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Abstract—The problem of motion of a rigid body with a fixed point in a free molecular flow of
particles is considered. It is shown that the equations of motion of this body generalize the classical
Euler–Poisson equations of motion of a heavy rigid body with a fixed point, and they are represented
in the form of the classical Euler–Poisson equations in the case when the surface of the body in a
flow of particles is a sphere. The existence of first integrals in the considered system is discussed.
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1. PROBLEM FORMULATION. COMPUTATION OF THE MOMENT ACTING ON A BODY
WITH A FIXED POINT

We consider the problem of motion of a rigid body about a fixed point in a flow of particles. We assume
that the flow of particles is a free molecular flow of constant density ρ whose particles are in translational
motion with the constant absolute velocity v0:

−v = v0γ,

where γ is the unit vector directed along the incoming flow. We ignore the thermal motion of molecules
in the flow.

We consider the following mechanism of interaction between the molecules of the incoming flow and
the surface of the body. A particle, having transferred almost all its energy to the body at collision,
arrives at the temperature equilibrium with the location of impact (somewhat heated now). When
heating is released, the particle moves towards the space with the thermal velocity equal to the thermal
velocity of molecules of the body surface. Because this thermal velocity is considerably lower than the
thermal velocity of external particles, this interaction can be simplistically described by the hypothesis
of absolutely inelastic impact, when the particles lose its energy at collision with the body (and are not
reflected).

We obtain the expressions for the force and moment acting on the body with a fixed point from the
particle flow. We use the approach provided in the monograph by Beletskii [1]. Denote by O the fixed
point of the rigid body. The distribution of velocities in the rigid body is determined by the Euler formula:

uM = [ω ×OM ] ,

where M is an arbitrary point of the rigid body and ω is the absolute angular velocity of the rigid body. If
we denote the angle between the vectors ω and OM by α, then

|uM | = |ω| |OM | sinα � |ω| |OM | .
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Assume that the value of the incoming flow velocity v0 is considerably higher than the product of the
characteristic value of the rigid body angular velocity and the characteristic distance from the fixed point
to any point of the rigid body, that is,

|ω| |OM |
v0

� 1. (1)

Hence, we assume that in the absolute space the velocities of all points of the rigid body are zero. We
determine the action of the flow on the body when the body is motionless and the flow has a constant
velocity. We proceed to the coordinate system that translates together with the flow. In this coordinate
system we follow the fixed point O of the rigid body (or its any other point due to assumption (1)).
The absolute velocity vabs

O of the point O is zero, because O is the fixed point of the rigid body. The
transfer velocity vtrans

O of the point O is the absolute velocity of the point of the moving space (that is, the
space that translates together with the chosen coordinate system) at which the point O is situated at the
current time instance. This velocity is

vtrans
O = −v = v0γ.

The relative velocity vrel
O of the point O is the velocity of the point O with respect to the flow. By the

velocity addition formula we have

0 = vabs
O = vtrans

O + vrel
O ,

from which we find out that the point O (and, consequently, due to assumption (1) the entire body)
moves relative to the flow with the velocity vrel

O = v = −v0γ.

We separate an elementary area dS on the body surface and compute an elementary momentum
received by the area dS translating with respect to the flow with the velocity v for a time dt (Fig. 1). We
assume the impact of particles to the body to be absolutely inelastic. In the course of such motion, the
area covers the volume

dτ = (v · n) dS dt,

where n is the unit normal vector to the area and (v · n) > 0. Inside the volume dτ there is the mass
dm = ρ dτ , where ρ is the flow density. An elementary momentum received by the area and the force
acting upon it have the form

dQ = −v dm = −vρ dτ = −ρv (v · n) dS dt, F =
dQ

dt
= −ρv (v · n) dS.

