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Abstract—A new analytical approximate solution is suggested for the problem of nonlinear parametric gener-
ation of light in a cavity. This solution is much more accurate than the known ones. Two- and three-cavity
lasing schemes are considered and criteria for their adequacy are ascertained. The accuracy of the results is
confirmed by computer simulation.
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INTRODUCTION
The onset of the laser age in the early 1960s gave a

powerful pulse to the development of nonlinear optics,
which, in turn, promoted new achievements in laser
physics. Effective optical harmonic generators were
designed, as well as optical parametric oscillators with
smoothly variable radiation frequencies [1]. Paramet-
ric optical sources are used, in particular, for the cre-
ation of non-classical light conditions with unusual
properties, where correlating pairs of photons are gen-
erated. They are used in experimental studies of the
quantum nature of light, which is shown best in the
Bell inequality, Zeno’s paradox, and quantum inter-
ference (see, e.g., [2]). In addition, parametrically
generated light can be used for standardless perfectly
accurate calibration of photodetectors [3], non-de-
molition measurements of light intensity [4, 5], and
data transmission protected from leakage with quan-
tum cryptography [6, 7]. Parametrically generated
light is an ideal source in highly accurate balanced
optical measurements due to the strong correlation
between signal and idler photons, since the level of the
differential photocurrent turns out to be lower than the
shot noise in the frequency range below the inverse
photon-containment time in a cavity [8, 9]. A cavity is
used because the efficiency of the parametric transfor-
mation of pumping is 10–8–10–7, i.e., only one of ten
million or more of pumping photons decays to two
(signal and idler) photons. The cavity allows an
increase in the effective length of the nonlinear inter-
action due to multiple passes through the crystal.

There is no exact analytical solution of the problem
of the description of fields in a cavity due to the com-
plexity of the initial set of differential equations of
parametric interaction and consideration of boundary

conditions of refraction by mirrors. The simplest
approximation (the so-called non-depleted pump
approximation) consists in the neglect of the pump
depletion, but it is very rough. A more accurate solu-
tion was suggested in [10, pp. 468, 469], where the
pump depletion is considered, but the signal increase
is ignored, which formally violates the principle of
conservation of energy. Nevertheless, this approxima-
tion has been widely used up to the present time [11–
15]. An attempt to develop a more accurate analytical
solution was recently made in [16, 17] under the
assumption that the amplitudes of both pump and
generated light beams change linearly along the length
of a nonlinear crystal. This provided a more accurate
solution and allowed the authors to avoid the violation
of the principle of conservation of energy. In addition,
losses were taken into account in [17] and a strict cri-
terion for the adequacy of the solutions suggested was
developed.

Further studies of the peculiarities of light genera-
tion in a cavity allowed us to draw the conclusion that
an analytical solution can be derived from a weaker
assumption about linear changes only in the pump
amplitude. This assumption is confirmed by many
numerical experiments. The accuracy of the analytical
approximation is much higher in this case. These
results are discussed in this work.

1. BASIC EQUATIONS 
FOR THE DESCRIPTION OF PARAMETRIC 

INTERACTIONS

The parametric interaction of light in a nonlinear
crystal is a process of the generation of pairs of pho-
tons in a medium with quadratic nonlinearity under
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the action of pumping photons. Three waves partici-
pate in the process, namely, signal (s), idler (i), and
pumping (p) waves; their frequencies are connected by
the relationship .

The initial set of differential equations of paramet-
ric interactions has the form [10, pp. 468, 469]:

 (1)

where A are the complex amplitudes of the corre-
sponding waves, α are the loss factors, β are the non-
linear coupling factors, u are the group velocities, and
z is the longitudinal optical axis along which beams
propagate.

The third equation in set (1) is written for mono-
chromatic pumping, which shows that it is depleted
mainly due to a nonlinear interaction but not dissipa-
tive loss.

This set of differential equations should be solved
with allowance for reflection from mirrors in a cavity:

 (2)

where L is the total bypass length around the cavity,
T is the total bypass time around the cavity, and r is the
amplitude reflection coefficient of the exit mirror. The
reflection coefficients of other mirrors are taken equal
to unity.

Let us simplify the initial set (1) in the following
way. We consider the stationary case of the steady-
state conditions for the collinear interaction of all the
three waves that propagate along the z axis and take the
symmetry of signal and idler waves under equal loss
factors  and nonlinear coupling  factors
into account. In this case, the two first equations of set
(1) are identical. Thus,

 (3)

Let us write

 (4)

divide the second equation of the set by the first equa-
tion, and separate the variables:

 (5)
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Integrating Eq. (5) with accounting for the second
equation of set (3), we derive

 (6)

where the constant  and
0 subscripts designate the initial amplitudes at z = 0.

Again, separate variables in Eq. (6):

 (7)

Let us now add the term –α in the numerator
within the differential sign and transform the denomi-
nator:

 (8)

Integrate Eq. (8):

 (9)

Here the coefficients , C2 =

, and, as before, C =

.
We can derive the equation for Ap from Eq. (9):

. (10)

Finally, according to the solution of Eq. (5),

. (11)

Strictly speaking, we should write ± in Eq. (10)
because of the presence of the modulus in Eq. (9), but
the solution with the sign “–” is inappropriate for
modes of light generation in a cavity.

