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Abstract The physical laws characterizing the relation between stresses and strains are considered
and analyzed in the general modern theory of elastoplastic deformations and in its postulates of macro

scopic definability and isotropy for initially isotropic continuous media The fundamentals of this theory
in continuum mechanics were developed by A A II’yushin in the mid twentieth century His theory of
small elastoplastic deformations under simple loading became a generalization of Hencky’s deformation
theory of flow, whereas his theory of elastoplastic processes which are close to simple loading became a
generalization of the Saint Venant Mises flow theory to the case of hardening media In these theories,
the concepts of simple and complex loading processes and the concept of directing form change tensors
are introduced; the Bridgman law of volume elastic change and the universal Roche Eichinger laws of
a single hardening curve under simple loading are adopted; and the Odquist hardening for plastic de

formations is generalized to the case of elastoplastic hardening media for the processes of almost simple
loading without consideration of a specific history of deformations for the trajectories with small and
mean curvatures In this paper we discuss the possibility of using the isotropy postulate to estimate the
effect of forming parameters in the stress strain state appeared due to the strain induced anisotropy
during the change of the internal structures of materials We also discuss the possibility of representing
the second rank symmetric stress and strain tensors in the form of vectors in the linear coordinate
six dimensional Euclidean space An identity principle is proposed for tensors and vectors
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1 THE STRESS STRAIN STATE AND ITS INVARIANTS

A new direction in the mathematical theory of plasticity under the complex stress strain state and
loading was proposed by A A I’yushin in [1 11] His new theory became known as the theory of elastoplastic
deformation processes and was based on the theory of plasticity and on experimental studies of materials [12
14] The application of linear algebra and Euclidean tensor spaces allows one to adequately describe the
processes of deformation and loading of materials at each pont of physical space [15 17] This new approach
in the theory of plasticity was widely discussed by the specialists in the plasticity and flow theories [18 21]
In [10] another important discussion is described among the specialists in mechanics and physics as well
as in metallurgy The subject matter of this discussion was the effect of structural changes in materials on
their mechanical characteristics The above discussions were important for the development of the plasticity
theory and for the study of stress strain states in the processes of elastoplastic deformation of materials
At a later time, the new theory was intensively developed in [22 54] In this paper we consider some new
concepts necessary for the further development of the theory of elastoplastic deformation processes

Let us consider the body’s point defined by the radius vector x = z;é; (i = 1,2,3), where z; are the
coordinates of this point and {é;} is the orthonormal coordinate basis of physical space At this point, the
stress strain state is characterized by the stress tensor (o;;) and by the strain tensor (e;;), where o;; and
gi; are their components (¢, j = 1,2,3) In the process of loading by external forces, the stresses and strains

Oij = O'ij(x,t), Eij = €ij($,t)

are continuous functions of time ¢ [1 6, 25 27] In the plasticity theory, the tensors (o;;) and (e;;) are
decomposed into the spherical tensors and the deviators [4 6, 11]:

(0ij) = S(07;) = 00(dij) +0(S;),  (eij) = €(ef;) = €0(diz) + 2(25;).
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102 ZUBCHANINOV

Here d;; is the Kronecker symbol The deviator components are of the form
Sij = O'Sz*j =045 — (Sion, Sij = 33;}- =E&ij — (5@‘60.

The moduli of the tensors (o;;) and (e;;) and the moduli of the spherical tensors and deviators can be written

as
1 1

30ij5ij, €=

S = \/0ij0ij = \/308 +02, e= VEij€ij = \/36(2) + 9%

The components of the direction tensors (07;) and (};) are related as

eijdij; 0 =/SiSi, 2=/,

og =

o505 =1, ee; =1 (i,j=1,2,3).

Each of these tensors is specified by five independent quantities defining the vector properties of materials
The components of the tensor deviators are related as

Sy =0, S;S5;=1, 2;,=0, 0250, =1

i~ %

Each of these deviators is specified by four independent quantities defining their vector properties In the
case of simple loading, we have

(07;) = (e5),  (S55) = (93).
In the case of complex loading, we have (0};) # (&;;) and (S};) # (9;;) [1, 25] The moduli of the tensors
S = |S| and € = |¢| characterize the scalar properties of materials The stress tensor (o;;) is characterized

by the following three vectors on the three mutually orthogonal coordinate areas at a given point on the
general position area with the unit normal 7 = n;é;, where n; = cos(n, &;):

Si=0jiéj, Sj=o0yé (i,j=1,2,3). (1)

On the general position area, the stress vector S,, is specified by the Cauchy formula [24]

Sy = Sin; = X;é; = (04;n5)é;,
{ n é; = (osjnj)é @)

ano'zjnj (iaj:15273)5

where X, are the projections of the vector onto the coordinate axes x; In the case of the fixed vector S, and
after rotation of these coordinate axes, their new position is characterized by the following transformation:

a:i = lijxj, é; = lijéj éz = lﬂé; (Z,j = 1, 2, 3)

Here (I;;) is the direction cosine matrix After rotation of the coordinate axes, the fixed vector takes the
form )
S; =1;Sj, Sn=X;é;=Xjé.