Consider a convex body bounded by a smooth closed surface and translating with the velocity
v = −v0γ with respect to the flow. The force resultant of interaction between the body and the molecules
is given by the formula

F = −
∫

S∗

ρv (v · n) dS, (2)

where S∗ denotes the part of the body surface passed over by the molecular flow: on its boundary
(v · n) = 0, because at the boundary the flow direction is tangent to S∗ and in the internal points of
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the surface S∗ the outer normal n satisfies the inequality (v · n) > 0. The boundary of this surface is
denoted by ∂S∗ (Fig. 2).

We assume that the direction of the velocity vector v is independent of the choice of the elementary
area dS and, consequently, the integral in Eq. (2) can be rewritten as

F = −ρv

∫

S∗

(v · n) dS. (3)

Now, let us compute the resultant moment of interaction forces between the molecules and the body
relative to the fixed point O. This moment is calculated by the formula

MO = −ρ

∫

S∗

[r× v] (v · n) dS = ρ

⎡
⎣v ×

∫

S∗

r (v · n) dS

⎤
⎦ , (4)

where r is the position vector of a point of the body surface relative to the fixed point O.
To compute the integrals entering formulas (3) and (4), we introduce the new body T that we

construct in the following manner. We place the plane Π perpendicular to the vector v. It is convenient
to place this plane at a certain distance to the point O behind (with respect to the vector v) the body. The
projection of the body onto the plane Π along the vector v (the orthogonal projection) is some planar
figure S0. In addition, we introduce a cylindrical surface S1 with the generatrix v and the boundary ∂S∗
as the directrix. On the one side, the surface S1 is bounded by this directrix; on the other side, the surface
is bounded by the line of intersection with the plane Π. The surface Σ = S∗

⋃
S1

⋃
S0 bounds the body

T whose volume is denoted by τ (Fig. 2). According to the Gauss–Ostrogradsky theorem, the following
relation is valid: ∫

Σ

(v · n) dS =

∫

T

divv dτ = 0,

because divv = 0. In addition to that, the relations hold:
(v · n)|S1

= 0, (v · n)|S0
= −v0 (γ · γ) = −v0. (5)

Hence, ∫

Σ

(v · n) dS =

∫

S∗

(v · n) dS +

∫

S1

(v · n) dS +

∫

S0

(v · n) dS = 0,

and, consequently, ∫

S∗

(v · n) dS = −
∫

S0

(v · n) dS = v0

∫

S0

dS = v0S,

where S is the area of the figure S0. Thus,

F = −ρvv0S = ρv20Sγ. (6)
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We introduce the coordinate system Oxyz with the origin in the fixed point O and the axes directed
along the principal axes of inertia for the point O. Suppose that in this coordinate system r = (x, y, z),
v = −v0 (γ1, γ2, γ3). By the Gauss–Ostrogradsky theorem∫

Σ

x (v · n) dS =

∫

Σ

(xv · n) dS =

∫

T

div (xv) dτ = −v0γ1τ,

and, similarly, ∫

Σ

y (v · n) dS = −v0γ2τ,

∫

Σ

z (v · n) dS = −v0γ3τ.

Consequently, ∫

Σ

r (v · n) dS = τv.

On the other side, by formulas (5) we can write∫

Σ

r (v · n) dS =

∫

S∗

r (v · n) dS − v0

∫

S0

r dS.

On S0 the vector r is the vector connecting the fixed point with various points of the figure S0.
Therefore, on S0 we represent the vector r in the form

r = − lv

|v| + r′ = lγ + r′,

where l is the length of the normal from the fixed point onto the plane Π. For the vector r′ the condition
(v · r′) = 0 is met, because the vector r′ lies in the plane Π (Fig. 2). Then,

v0

∫

S0

r dS = v0lγ

∫

S0

dS + v0

∫

S0

r′dS = −lSv+ v0

∫

S0

r′dS = −lSv+ v0PO′ .

The integral

PO′ =

∫

S0

r′dS (7)

is the first moment of the figure S0 relative to the point O′, the projection of the fixed point O onto the
plane Π. Thus,

τv =

∫

S∗

r (v · n) dS + lSv − v0PO′ .

