal parameters, the am-
plitude (scale) factor and the initial phase (a, ϕ), in
the non-Bayessian approach should be replaced by
their likelihood estimates, which are found by setting
the corresponding partial derivatives of Eq. (5a) equal
to zero. This procedure on the scale factor â yields

ln Λ(y|λ = 1; â) =
1

2N0Es(M)

[

Re exp(jϕ)

×
∞∫

−∞

l∑

i=1

yi(t)γ̃is̃(tc − t;M)dt}
]2

. (5b)

Formula (5b) includes a random process (total
for the antenna network components) obtained by
matched filtering of the general GW signal by indi-
vidual network links, which will be further denoted as
z(t;M) for brevity (the formula is given in mathemat-
ical form of a physically unrealizable filter, which also
has integration by negative time values)

z(t;M) =

∞∫

−∞

l∑

i=1

yi(τ)γ̃is̃(t− τ ;M)dτ.

As a result, we obtain a compact form.

ln Λ(y|λ = 1; â)

=
1

2N0Es(M)
[Re{exp(jϕ)z(tc;M)}]2 ,

which should be optimized by substituting the likeli-
hood value of the parameter of the initial phase ϕ̂. As
a result we obtain:

ln Λ(y|λ = 1; â, ϕ̂) =
1

2N0Es(M)
|z(tc;M)|2.

Optimization by the parameters of the chirp signal
is not carried out here. In practice, it is replaced by
a set of discrete filters matched with chirp signals
corresponding to the selected interval values M +
ΔM, tc +Δtc. Consequently, in the non-Bayesian
approach, the optimized logarithm of the likelihood
ratio has the following form if there is a GW signal
and a diskette bank of matched filtering patterns

ln Λ∗(λ = 1)

= max
M∈M,−∞<t<∞

1

2N0Es(M)
|z(t;M)|2. (5c)

In this formula, the subscript with variations by the
parameters of the chirp signal means the selection
of a diskette matched filter that gives the maximum
response.

The likelihood ratio logarithm in the absence
of a GW signal but in the presence of a quasi-
deterministic perturbation individual in each link of
the network of detectors with its random values of
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amplitude and phase (3d) can be found in a similar
way. Then, for ln Λ∗(y|λ = 0) we obtain the following

ln Λ∗(y|λ = 0)

=
l∑

i=1

max
M∈M,

−∞<t<∞

1

2N0E(Mi)
|zi(t;M)|2. (5d)

In this expression, in contrast to (5c), there is a
summation over individual network detectors for each
of which the result of matched filtering zi(t;M) is
determined by its individual pattern depending on the
local quasi-deterministic noise. At the same time, we
have the following:

zi(t;M) =

∞∫

−∞

yi(τ)γ̃is̃(t− τ ;M)dτ.

Formulas (5c) and (5d), when substituted into deci-
sion rule (4d), make it possible to judge the effect of a
GW signal on a network of detectors with an optimal
component integration by input.

5. DISTINGUISHING UNDER OPTIMAL
INTEGRATION OF OUTPUTS

We briefly consider the traditional version of “out-
put integration” in its optimal formulation in order
to compare different methods for integrating the an-
tenna network components.

Let yi(t) be a random process at the output of an
individual component of the antenna system, and x̂ is
the vector of signal parameters or quasi-deterministic
noise. The parameter vector is individual for each link
in the state λ = 0

x̂i = ||âit̂iM̂iϕ̂i||T,
as before, “caps” mean the maximum likelihood esti-
mates of unknown values ai, ti, Mi, ϕi. In the state
λ = 1, the parameter vector is common for the entire
network x̂ = ||x̂1 . . . x̂l||T.

Maximum likelihood estimates for large SNRs can
be represented as true with a small fluctuation de-
viation. In particular, we write the following for the
parameter vector of an individual link

x̂i � xi + ξi, (6a)

where the true value vector is xi = ||aitiMiϕi||T, and
the vector of deviations ξi = ||δaiδtiδMiδϕi||T is rep-
resented as Gaussian noise with a zero mean value
and a correlation matrix

Ki =
〈

ξξT
〉

= I−1
i , (6b)

inverse to the Fisher information matrix Ii [15].