Taking into account (1) and rewriting indices, we get
Sq = lquj = (O'ijlpilqj)é; (p, q,i,j = 1, 2, 3) (3)

From (3) we come to the following formula for the transformation of the stress tensor components in the
new coordinate axes:

Opg = Oijlpilg; = 000pg + Sijlpile;-

In a similar way, for the strain tensor we obtain

/ — .. . P .. . .
E€pq = Eijlpilg; = €00pg + Dijlpile;-

During the rotation of the coordinate axes, there exists their position such that the shear stresses o;;
(i # j) are equal to zero and the normal stresses take the extreme values o (k = 1,2,3) known as the
principal or eigen stresses In this case we have

Sn = O—k(dijnj)éi (Zaj = 1; 27 3) (4)
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THE GENERAL MATHEMATICAL THEORY OF PLASTICITY 103

Comparing (4) and (2), we come to the following system of equations:
(0ij = dijor)n; = 0. (5)

The additional relation is njn; = n?+n3+n% = 1 From this relation it follows that this system has nonzero
solutions and, hence, its determinant is equal to zero:

D:_|Jij_5ij0k|202_110'134'[20%_-[3:(1 (6)
Here the coefficients are invariant and are of the form

I =04 = 01 + 09 + 03 = 30y, 522308+02;
1

1
IQ = 2(0'7;1'0'jj — O'z'jO'ij) = 01092 + 0903 + 0301 = 2(90’8 — 52); (7)

Ig = |0'1'j| — 010203.
In the theory of plasticity, it is convenient to consider the following invariant instead of the invariant I5:
21, = 04j0ij = 01 + 03 + 03 = S°.

The invariants of the stress deviator can be determined from an equation similar to (6) and are of the

from
J1 =511+ Sa2 + 833 = 51+ 52 + 53 = 0,

2J2:S7;j57;j2512+522+5§:0'2, (8)
1 o3 cos 3¢
J3 =8| = Is — o 2= ,
3=15i| = Is — 05 + , 000 3v/6
where S = o — 0o are the principal stresses of the stress deviator Similar formulas are valid for the

invariants of the strain tensors and the strain deviators The principal normal and shear stresses are of the

form
S1=o01—0 —\/2000550 T 1m0 7y 27r+
—01—00 = ) = = Sin ,
1 3 12 9 2 3 %)
2 2 09 — O o .
52:(3'2—0'0:\/30’005(37-(-—()0>7 T3 = 22 3:\/28111(,0,
2 27 _o1—o3 o (21
5320'3_0'0:\/30'COS<3 -|-<)0>7 T3 = 9 —\/2s1n<3 gp),

If the coordinate axes are rotated, the stress tensor remains unchanged as a physical quantity, although
its components are changed This covariance of tensor components under coordinate transformations can
be considered as a definition of the stress tensor if its three invariants remain the same A similar situation
takes place for the strain tensor In [13] the concept of the octahedral stresses ooct = 0o and

2 \/ o
Toct = A/ T+ Tas + T =
oct = g/ 412 23 37 /3
are introduced Here 74¢¢ is proportional to the modulus of the stress deviator o These stresses are the same
on all areas of a mechanical particle of octahedron shape On each area, the direction of the shear stress is
specified by the forming angle ¢ measured from the projection of the first principal axis onto this area using
the formula

3V6|S;;
cos3p = v |3 il .
g
In the case of strains, the forming angle v is determined by the formula
3v6]9;;
cos 3 = \/33 il .