Hence, ∫

S∗

r (v · n) dS = (τ − lS)v + v0PO′ ,

and, according to formula (4),

MO = ρv0 [v ×PO′ ] = −ρv20 [γ ×PO′ ] . (8)

Now, we compute integral (7). In this integral the vector r′ is the vector passed from the point O′ to
various points of the figure S0. Suppose that the figure S0 is an infinitely thin homogeneous plate with a
density ρ1 = const glued on the plane Π. Then,∫

S0

r′dS =
1

ρ1

∫

S0

ρ1r
′dS =

ρ1S

ρ1
O′G = S ·O′G.
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Here, S = S (γ) is the area of the figure S0 and O′G is the vector connecting the point O′, projection
of the fixed point O onto the plane Π, with the center of mass G of the plate bounded by the figure S0.
In the general case

S = S (γ) , O′G = c = c (γ) .

We also introduce the denotation ρv20 = f . As a result, formula (8) takes its final form

MO = −fS (γ) [γ × c (γ)] . (9)

Thus, we have obtained the expression for the moment acting on the rigid body with a fixed point
occurring in a flow of particles. It is clear that this moment is independent of the flow direction passed
over this body. Note that in the derivation of this formula we have used assumption (1). This means that
formula (9) should be applied only in studying slow rotational movements of a body with a fixed point.

The equations of motion of a rigid body with a fixed point in a flow of particles have the form

Jω̇ + [ω × Jω] = −fS (γ) [γ × c (γ)] , γ̇ + [ω × γ] = 0, (10)

where J = diag (A1, A2, A3) is the tensor of inertia of the body relative to the fixed point O.

2. EXPLICIT EXPRESSION FOR THE MOMENT ACTING UPON THE BODY BOUNDED
BY THE SPHERICAL AND ELLIPSOIDAL SURFACE

Consider some examples of computing the moment MO, determined by formula (9), for some bodies
with simple geometry.

Example 1. Let us compute the moment MO, determined by formula (9), in the case when the body
with a fixed point is bounded by the spherical surface of radius R and the fixed point is the center of this
sphere. Then, the figure S0 is a circle whose radius is equal to the radius of the sphere R. The area of this
circle is constant and is equal to

S (γ) = πR2 = const.

It is clear that the center of mass of the homogeneous plate with a shape of the figure S0 is located in
the center of the circle. This means that the vector c (γ) connecting the point O′, projection of the fixed
point O onto the plane perpendicular to the flow, and the center mass of the plate vanishes in this case.
Therefore, MO = 0.

Now, we compute the moment MO in the case when the fixed point is chosen to be an arbitrary
point O1 inside the sphere. We introduce the coordinate system O1xyz whose axes are directed along
the principal axes of inertia of the body relative to the point O1. Suppose that ex, ey , and ez are unit
basis vectors of this coordinate system. We denote the coordinates of the sphere center, point O, in the
coordinate system O1xyz by a1, a2, and a3, that is,

O1O = a1e1 + a2e2 + a3e3.

According to the well-known formula of the theoretical mechanics, we have

MO1 = MO − [OO1 × F] = [O1O × F] = [O1O × fS (γ)γ] = fπR2 [O1O × γ] .

Suppose that MO1 = M1ex +M2ey +M3ez in the coordinate system O1xyz. Then,

M1 = fπR2 (a2γ3 − a3γ2) , M2 = fπR2 (a3γ1 − a1γ3) , M3 = fπR2 (a1γ2 − a2γ1) .

Equations (10) in the scalar form are written as

A1ω̇1 + (A3 −A2)ω2ω3 = fπR2 (a2γ3 − a3γ2) , A2ω̇2 + (A1 −A3)ω1ω3 = fπR2 (a3γ1 − a1γ3) ,

A3ω̇3 + (A2 −A1)ω1ω2 = fπR2 (a1γ2 − a2γ1) ;

γ̇1 = ω3γ2 − ω2γ3, γ̇2 = ω1γ3 − ω3γ1, γ̇3 = ω2γ1 − ω1γ2.