Let us note that a similar analytical solution was
derived in [18] with neglect of the loss α.

Let us now describe a parametric interaction in a
cavity.

2. TWO-CAVITY INTERACTION SCHEME
Let us first consider the case of double resonance

(Fig. 2), when the pumping wave freely passes through
mirrors, in contrast to the signal and idler waves. The
boundary reflection conditions on mirrors are to be
taken into account. The delay can be ignored, since we
consider the stationary case of perfectly exact reso-
nance of monochromatic waves in a stationary mode.
All amplitudes A are real in this case.
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Numerical analysis of set (3) shows that the pump
amplitude decreases linearly as z increases under real
conditions of parametric light generation (Fig. 4).
Therefore, taking the second equation of set (3) into
account, one can take

. (12)

Equation (11) with Eq. (12) implies the following
relation:

 (13)

where .
Let us substitute Ap(L) in Eq. (13). Then

. (14)

The non-negative solution of Eq. (14) has the form

. (15)

Since

 (16)

in the generation regime, then the threshold value of
the pumping amplitude

. (17)

In the general case of arbitrary z,

, (18)

where C1 is calculated like after Eq. (9), and A0 is sub-
stituted from Eq. (15). At the same time, A(z) is calcu-
lated by Eq. (11) with substitution of A0 from Eq. (15)
and Ap(z) from Eq. (18).

The result is more accurate as compared to the
well-known solutions [16, 17]. According to a com-
puter experiment, this approximation is valid if the
pumping power exceeds its threshold power
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. The error is less than 5% in this case

(Fig. 3). In contrast to [16, 17], where the approxima-
tion of linear dependence of the amplitudes of all
interaction waves on z was used, our assumption is
weaker and provides a more accurate result. The cal-
culation results are shown in Figs. 4 and 5. The analyt-
ical and numerical curves almost coincide in this case.
This variant is not really usable, because there is no
sense in waiting for the signal drop, as in Fig. 4, but we
shown it to demonstrate the capabilities of our tech-
nique for describing not only a monotonous increase
in the signal, but also its depletion.

3. THREE-CAVITY INTERACTION SCHEME

The mirrors were transparent for the pump in the
two-cavity case. Now, all the three waves (s, i, p) pass
round the cavity, like, e.g., in Fig. 6, and one more
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Fig. 1. The generation of a pair of photons in a nonlinear
crystal.
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equation is added that describes the boundary pump-
ing conditions:

, (19)

where  and  is the pump amplitude

coming into the cavity from outside. As before, the
delay is neglected.

According to numerical calculations, the pump
amplitude also changes linearly in z under typical sta-
tionary generation conditions. This dependence is
shown in Fig. 8.

Considering boundary conditions (2) and (19) and
the first equation of set (3) and Eq. (11), we derive the
set of algebraic equations

 (20)

Substituting Ap(L) from the third equation of set (20)
in the fourth one:
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and considering the first equation of this set, we derive
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Let us express  from Eq. (21); considering the
first equation from set (20), we have

. (23)

Here Ap0 can be found from the second and third equa-
tions of set (20):

. (24)

The equation for A0 can be derived from Eqs. (23)

and (24):
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Fig. 4. The relative amplitude of idler and signal waves

 as a function of the relative coordinate z/L in the

two-cavity interaction scheme at αL = 0.1, Ap0βL = 3.5,

and the reflection coefficient r = 0.95. The solid curve
shows the result of numerical calculations; the dashed

curve shows our analytical approximation.
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Now, A(z) and Ap(z) can be calculated by Eqs. (10)

and (11).

Similarly to Eq. (17), the threshold value of the
pump amplitude

. (27)

The calculation result is shown in Figs. 7 and 8.
The approximation is valid if the pumping power

exceeds the threshold power . The

error is less than 5% in this case (Fig. 9).

CONCLUSIONS

In this work, we considered an analytical solution
of the problem of parametric generation of light in a
cavity. It significantly exceeds previously known solu-
tions in accuracy, until the conditions for significant
depletion of not only the pump, but also the signal.
The possibility of this approximation follows from the
numerical simulation results, which have shown that
the pumping decreases linearly even under signifi-
cantly nonlinear behavior of the signal along the non-
linear medium. Exactly this property has been used in
our description, where the pumping is considered to
be linear in z. As a result, our analytical solution is
completely adequate, even at high values of the non-
linear interaction coefficient. This was confirmed by
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corresponding computations of the numerical solu-
tion of the initial set of equations without any simpli-
fications.

The results of this work were reported at a confer-
ence [19] and at the 9th workshop devoted to the
memory of D.N. Klyshko.

An alternative method of increasing the accuracy of
the description of fields was suggested in [20], where

Fig. 7. The relative amplitude of idler and signal waves

 as a function of the relative coordinate z/L in the

three-cavity interaction scheme at αL = 0.2, Ap0βL = 24,

and the reflection coefficients r = 0.95 and rp = 0.95. The

solid curve shows the numerical calculation result; the

dashed curve shows our analytical approximation.
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both pump and generated waves were described in
quadratic or cubic approximations.
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