0 . . .
On an octahedron area, the stress vector S,, makes an angle oy with the unit normal to this area Then,
the projections of this vector onto the unit normal # and onto the unit tangent vector ¢ L n are as follows:

g

Toct = \/3

S S
o0 = S%cosag = cOSs v, = S%sinag = sin ay. 9
0 0 V3 0 0 V3 0 (9)
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104 ZUBCHANINOV

Here g
SO = \/0(2) +72, = 3 S = \/308 + 02,
From (9) we obtain the following parameter characterizing the deviation of S, from 7:

\/30’0 30’0
X = cot g = = .
g Toct

The stress tensor invariants (7) can be represented as

I =309 = V3Scosag, S?=30¢+ 02,

21, =902 — 52 = §%(3cos? g — 1),
I3 = 5° cos 3¢ sin® ag + V2 cos® ag — sin? Qg
3v/6 V2

According to (7), (8), and (10), thus, the stress tensor can be specified by the six components o;;, or by
the three principal stresses o, or by the three invariants I, and the three principal directions (the three
Eulerian angles) as well as by the three invariants g, o, and J3 or S, «p, and ¢ and by the three principal
directions (the three Eulerian angles) The tensor modulus S characterizes the scalar properties of a material,
whereas the three Eulerian angles and the two aspect angles oy and ¢ of the stress strain state characterize
the vector properties of this material A similar situation takes place for the strain tensor In the case of

uniform tension and compression, we have ag = 0, 7ot = 0, and 09 = S/+/3 Then,

(10)

$
3v/3

In the case of uniform forming, we have oy = 7/2, 309 = 01 + 02+ 03 = 0, and Toe; = S/V3 = 0/v/3 Then,

I1 == 30’0, .[2 == 30'(2), I3 ==

o3 cos 3
3v6

Now we consider the tensor transformation when the coordinate axes and the coordinate basis {é;} are
fixed In this case, x; = const and the stress tensor and the vector S,, = X;é; are transformed as

L=J=0, 2[,=-5%=-2J,=—-0% I3=J3=

S:L = (Oéij)Sn = X;él Oéij = lij (Z,] = 1,2,3)

if the lengths of vectors remain the same:
X[X! = X;X;, X;=ai;X;=anXp, X;=0pXe (i,5,k=123).

From here we obtain
ok = Ojk,  |ogjour] =1, ag;| = £1,

where the plus sign corresponds to the vector rotation, whereas the minus sign corresponds to the vector
reflection The first and third invariants remain indefinite Their changes may be possible, since in a particle
the physical processes are different under transformation and correspond to modified stress strain states
Although the transformation matrices are coincident for the tensor and for the coordinate axes (a;; = l;5),
the tensor transformations correspond to a new physical state

In an initially isotropic body, the appearance of plastic deformations is usually associated with the
Tresca Saint Venant criterion [30, 49]

— k= ar 2,
Thax = Tran = Tm " n = / (m <n; m,n=1, 273) (11)
2 ko = UT/\/3
or with the Mises Nadai criterion [13, 30, 47, 49]
2
0= V3Toet = \/3\/T122+T223+T12320T. (12)
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THE GENERAL MATHEMATICAL THEORY OF PLASTICITY 105

Here k is the shear yield stress in the case of spatially complex shear in the Tresca sense, kg is the shear
yield stress in the case of simple shear, and o7 given in (12) is

ol = \/§ or = V6k, = \/?2) (2K), (13)

where o is the tensile yield stress and k. is the spatial pure shear yield stress [30, 47, 49] In [14] it is
stated that, in the Tresca experiments, the distribution of shear stresses is not uniform and is not accurate
enough In [13] a geometrically and physically clear explanation is given to the Mises criterion (12); according
to this criterion, the transition of a material from the elastic state to the plastic state is observed when,
on all areas, the value of 7, simultaneously becomes equal to the limit value 7oy = kocy = V2 ks, since
Toct < Tmax = 1.5 k4

The concepts of full and partial plasticity were introduced by Haar and Kérmén in [12] The Tresca
plasticity criterion (11) can be represented in the following more general form:

(T122 - k2)(T223 - k2)(T123 - k2) =0.

Using (8), from here we get

2
sin? 3p0% — 18k? [02 - <§ kQ)] =0. (14)

The Mises Nadai criterion follows from (14) for o = ¢ and sin?3p = 0 In the vector space of principal
stresses (directions), geometrically this criterion specifies a circle of radius ¢ = o on the deviatoric plane
The angles ¢ = 0°,60°,120°,180°,240°, 300° specify the six singular points of full plasticity (o;; = 7 = ki)
on this circle The corresponding radii form the six sectors of angle 60° The other points of the circle
correspond to the partial plasticity [23, 30, 47, 49] In the mentioned sectors, the maximum shear stresses
Thax are different However, their behavior is the same in each sector:

o . 3 .
Trnax = /2 sinw = \/2 Toct SINW. (15)

The values of w are given in the table for each sector

Sector  Thax w 2
LIV Tis 2n/3—¢ 0° < ¢ <60° 180° < p < 240°
I,V T3 %) 120° < ¢ < 180°; 300° < ¢ < 360°