It is clear that in this case Eqs. (10) take the form of the classical Euler–Poisson equations describing
the motion of a heavy rigid body about a fixed point. Consequently, we can consider the system of
equations (10) to be a possible generalization of the classical Euler–Poisson equations.
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Example 2. We are going to compute the moment MO acting upon a body with a fixed point when
this body has the ellipsoidal shape and the fixed point coincides with the center of the ellipsoid. We direct
the axes of the coordinate system Oxyz with the origin in the fixed point O along the principal axes of
inertia of the body relative to the point O. Suppose that the equation of ellipsoid in the coordinate system
Oxyz has the form

x2

a21
+

y2

a22
+

z2

a23
= 1. (11)

This means that the principal axes of inertia Oxyz are the principal axes of the ellipsoidal surface as
well. We find the boundary ∂S∗ (Figs. 2 and 3). The tangent plane to the ellipsoid at the point (x, y, z)
is given by the following equation for X, Y , and Z:

xX

a21
+

yY

a22
+

zZ

a23
= 1.

Suppose that a point with the coordinates (x, y, z) belongs to the boundary ∂S∗. Then, the straight
line

X = x+ v0γ1t, Y = y + v0γ2t, Z = z + v0γ3t

lies in the tangent plane to the body surface, that is, for any t it is true that
x

a21
(x+ v0γ1t) +

y

a22
(y + v0γ2t) +

z

a23
(z + v0γ3t) = 1.

Using (11), we therefore obtain
xγ1
a21

+
yγ2
a22

+
zγ3
a23

= 0. (12)

This equation together with the equation of ellipsoid (11) prescribes the boundary ∂S∗. It is well-
known (see, for instance, [2]), any plane passing through the center of ellipsoid intersects the ellipsoid
along an ellipse. Therefore, the section of the surface (11) by plane (12) is an ellipse. Let us find its area.
It is equal to the product of the semiaxes of the ellipse multiplied by π. The squares of the semiaxes of
the ellipse are extremums of the function f = x2 + y2 + z2 under conditions (11) and (12). We use the
method of Lagrange multipliers and consider the function

L = x2 + y2 + z2 + λ

(
x2

a21
+

y2

a22
+

z2

a23
− 1

)
+ μ

(
xγ1
a21

+
yγ2
a22

+
zγ3
a23

)
.

At the points of its extremum, the following equalities hold:
∂L
∂x

=
∂L
∂y

=
∂L
∂z

= 0.

We write these conditions in the explicit form:

2x+
2λx

a21
+

μγ1
a21

= 0, x = − μγ1

2
(
a21 + λ

) , 2y +
2λy

a22
+

μγ2
a22

= 0, y = − μγ2

2
(
a22 + λ

) ,

2z +
2λz

a23
+

μγ3
a23

= 0, z = − μγ3

2
(
a23 + λ

) . (13)
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We substitute the found x, y, and z into Eq. (12):

γ21
a21

(
λ+ a22

) (
λ+ a23

)
+

γ22
a22

(
λ+ a21

) (
λ+ a23

)
+

γ23
a23

(
λ+ a21

) (
λ+ a22

)
= 0.

Thus, λ satisfies the quadratic equation

k0λ
2 + k1λ+ k2 = 0, (14)

where

k0 =
γ21
a21

+
γ22
a22

+
γ23
a23

, k2 = a21a
2
2a

2
3

(
γ21
a41

+
γ22
a42

+
γ23
a43

)
.

It is not necessary to solve this equation. To clarify the meaning of λ, we multiply the equations of
system (13) by x, y, and z, respectively, and sum,

0 = 2x2 + 2y2 + 2z2 + 2λ

(
x2

a21
+

y2

a22
+

z2

a23

)
+ μ

(
xγ1
a21

+
yγ2
a22

+
zγ3
a23

)
= 2

(
x2 + y2 + z2 + λ

)
.