By analogy with Eq. (1), we use the logic of
the distinguishing problem to the parameter vector
x̂. Then, an approximate equation can be considered
under conditions of a priori uncertainty

x̂ � λxs + (1− λ)xη + ξ,

where xs is the vector of signal parameters, and xη

is the vector of parameters of quasi-determined noise.
The components of these vectors depend on the state
parameter λ.

Optimal distinguishing between gravitational and
nongravitational signals in the case of integration of
network components by their outputs is carried out
according to the condition similar to (4d) but applied
to the parameter vector x̂ instead of the input random
process y(t), i.e., the solution λ = 1 is taken if the
following condition is met

ln Λ∗(x̂|λ = 1) � ln Λ∗(x̂|λ = 0), (6c)

where ln Λ∗(x̂|λ) is the conditional likelihood ratio of
the random process x̂ when replacing the unknown
parameters by maximum likelihood estimates.

Taking the standard method for calculating the
likelihood ratio of vector Gaussian signals [15, 16]
into account, it is possible to reduce (6c) to the
condition for detecting the GW signal against the
background of quasi-determined noise

λ̂ = 1 :

l∑

i=1

x̂T
i K

−1
i (x̂si − x̂ηi) � 0, (6d)

where K−1
i = Ii,

x̂si = ||âi t̂cM̂ϕ̂||T

is the maximum likelihood estimate of the parameter
vector xsi.

Expression (6d) determines the optimal algorithm
for the selection of GW signals when integrating GW
antennas by output, which, however, requires a cor-
relation matrix of the network (6b).

6. DISTINGUISHING BY COINCIDENCE
CIRCUIT

Historically, the simplest principle for detecting
GW effects from observations of the output signals
of GW detectors was the principle of “detection of
coincidences” on spaced instruments. Coincidence
was understood as simultaneity of output signals in
the form of short pulse bursts. In fact, this means the
integration of network components by output using
only one main parameter characterizing the signal,
i.e., the time of its arrival.

Let us consider the best integration of the com-
ponents of the network of GW detectors according
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120 GUSEV, RUDENKO

to the coincidence circuit. In accordance with the
methodology adopted in this paper, we obtain the
following for the maximum likelihood estimate of the
time of arrival of perturbations

yi(t) → t̂, t̂ = ||t̂1 . . . t̂l||T � ||t1 . . . tl||T + δt,

where t1, . . . , tl are the true values of the times of
occurrence of perturbations, and δt = ||δt1 . . . δtl||T
is the estimate deviation vector.

Therefore, we obtain the following to distinguish
between the arrivals of GW signals and noise

t̂ � λ||tc . . . tc||T + (1− λ)||t1 . . . tl||T + δt.

In the integration of the network components accord-
ing to the coincidence circuit, the solution λ = 1 is
taken if

l∑

i=1

1

σ2
i

t̂i(t̂c − t̂i) � 0, (7)

where σ2
i =

〈

δt2i
〉

,

t̂c =

l∑

i=1

t̂i
σ2
i

[
l∑

i=1

1

σ2
i

]−1

(8)

is the maximum likelihood estimate of the coales-
cence time.

Expressions (4) and (5) determine the optimal
algorithm for processing information by coincidence
within the traditional approach for the antenna sys-
tem of l = 2 components

λ = 1 : |t̂1 − t̂2| � τr, (9)

where τr is the resolution time (coincidence window).

7. RELATIVE EFFICIENCY OF CIRCUITS
FOR INTEGRATION

We considered two circuits for integrating com-
ponents of a network of GW detectors above : by
inputs (shared aperture) and by outputs. They are
basically equivalent in their optimal versions, i.e., they
should have a comparable detection efficiency of GW
perturbations. However, the optimal integration by
outputs is complicated by the need to know the mu-
tual correlation matrix of the noise of the individual
components used to filter the signal, which is difficult
in practice. Therefore, a coincidence circuit is used
in its precision version (criteria of excess power and
cross power). Let us show that aperture synthesis
(input integration) has a noticeable advantage over
the coincidence circuit.

Following the method described in [15], we intro-
duce the coefficient κ of the relative efficiency of the
coincidence circuit.