III, VI T 27/3+¢ 60° < ¢ < 120°; 240° < p < 300°

From this table it follows that Ty,.x is variable in each sector and the Tresca criterion is approximate
From (15) and from the table, it follows that, at the extreme points of sector arcs and at their midpoints,

we have
Toct 2\/2 Toct \/2
= = 0.945 = = (.816.
Tmax 3 ’ Tmax 3

In other words, the following inequality is valid: 7ot < Tmax Hence, the transition from the elastic state
into the plastic state is performed according to the Mises Nadai criterion if the material is initially isotropic
and stable:

V2

Toct = Koct = \/2 ky = 3 or.-

The unstable (metastable) materials (alloys) can satisfy the Mises Nadai criterion with a sufficient ac
curacy, but can significantly deviate from this criterion For example, this is the case for the magnesium
alloys [10] when their unstable structure causes the large deviations of the modulus ¢ and the single hard
ening curve law is violated In this case, for a conditional single hardening curve under simple loading, we
should take the hardening curve obtained by a torsion test performed to estimate the error in the fulfilment
of the main hypothesis of continuum mechanics
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106 ZUBCHANINOV

2 BASIC POSTULATES OF CONTINUUM MECHANICS IN TENSOR SPACES

The postulate of macroscopic definability proposed by I’yushin in [1, 2] is used to derive the stress strain
constitutive relations in the theory of elastoplastic deformation processes According to this postulate, the
stress process uniquely specifies the medium’s state at each mechanical particle of a body under complex
stress state and loading at each time instant ¢ From the macroscopic definability postulate, it follows that
the appearing stresses o;; or oo, S;; are dependent on €;; or €g, 9;; as well as on the temperature 7" and
the pressure p and on the non thermophysical parameters 8 If a medium is initially isotropic under any
stress strain state during a complex loading process (S;‘j #* 9;}), hence, we have

00 = 0{€0,2i;, T, B}, Sij = ij{€0,9i5, T, B}

These relations are the functionals of the process and are invariant with respect to the orthogonal trans
formations of rotation and reflection for the coordinate axes x; in the physical three dimensional space In
linear algebra, the sets of any elements are said to be linear or affine spaces [15 17] As such elements, we
can consider the second rank stress and strain tensors In this case, the set of tensors is said to be the tensor
space and the elements are said to be the generalized vectors For the initially isotropic media, II’yushin
proposed the generalized tensor relations

ol (g =1,2.3) (16)

5
oo = 3Keog, Sij = Z A,
n=1

where K is the Bridgman bulk elastic modulus, s(t) is the length of the strain tensor trajectory as a parameter
of process tracking, {d"2;;/ds"}; is the linearly independent tensor basis of the six dimensional tensor
space Tg, and A,, are the coefficients dependent on the invariants of the deviators [5] The above relation
between stresses and strains was derived on the basis of universal tensor approach useful to develop the
general mathematical theory of plasticity and to prove the invariance of its general physical laws irrespective
of the coordinate system z; and its coordinate basis {é;} [23 31]

The relations expressed by (16) can be considered as the mathematical formulation of the macroscopic
definability postulate for the initially isotropic media In the case of small strains, these relations completely
describe the properties of such media in the physical space for a particular process with respect to the orthog
onal transformations of rotation and reflection for the coordinate axes x; = l;;z; and for the corresponding
transformations of the tensor components:

Opg = Oijlpilg,  €pg = Eijlpily;-

This assertion is only valid when the medium under study satisfies the hypothesis of material continuum In
this case, all the three tensor invariants remain unchanged

When transforming the vector images of stress and strain tensors, we obtain a set of other physical
processes at a given mechanical particle of a body In this case the general form of the constitutive rela
tions (16) remains the same; however, the coefficients A,, become dependent on the changes of the first and
third invariants of stress states under uniform tension and compression and under uniform forming caused
by changes in the structural mechanical properties during forming processes in the stress strain state

If the changes in the structural mechanical properties are ignored, then the constitutive relations (16)
can be considered as the isotropy postulate for the initially isotropic media: under small elastoplastic defor
mations, these relations describe the physical properties of the medium with respect to the transformations
of rotation and reflection of the stress and strain tensors if the basic continuum mechanics hypothesis does
not take into account the changes in the medium’s structure under complex loading [30, 31]