Therefore, we obtain λ = −x2 − y2 − z2 at the extremum points. The area of the ellipse that is the
section of the ellipsoid (11) by the plane (12) is S1 = π

√
λ1λ2, where λ1 and λ2 are roots of the quadratic

equation (14). By Vieta’s formulas

λ1λ2 =
k2
k0

= a21a
2
2a

2
3

(
γ21
a41

+
γ22
a42

+
γ23
a43

)

(
γ21
a21

+
γ22
a22

+
γ23
a23

) ,

and, consequently,

S1 = πa1a2a3

√√√√√√√√

γ21
a41

+
γ22
a42

+
γ23
a43

γ21
a21

+
γ22
a22

+
γ23
a23

.

The figure S0 is the projection of the ellipse (11), (12) onto the plane Π; therefore, the area of this
figure is

S (γ) = S1
(N · γ)
|N| , N =

(
γ1
a21

,
γ2
a22

,
γ3
a23

)
.

Here, N is the normal vector to the plane (12), that is, to the plane in which the boundary ∂S∗ lies. Thus,
we conclude that

S (γ) = πa1a2a3

√√√√√√√√

γ21
a41

+
γ22
a42

+
γ23
a43

γ21
a21

+
γ22
a22

+
γ23
a23

(
γ21
a21

+
γ22
a22

+
γ23
a23

)
√

γ21
a41

+
γ22
a42

+
γ23
a43

= πa1a2a3

√
γ21
a21

+
γ22
a22

+
γ23
a23

.

According to (6), the components of the force resultant vector of interaction between the body and
the molecules of the flow in the coordinate system Oxyz have the form

F1 = fπa1a2a3γ1

√
γ21
a21

+
γ22
a22

+
γ23
a23

, F2 = fπa1a2a3γ2

√
γ21
a21

+
γ22
a22

+
γ23
a23

,

F3 = fπa1a2a3γ3

√
γ21
a21

+
γ22
a22

+
γ23
a23

.
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The center of mass of the figure S0 is at the point O′, projection of the fixed point O onto the plane Π
perpendicular to the flow. Hence, c (γ) = 0 and MO = 0.

Now, we compute the moment M relative to an arbitrary point O1 belonging to the body. We
introduce the coordinate system O1x1x2x3 whose axes are directed along the principal axes of inertia
of the body relative to the point O1. We still denote the components of the vector γ in the coordinate
system O1x1x2x3 by γ1, γ2, and γ3. We denote the coordinates of the point O in the coordinate system
O1x1x2x3 in the following manner:

O1O = h1ex + h2ey + h3ez.

According to the well-known formula of the theoretical mechanics, we have

MO1 = MO − [OO1 × F] = [O1O × F] = [O1O × fS (γ)γ] = fS (γ) [O1O × γ] .

Suppose that MO1 = M1ex +M2ey +M3ez in the coordinate system O1x1x2x3; then,

M1 = fπa1a2a3

√
γ21
a21

+
γ22
a22

+
γ23
a23

(h2γ3 − h3γ2) , M2 = fπa1a2a3

√
γ21
a21

+
γ22
a22

+
γ23
a23

(h3γ1 − h1γ3) ,

M3 = fπa1a2a3

√
γ21
a21

+
γ22
a22

+
γ23
a23

(h1γ2 − h2γ1) .

Thus, in the case of a flow of particles about a rigid body with a fixed point that is bounded by the
ellipsoidal surface and whose principal axes coincide with the principal axes of inertia of the body with
respect to the fixed point, the equations of motion of the body (10) are writte in the scalar form as

A1ω̇1 + (A3 −A2)ω2ω3 = fπa1a2a3

√
γ21
a21

+
γ22
a22

+
γ23
a23

(h2γ3 − h3γ2) ,

A2ω̇2 + (A1 −A3)ω1ω3 = fπa1a2a3

√
γ21
a21

+
γ22
a22

+
γ23
a23

(h3γ1 − h1γ3) ,

A3ω̇3 + (A2 −A1)ω1ω2 = fπa1a2a3

√
γ21
a21

+
γ22
a22

+
γ23
a23

(h1γ2 − h2γ1) ;

γ̇1 = ω3γ2 − ω2γ3, γ̇2 = ω1γ3 − ω3γ1, γ̇3 = ω2γ1 − ω1γ2.