κ =
Pe

Pe,c
� 1, (7)

where Pe and Pe,c are the probabilities of an erroneous
solution in aperture synthesis and in the coincidence
circuit, respectively. We use formulas (A3) and (A4)
from Appendix for input integration from which

Pe = 1−Φ

(
1

2

√
q

)

, (8)

where

q =
1

N0

l∑

i=1

∞∫

−∞

[si(t)− ηi(t)]
2 dt

=
1

N0

l∑

i=1

[Bs,i(0) +Bη,i(0)− 2Bsη,i(0)] . (9)

Here, there are autocorrelation functions of the signal
Bs,i(0) and noise Bη,i(0) (in each link of the network)
as well as their mutual correlation function at coin-
ciding times Bsη,i(0):

Bsη,i(τ) =

∞∫

−∞

si(t)ηi(t+ τ)dt.

Similarly, it can be shown that the corresponding
characteristics (error probability) for the coincidence
circuit are defined by the following formulas:

Pe,c = 1− Φ

(
1

2

√
qc

)

(10)

for

qc =

l∑

i=1

(tc − ti)
2

σ2
i

. (11)

Formulas (8)–(11) make it possible to estimate the
coefficient κ. The latter depends on the parameters
of gravitational and nongravitational signals but also
on the variances σ2

i , which are difficult to calculate
analytically for such a complex signal structure as
a chirp. Therefore, below we estimate the relative
efficiency for the case where GW signals and noise
have the same parameters (including the times of
occurrence) that differ only in the initial phases, see
(3a), (3c).

In this representation, the phases of perturbations
of individual links have random deviations δϕi from
the phase of the GW chirp signal ϕ (noise ηi(t) is
incoherent)

ϕi = ϕ+ δϕi, i = 1, l.

It is possible to find the correlation functions entering
into formula (9) using representations of signal (3a)
and noise (3c) taking the fact into account that the
chirp phase is a nonenergy parameter.

Bs,i(0) = Bη,i(0),
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OPTIMAL INTEGRATION OF THE COMPONENTS 121

Bsη,i(0) = Bs,i(0) cos δϕi, (12)

where

Bs,i(0) =

∞∫

−∞

|si|2(t)dt.

Substituting (12) into Eq. (9) makes it possible
to specify the parameter q for calculating the error in
aperture synthesis.

Now it is possible to estimate the relative efficiency
of the coincidence circuit. From formula (11) it fol-
lows that the coincidence of signal and noise bursts
(tc ≈ ti) makes the parameter qc small, which entails
a higher error probability Pe,c � (1/2) (10) in the
proposition “there is signal” λ = 1. At the same time,
we have the following for the efficiency coefficient
estimation

κ � 2

[

1− Φ

(
1

2

√
q

)]

. (13)

We then find the following:

q � ρs

l∑

i=1

sin2 δϕi,

where

ρs =
1

N0

∞∫

−∞

sT(t)s(t)dt =
Bs(0)

N0

is the SNR. The parameter q increases and the rel-
ative efficiency of the coincidence circuit tends to
zero (13) for large values of ρs 	 1. In fact, the
coincidence circuit gives a false positive, “there is a
signal,” in its absence. This occurs because it does
not take phase relations into account between input
perturbations. Here, aperture synthesis has a distinct
advantage.

CONCLUSIONS

The main problem considered in this paper was the
comparison of the possible options for integrating the
components of the global network of GW antennas
in order to estimate their comparative efficiency with
respect to the selection, detection, and estimation
of the parameters of the astrophysical GW signals.
The chirp structure that describes GW radiation at
the spiral phase of the merging of a relativistic bi-
nary star was chosen as a signal model. Two key
methods for complex processing of information sup-
plied by network components were investigated: the
optimal summation of the responses brought to the
input of each detector (“aperture synthesis”) and the
immediate joint processing of their output data (in
particular, the “coincidence circuit”). It is obvious

that both methods should lead to the same results for
large SNRs with optimal processing. However, the
effectiveness of these methods can differ significantly
when measured at the threshold detector sensitivity.
Although the analysis carried out in this paper cannot
be considered exhaustive and strongly consistent, it
was possible to use it to show the advantages of
aperture synthesis compared to the traditional coin-
cidence circuit method.