3 THE MACROSCOPIC DEFINABILITY AND ISOTROPY POSTULATES
IN THE LINEAR VECTOR SPACE

In [1 3, 7 10], the linear Euclidean six dimensional space Fg is introduced instead of the linear tensor
space In Eg, the stress tensor o;; and the strain tensor €;; correspond to the ordered collections of their
components called the coordinates of multidimensional vectors As a result, the tensor space is considered as
the coordinate vector linear six dimensional space The tensor space becomes Euclidean if the rule of vector
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THE GENERAL MATHEMATICAL THEORY OF PLASTICITY 107

summation and the rule of the scalar product for two vectors are introduced Since the product rule for
the two second rank tensors (o;;) - (€i5) = (0ik0ok;) is not permutable, the scalar product of six dimensional
vectors is considered as their convolution, or the double scalar product [23, 26, 29] In this case we have

(Uij) ! '(Eij) = Oik€ki (Zajvk = 172a3)7
(0ij - -(0i5) = 045055 = 5%, (e45) - (eq5) = €4je45 = €2

Hence, each of the tensors (o;;) and (e;;) can be put in correspondence with the generalized vectors of
the six dimensional linear Euclidean space [23, 24]:

S=Y,én, e=X,é, (n=12,...,6). (17)
Here {é,,} is the coordinate orthonormal vector basis of this space and

(18)

Xy =¢11, Xo=¢e9, Xz=c33, Xa=+2e12, Xs=+V2e23, X¢=+2¢13,
Yi =011, Ya=o022, Ys=o033, Yi=+V2012, Ys=+200, Ys=+2013

are the vector coordinates corresponding to the tensor components In the decomposition of the tensors
into the spherical tensors and the deviators, the corresponding vectors (17) with the coordinates expressed
by (18) can be represented in the new basis {i;} as [1 3, 23]

S = Spir, e=9%ir (k=0,1,2,...,5), (19)

where the vector coordinates Sy and 3 are related to the tensor components as

3 Sag — S
So = V300, 512\/ Si, So=" 0 T 65— /281,, Sy =25, S5=+25s,
2 V2
(20)
3 Dog — D
D0 = V3¢, 312\/2311, Ig = 22\/2 B 03 =V201, D4=+V2023, I5=1+22913

and the unit vectors of the orthonormal basis {é;} are related to the unit vectors of the II’yushin orthonormal
basis {1} as [23]

- 1 . N . A 2. 1. . A ey — €
ZOZ\/3(€1+62+63), 21:\/ |:61—2(€2+€3):|, 19 = 2\/23,

iy =¢és, i4=¢&5 5= ¢
The transformations expressed by (17) and (19) satisfy the identity conditions for the above tensors and
vectors [3, 23, 30]:

{SQ =005 = Y,Y, = 30'(2] + SijSij = SiSk, (21)

g2 = €ij€ij = XpnXp = 368 + 94045 = D1 Ik.

From the identity conditions (21), it follows that the tensor moduli and the vector lengths are equal,
whereas from the one to one transformations (18) and (20) it follows that the three tensor invariants remain
the same also in the six dimensional vector space Es for the fixed vectors Using (20), hence, we can transform
the tensor form of the basic postulate of continuum mechanics expressed by (16) to the vector form

5

R ) droy,
=3K =Y A, . Sp=> A, k=1,2,...,5), 22
o €0, O nz::l gsn 0% Sk nz::l sn ( ) (22)

where {d"3/ds™} is the local linearly independent skew angular frame at each point of the strain trajectory
D = 9(s) whose arc length is s(t) In Eg with the basis {i}, the strain trajectory J(s) with the stress
vector o, the temperature T'(s), the pressure p(s), and other non thermophysical parameters is said to be
the image of the strain process [I 3] Instead of the local skew angular frame {d*2/ds*}, at each point of
the strain trajectory we can construct the orthonormal frame {pr} whose unit vectors satisfy the recurrence
formulas [1 3, 23]
dpr. R R

ds . k—1Pk—1 + M Pr+1,
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where K =0,1,...;5and > =% =0in Egor k=1,2,...,5 and sy = 75 = 0 in E5, and

N dd R 1 d22 R 1 s L d 1 d?2
— = = V4
1= gs P2 2 ds?’ b3 s | " ds T ds \ s ds? ’

The vector pp is a tangent vector at each point of the analytical strain trajectory The stress vector and its

first derivative can be represented in the following form in the natural frame of E5 [23 26]:

d
So = 3KDo, o= Py, dZ: “pe (k=1,2,...,5).