Now, we present some conclusions about the structure of the moment MO in the case of a flow of
particles about a rigid body with a fixed point bounded by an axisymmetric surface.

3. FLOW ABOUT A BODY BOUNDED BY AN AXISYMMETRIC SURFACE

Suppose that the surface of a body passed over by a flow of particles is the surface of revolution.
We are going to obtain the expression for the moment MO in this case. In our reasoning we use some
results of works [3, 4]. Suppose that a body with a fixed point is bounded by a surface of revolution whose
equation in the principal axes of inertia with the origin in the fixed point is given by

F (x, y, z) = x2 + y2 − f (z) = 0. (15)

Thus, the axis Oz is the axis of symmetry of this surface of revolution. We find the partial derivatives:

∂F

∂x
= 2x,

∂F

∂y
= 2y,

∂F

∂z
= − df

dz
.

We introduce the denotation

G (z) =

√
x2 + y2 +

1

4

(
df

dz

)2

=

√
f (z) +

1

4

(
df

dz

)2

.
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Then, the normal vector to the surface takes the form

n =

⎛
⎜⎝ x

G (z)
,

y

G (z)
,
−1

2

df

dz
G (z)

⎞
⎟⎠ .

The boundary of the region passed over by the flow of particles is determined by the equation of the
surface (15) and by the equation (n · γ) = 0, or, in the explicit form,

γ1x+ γ2y =
1

2
γ3

df

dz
. (16)

Now, we introduce the new coordinate system. Above, we have considered a system of principal axes
of inertia that have coincided with the principal axes of the surface. We have denoted the unit basis
vectors of this system by ex, ey, and ez . The new basis vectors e1, e2, and e3 are associated with the old
ones ex, ey , and ez by the formulas

e1 =
γ2√

γ21 + γ22
ex −

γ1√
γ21 + γ22

ey, e2 = γ = γ1ex + γ2ey + γ3ez,

e3 = − γ1γ3√
γ21 + γ22

ex −
γ2γ3√
γ21 + γ22

ey +
√

γ21 + γ22 ez.

It is easy to see that the vectors e1, e2, and e3 are mutually orthogonal. This means that e1 and
e3 are two mutually orthogonal unit vectors in the plane Π perpendicular to the flow. Suppose that
r = xex + yey + zez is the position vector of some point of the surface relative to the old coordinate
system. In new axes the same vector has the form r = x1e1 + y1e2 + z1e3. Then, the coordinates x, y,
z and x1, y1, z1 are linked by the relations

x =
x1γ2√
γ21 + γ22

+
γ1√

γ21 + γ22

(
y1

√
γ21 + γ22 − z1γ3

)
,

y = − x1γ1√
γ21 + γ22

+
γ2√

γ21 + γ22

(
y1

√
γ21 + γ22 − z1γ3

)
, z = y1γ3 + z1

√
γ21 + γ22 .

We substitute these relations into Eq. (15) of the surface and into Eq. (16) of the boundary and find
out that the equation of the surface in the new coordinates becomes

x21 +

(
y1

√
γ21 + γ22 − z1γ3

)2

= f

(
y1γ3 + z1

√
γ21 + γ22

)
. (17)

The equation of the boundary takes the form√
γ21 + γ22

(
y1

√
γ21 + γ22 − z1γ3

)
=

1

2

df

dz
γ3. (18)

We eliminate the coordinate y1 from Eqs. (17) and (18) and obtain the constraint equation between
x1 and z1, that is, the equation of the projection of the boundary onto the plane perpendicular to the flow.
This projection bounds the region whose area enters the expression for the moment of forces acting upon
the body with a fixed point. Let us clarify some properties of this area. From the general form of Eqs. (17)
and (18), we can draw the following conclusions:

1. The value of this area depends only on the parameters of the surface itself and on the variable γ3,
the angle between the axis of symmetry of the body and the flow direction.