If network components are integrated by input,
the optimal observable is formed as the output of
the multichannel correlator, which is matched with
the reference GW signal which is the same for all
links (3b). A coherent accumulation of the observable
occurs. The likelihood ratio in the presence of a signal
depends on its phase φ (5b), which does not appear in
generalized form (5c) being replaced by its maximum
likelihood estimate.

On the contrary, the optimal observable is the
sum of individual correlators in the channels of the
individual reference signals with random phases (5d)
in the absence of a signal and in the presence of only
quasi-deterministic noise (3d). In this case, there is
no phased accumulation.

Network component integration by input and co-
herent accumulation basically improve (maximize)
the SNR, which in turn leads to more precise estima-
tion of the parameters of the received signal (current
frequency, rate of its change, and, ultimately, the chirp
mass). In the first approximation, these parameters
can only receive a rough estimate via the Cramer–
Rao inequality [15]. As far as estimation accuracy
of the source localization is concerned, it is mainly
determined by the spatial scale of the network and
depends little on the type of component integration.

It would be interesting to illustrate these re-
sults based on the example of a specific network,
e.g., the European–Asian network of four GW-
interferometers mentioned in the Introduction:
VIRGO, KAGRA, including sites in India (Maha-
rashtra, Φ19

◦
43′ N, λ 77

◦
09′ E) and in Novosibirsk

(Φ55
◦
02′ N, λ 82

◦
56′ E). Note that the addition of

the last two sites greatly narrows the areas of local-
ization of the detected sources of GW signals along
the meridians of the spherical geocentric coordinate
system. Such calculations are being conducted and
will be presented in the following paper.

APPENDIX

The problem of distinguishing between two sig-
nals can be reduced to the problem of detecting their
difference signal [15]. In fact, let us rewrite Eq. (1) in
the following form:

Δy(t) = y(t) − η(t) = λΔs(t) + n(t),
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−∞ < t < ∞,

where

Δs(t) = s(t)− η(t). (A1)

It is apparent that the problem of distinguishing be-
tween deterministic signals s(t) and η(t) is statisti-
cally equivalent to detecting the useful signal Δs(t)
(2) against the background of additive Gaussian noise
n(t).

The solution λ = 1 is taken if the following condi-
tion is met

ln Λ(Δy|λ = 1) � C,

where Λ(Δy|λ) is the likelihood ratio of a random
Gaussian process Δy(t) in the λ state, and C is
the threshold level depending on the selected quality
criteria.

The probabilities of type I α and type II β errors
normally determined as follows

α = P {ln Λ(Δy|λ = 1) � C|λ = 0} ;
β = P {ln Λ(Δy|λ = 1) � C|λ = 0} ,

are written for Gaussian background noise using the
probability integral

Φ(x) =
1√
2π

x∫

−∞

exp

{

−z2

2

}

dz

as

α = 1− Φ

(
1

2

√
q + c

)

,

β = 1− Φ

(
1

2

√
q − c

)

.

Here,

q =
1

N0

∞∫

−∞

ΔsT(t)Δs(t)dt (A2)

is the SNR parameter and c = C/
√
q is the normal-

ized threshold.

Threshold C defined as

C = ln
P (λ = 0)

P (λ = 1)

depends on the selected quality criteria.

We also assume that type I and type II errors are
equal within the ideal observer’s criterion, i.e., P (λ =
1) = 1− P (λ = 0), which leads to the threshold
C = 0. The threshold within the Neyman–Pearson

criterion [15] is determined by the chosen type I error
probability value C = C(α).

In this paper, we limit ourselves to the ideal ob-
server criterion assuming the known a priori probabil-
ities P (λ = 1) and P (λ = 0) = 1− P (λ = 1). In the
case of this approach, the probability of an erroneous
solution Pe is

Pe = P (λ = 1)β + P (λ = 0)α, (A3)

i.e., the error probability turns out to be as follows un-
der the minimax condition P (λ = 1) = P (λ = 0) =
0.5

Pe = 1− Φ

(
1

2

√
q

)

.

It is also useful to present the vector representation of
SNR q (A2) in the scalar form:

q =
1

N0

l∑

i=1

∞∫

−∞

Δs2i (t)dt

=
1

N0

l∑

i=1

∞∫

−∞

[si(t)− ηi(t)]
2 dt. (A4)
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