Here the unit stress vector is of the following form in Ej:

6= =cosfpr (k=1,2,...,5)
The functionals of the process are
d dcos
P, =o0cosBy, Pp= dU cos Bk + o { czs B 4+ »_1co8 Br_1 — %cos,@kH] ,
s s

where () are the angular coordinates of the vectors ¢ and & in the natural Frenét frame
The constitutive relations (23) can be rewritten as

d d
So = 3K 3y, 7 _ Mypr + ( ’ —MkCOSﬁk> a,

ds ds
oc=06 =o(cosBxpr) (k=1,2,...,5),

where the strain process functionals

cos
M=o {PIS oRil cosgﬂ (M =0)

(23)

(25)

(26)

(27)

are dependent on the internal geometry parameters (s, s¢;,), the temperature 7', the strain rate $, and the
other non thermophysical parameters 3 as well on the strain tensor invariants eg, 2, and J§ = |9;;| for each
fixed image of the strain process irrespective of the coordinate system and its transformations of rotation and
reflection The angular coordinates B of the vector 6 can be expressed in terms of the spherical coordinates

O (m =1,2,3,4) as [23, 25]

{cos [1 = costly, cosfBe =sint costde, cos B3 = sinvy sinds cos vs,

cos B4 = siny sin ¥ sin¥3 cos ¥4, cos B5 = sin 1 sin ¥, sin V3 sin 4.

Hence, the quantities expressed by (23) (27) can be represented in the form [23 26]

d
O—:Mkﬁk+M0A' (k:1;27"'a5)7
ds
do . .
M = s — M7 cos¥1 — My sinq sin v,
dy 1
i b4 s cos 9y = [— M1 sindy + My cos ¥y sin ds],
s o
. dds 1 . .
sin ¥ s + i costs | = [—Masinds + My cosda] + 31 cosd sinda,
o
. . dis 1 . ) .
sin ¥; sin Y5 p + s3costs | = [—Mssinds + M, cos 93] + 3¢5 sin ¥ cos ¥ sin 93,
s o
. . . ddy 1 . . . .
sin 91 sin Y5 sin Y3 s +ty | = [—Mysinty + Mscos ] + 33 sin ¥ sin g cos ¥z sin vy,
o
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THE GENERAL MATHEMATICAL THEORY OF PLASTICITY 109
where
My =0, My= Mscost¥3+ M,sindz, M, = Mycosts+ Mssind,. (32)

In the three dimensional case, we have 93 = ¥4 = 0 and My = Ms = 0 Therefore, the basic relations
take the form

ds ds
& = cos¥1p1 + sin Y1 (cos Vopo + sin Ve ps),

d d
7 _ Mipy + < 7 _ M7 cos¥1 — M3 sindq sinﬁg) 0+ Msps,

d9 1
p b4 s cos iy = [— M sinty + M3 cos ¥y sin ),
s o

dv9 M.
sin ¥ ( d52 + %2) = 211 cos Vg sindg + 3 cos V.
o

If Y5 = 0, the torsion sz is small, and M3 = o5 sin vy, then we come to the following equations for the
trajectories of small torsion given in (33):

d d
7 = Mip; + g — My cosq | 6 + 0 sin ¥ p3,
ds ds (34)

dy M
0 = cos ¥ p1 + sint po, Ly = — ! sin Y.
o

ds
In (34), for the plane trajectories we have s = 0 and ¥o = 0 After rotating the coordinate basis of Eg,
we get
xézﬁijxj, é;:,@ijéj‘ (i,j=1,2,...,6),
where (3;;) is the transformation matrix If the vectors and the images of the processes are fixed, then we
have
9 =06 =€y, e =P, =P
Hence,
9, =6;2; (i,j=1,2,...,6). (35)

In other words, the vector coordinates 2; are changed, whereas the vector itself and all its invariants remain
the same, since this vector is fixed in Eg In this case the constitutive relations expressed by (22) and (23)
as well as by (29) (32) can be considered as a mathematical formulation of the macroscopic definability
postulate for the initially isotropic media: in the case of small strains, these constitutive relations completely
specify the medium’s properties in the physical space with respect to the orthogonal transformations of
rotation and reflection of the coordinate basis {é;} in Eg if the tensor invariants in the physical space remain
unchanged in the space Fg
If the coordinate basis {¢é;} is fixed, then in Eg the transformation of the process image leads us to the
relations ,
2 = ()2, 2i=a;9; (i,j=12,...,6), (36)

where (a;;) is the orthogonal transformation matrix If the transformation of rotation or reflection leaves
the length of the vector 2 unchanged, then we have

2
9% =09/9;=9;9;, 9 =0a;2; =% =70k

Hence, we come to the following system of equations:
o =05, (4,7,k=1,2,...,6). (37)

Here
|aijaik| = 1, |Oéij| = :|:1, (38)

where the plus sign corresponds to rotations, whereas the minus sign corresponds to reflections