2. The curve bounding the projection is symmetrical with respect to the axis z1, that is, the center of
gravity of the projection necessarily lies on the axis z1.

Thus, the area of the projection can be considered a function of the variable γ3, that is, in this case
S (γ) = S (γ3). We take into account that the center of gravity of the projection lies on the axis z1 and
write the position vector c (γ) as follows:

c (γ) = c (γ3) e3.
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Now, we note that the vector e3 can be represented by

e3 = − γ3√
γ21 + γ22

γ +
1√

γ21 + γ22
ez.

Consequently,

c (γ) = c (γ3) e3 = − γ3c (γ3)√
γ21 + γ22

γ +
c (γ3)√
γ21 + γ22

ez,

and the expression for the moment of forces (9) can be rewritten as

MO = −fS (γ3)
c (γ3)√
1− γ23

[γ × ez] .

Thus, we can think that, in the case of flow of particles about an axisymmetric body, we have

c (γ) =
c (γ3)√
1− γ23

ez

and ez is the unit vector of the axis of the geometrical symmetry of the body. If the principal axes
of inertial of the body do not coincide with the principal axes of the surface, then in the principal
axes of inertia the unit vector of the axis of geometrical symmetry of the surface has the components
ez = α = (α1, α2, α3) and we should everywhere write (α · γ) instead of γ3. Thus, the following
statement is true.

Theorem 1. In the case of flow of particles about a rigid body with a fixed point that is bounded
by an axisymmetric surface, the unit vector of the axis of geometrical symmetry is

ez = α = (α1, α2, α3) ,

for the area S (γ) of the figure S0 and vector c (γ) the following formulas are valid:

S = S ((α · γ)) , c (γ) =
c ((α · γ))√
1− (α · γ)2

α = χ ((α · γ))α.

4. POTENTIAL PROPERTY OF MOMENT. EXISTENCE OF ENERGY-TYPE INTEGRAL.
SIMPLEST CASES OF INTEGRABILITY

The equations of motion of a rigid body with a fixed point in a flow of particles have the form (10) and
possess the integral invariant with a unit density and the first integrals

J1 = (Jω · γ) , J2 = (γ · γ) = 1.

Equations (10) are reversible, that is, hold at replacement of the variables and time (ω, γ, t) →
(−ω, γ, −t). However, in the general case these equations are not a Hamilton system with some
Poisson structure. The following statement is true:

Theorem 2. If for any i, j, i �= j the relations

ci
∂S

∂γj
+

∂ci
∂γj

S (γ) = cj
∂S

∂γi
+

∂cj
∂γi

S (γ) (19)

are satisfied, then the equations of motion are Hamiltonian with the Poisson structure determined
by the algebra E (3) and admit an additional energy-type first integral.

Proof. Suppose that

S (γ) c (γ) =
∂U

∂γ
(20)

for a certain function U (γ). Then, if the function U is sufficiently smooth, then for satisfaction of
relations (20) it is necessary and sufficient that conditions (19) are met. In this case the equations of
motion can be represented in the form

L̇ = {L,H} , γ̇ = {γ,H} ,
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{Li, Lj} = εi jkLk, {Li, γj} = εi jkγk, {γi, γj} = 0,

where the Hamilton function

H =
1

2

(
J
−1L · L

)
− fU (γ) (21)

determines J0 = H , which is the additional first integral of Eqs. (10), an analog of the energy integral.

It is clear that, when a body with a fixed point is bounded by a spherical surface, the area S (γ) of the
figure S0 is constant and relations (19) are fulfilled. As we have already said, in this case the equations
of motion of the body coincide with the equations of motion of a rigid body in a homogeneous force field.