It is not clear yet whether the other invariants remain unchanged Comparing (35) and (36), we conclude
that the transformation matrices (5;;) and («;;) are mathematically the same: c;; = f;; Using the orthog
onal transformation (c;) of the process image, we can obtain a set of strain transformations with the same
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internal geometry (s, s, ), but with different stress strain states and, hence, for different physical process
es with different structural mechanical properties of the material For some classes of structural materials,
the effect of the type of the stress strain state is weak as shown by many experiments [22 40] In [1 11]
I’yushin proposed to ignore this effect on the relation between stresses and strains and to replace the set
of transformations with the same internal geometry by a single original trajectory In this case any possible
history of loading and deformation is specified only by the internal geometry of the strain trajectory and by
its orientation in Fg This remarkable idea is very successful in the development of the general mathematical
theory of plasticity and its applications in practice [41] The isotropy postulate is formulated in [1, 2] as an
approximation to the basic postulate of macroscopic definability: the strain process image is invariant with
respect to its transformations of rotation and reflection in a fixed coordinate basis; in other words, the con
stitutive relations (22) and (23) as well as the constitutive relations (29) (32) are invariant with respect to
these transformations The isotropy postulate proposed by II’yushin significantly simplifies the experimental
studies to test its reliability and to construct the functionals of elastoplastic processes for its refinement [2]

According to the identity condition (21), the three invariants of the tensors and vectors also remain in
variant in Fg However, the transformation of the process image leaves unchanged only the second invariants,
whereas the first and third invariants may be changed In this case, the isotropy postulate is violated This
postulate is often said to be the particular postulate, whereas the macroscopic definability postulate is said
to be the general isotropy postulate, which is not appropriate The isotropy postulate was widely discussed
in 1961 1962 from the standpoint of the general mathematical theory of plasticity and from the standpoint
of the theory of elastoplastic processes of deformation under complex loading [18 21] The second theory
is more general than the theory of flow This can be confirmed by considering the following constitutive
relations for the plane trajectories [31]:

d do d

J:Ml + U—Mlcosﬂl g,

ds ds ds (39)

dv M

! + 20 = — 1sin191, o= (s,3).
ds o
From here it follows that [23, 27]
A —do— Yoo = dXo,
M 40
d)\—ds cos) — L do i
T o YoMy ds )

where ¢ = (s, ) is the Odquist II’yushin universal curve illustrating the history of deformation In the
theory of flow, the total strains are decomposed into the elastic parts €f; and the plastic parts sfj:
€i5 = Efj + 6%, Bij = 3% + 3%.

This is possible only under simple loading or under simple unloading Under complex loading, according to
Haar and Kédrmadn, a material can be in an incomplete plastic state and can be elastically deformed in one
direction and can be plastically deformed in another direction [12] Hence, the basic hypothesis of the flow
theory is very restricted A dependence between stresses and total strains can be theoretically studied and
is reasonable theoretically and experimentally

If we assume that M; = 2G in (39) and (40), where G is the elastic shear modulus, then we come to the
following more precise constitutive relations of the flow theory:

1 ds 1 do
P . . ) 41
2" =do — N do =d o, d)\= (cosﬁl N S) (41)

These relations take into account the scalar and vector properties of materials and generalize the constitu
tive relations of the Prandtl Reuss Hill flow theory to the case of hardening media [14, 23] The linearity
hypothesis is adopted in the flow theory; this hypothesis is equivalent to the assumption that the relations
expressed by (41) are not dependent on the rotation angle 91 and on the curvature s and is also said to
be the hypothesis on free plastic flow Assuming that ¥y = 0, from (41) we come to the relations of the
classical Prandtl Reuss Hill flow theory [14] That is why the application of the flow theory in the stability
theory beyond the elastic limit leads to unacceptable results [23 25] Another critical remark on the appli
cability of the flow theory is formulated in [8]: during the process of plastic deformation, there appears the
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strain induced isotropy changing significantly the elastoplastic properties of a material The basic remarks
stated by the defenders of the flow theory can be reduced to the following In [18] it is mentioned that the
isotropy postulate proposed in the vector form (22) in the five dimensional deviatoric space should take into
account the effect of the third invariants of the stress strain state, since the coefficients characterizing the
medium’s state are not defined for other different strain trajectories with the same internal geometry under
the orthonormal transformation of the coordinate axes This question is clarified in [20] as follows Many
experiments were performed to study the initially isotropic materials under normal and high temperatures
when the deformation processes were short or long These experiments show that the effect of the third
invariant of the strain (stress) deviator on the mechanical properties is little at small strain This fact is
in agreement with the theory of elastoplastic deformation processes In the widespread formulations of the
isotropy postulate, hence, we assume that the coefficients A, in (16) and (22) are not dependent on the
third tensor invariants This means that the five dimensional stress and strain spaces are isotropic; in other
words, the stress strain relations are invariant with respect to the rotation transformations of the coordinates
in the body and with respect to the rotation and reflection transformations in the five dimensional spaces
Hence, only the arc length s and the four curvature parameters sz, are the internal characteristics of complex
loading processes Thus, the mathematical measure is introduced to quantitatively characterize the degree
of complexity for complex loading processes This remarkable idea proposed by II’yushin points the future
directions in the development of the general mathematical theory of plasticity