However, relations (19) are fulfilled not often. For instance, consider the case when the body is
bounded by an ellipsoidal surface (see Section 2) and the vector connecting the fixed point O1 and the
center of the ellipsoid O has the form O1O = hex = (h, 0, 0). In this case the expression S (γ) c (γ) is
written as

S (γ) c (γ) = πha1a2a3

√
γ21
a21

+
γ22
a22

+
γ23
a23

ex.

Relations (19) are met only if a2 = a3, that is, the ellipsoid bounding the rigid body is an ellipsoid of
revolution and the fixed point lies on the axis of geometrical symmetry of the ellipsoid.

In the case of motion of a body bounded by the axisymmetric surface, when the axis of symmetry is
determined by the vector α = (α1, α2, α3) and includes the fixed point, Theorem 1 is valid. In this case,
as we know, the conditions are met:

∂U

∂γ
= S (γ) c (γ) =

S ((α · γ)) c ((α · γ))√
1− (α · γ)2

α.

It is clear that in this case the potential U (γ) can be represented as

U (γ) =

(α·γ)∫

0

S (u) c (u)√
1− u2

du = U ((α · γ)) .

Thus, when a body bounded by an axisymmetric surface is passed over by a flow of particles, the
equations of motion (10) always admit the first integral of type (21).

Let us specify some cases when the equations of motion of a rigid body in a flow of particles (10)
possess the additional integral.

Euler–Poinsot case. Suppose that the surface of the body is centrally symmetric and the center of
symmetry coincides with the suspension point. Then, Eqs. (10) admit the integral J3 = (Jω · Jω). In
this case the problem is completely integrable and coincides with the Euler–Poinsot problem.

Case of axial symmetry. Suppose that the body is dynamically symmetric, that is, for instance,
the condition A1 = A2 is met. Also, suppose that the surface of the body is centrally symmetric and
the center of symmetry lies on the axis Ox3. Then, the equations of motion admit the first integral
J3 = ω3 = const. This case is similar to the Lagrange case.

Analogs of Hess case. 1. Suppose that the surface of the body is centrally symmetric and the center
of symmetry and the moments of inertia are such that the conditions are valid:

A1 < A2 < A3,

√
1

A1
− 1

A2
c3 ∓

√
1

A2
− 1

A3
c1 = 0, c2 = 0.

Then, the equations of motion admit the partial integral

J3 =

√
1

A1
− 1

A2
A1ω1 ±

√
1

A2
− 1

A3
A3ω3 = 0. (22)
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2. Suppose that the surface of the body is axisymmetric and the axis of symmetry is determined by the
vector α = (α1, α2, α3) and includes the fixed point. Then, if the moment of inertia and the components
of the vector α satisfy the conditions

A1 < A2 < A3,

√
1

A1
− 1

A2
α3 ∓

√
1

A2
− 1

A3
α1 = 0, α2 = 0,

then the equations of motion admit the partial integral (22).
Thus, in the considered mechanical system we have succeeded to detect particularly interesting

dynamic properties.

FUNDING

The work is supported by the Russian Foundation for Basic Research, project no. 20-01-00637.

CONFLICT OF INTEREST

The authors declare that they have no conflicts of interest.

REFERENCES
1. V. V. Beletskii, Motion of Artificial Satellite Relative to Its Center of Mass (Nauka, Moscow, 1965).
2. P. S. Aleksandrov, Lectures on Analytic Geometry (Nauka, Moscow, 1968).
3. R. G. Barantsev and U. Tszzhen’-yui, “Forces and moments acting upon bodies of revolution in free-molecular

flux,” Vestn. Leningr. Univ. 13, 79–92 (1961).
4. A. A. Karymov, “Determination of forces and moments due to light pressure acting on a body in motion in

cosmic space,” J. Appl. Math. Mech. 26, 1310–1324 (1962).
https://doi.org/10.1016/0021-8928(62)90008-4

Translated by E. Oborin

MOSCOW UNIVERSITY MECHANICS BULLETIN Vol. 77 No. 3 2022


		2022-08-26T11:51:13+0300
	Preflight Ticket Signature