In [19] it is stated that some metastable materials do not have a single hardening curve and the isotropy
postulate eliminates all the plasticity criteria with the exception of the Mises plasticity criterion According
to [7], the appearance of plastic strains is characterized by the Mises criterion accurately enough; this
criterion can be replaced by the similar Tresca criterion As noted above, we have To¢y < Tmax; hence, the
transition from the elastic state to the plastic one happens when the limit value 750, = v/2 k. is simultaneously
achieved on all octahedral areas of a mechanical particle according to the Mises Nadai criterion It is well
known that the rigid bodies can be amorphous and crystalline The amorphous bodies are isotropic, whereas
the crystalline bodies (metals and their alloys) are quasi isotropic

In the elastic state, all initially isotropic bodies retain the isotropy up to the instant of transition to
the elastoplastic quasi isotropic state when ¢ > o7 The mechanism of elastoplastic deformation processes
may be different for different materials The plastic deformation proceeds as a result of the intergranular
sliding, the translational shear, and twinning [13] As a consequence of these mechanisms, the structure of
materials and their structural mechanical properties are changed together with changes in the stress strain
state A stable pure material with a cubic atomic lattice (such as copper, aluminum, and their alloys with
equilibrium structure) possesses the mechanism of translational shear during elastoplastic deformation and
has a single hardening curve under simple loading Magnesium has a hexagonal atomic lattice with a limited
number of sliding systems; for magnesium, the effect of a simple loading type on the single hardening curve is
large [10] For the materials with metastable structures (such as magnesium alloys, high strength steel, etc ),
the modulus of the stress deviator is different during the transition from the elastic state to the plastic one
for different types of simple loading; hence, a single hardening curve may also be absent If this deviation is
little, then the isotropy postulate is valid accurately enough Otherwise, some difficulties appear in refining
the functionals of the strain process with consideration of strain induced anisotropy under complex loading
In [21] it is stated that the tensor form of the isotropy postulate (16) is invariant in the physical space and
the coefficients A,, should depend on the invariants of the physical space The vector form of the isotropy
postulate (22) is invariant in F5 and the coefficients A,, should be the invariants of F5 In [1 10] the following
hypothesis is adopted: the coefficients of (16) dependent on the three invariants in the physical space remain
invariant in F5 In section 4 of this paper, we formulated the identity principle for tensors and vectors to
clarify this question The deviatoric space F5 € Fg is important in the theory of processes and is separated
from FEg as an independent space [1 10] In Ej, the strain process image is a set of forming trajectories
3(s) dependent on the stress vectors o, the pressure p(s), the temperature T'(s), and on the other non
thermophysical parameters /3 [1, 2] In this space, the strain processes are divided into the normal forming
processes and the shear forming processes If

300 =01+024+03=0, 3eg=€1+¢e2+e3=0

and the principal stresses and strains are not equal to zero and have different signs, then the tensor invariants
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take the form ; ;
0° COS o
IT=J7 =0, 2IJ=-2J=-0% 1I$=J= ,
1 1 2 2 3 3 3\/6
23 cos 3

3v6

If the process image is fixed and an orthogonal transformation of the coordinate basis {iz} is used, then
the invariants of tensors and vectors remain the same at each point of the strain trajectory If an orthogonal
transformation of the process image and its vectors is used and the coordinate basis {i;} is the same, then
the vectors o and 2 retain their lengths o and 2, whereas the angles ¢ and ¢ are changed; hence, the third
invariants are also changed In this case the isotropy postulate is violated, since the form of the stress strain
state and the structural mechanical properties are changed If the loading process is simple or quasisimple
when (S};) = (2};), then we come to the relations

[£=J5=0, 2I5=-2J5=-2° I5=J;=

Since ¢ = v, we have

3V6|Si;| 36|24
= 3 = 53 = cos 3.

Thus, the isotropy postulate is always valid in the case of the simple and quasisimple loading in the
uniform shear forming process A generalization of the isotropy postulate in Ej5 by introducing the internal
pressure p or the relative volume strain 8 = 3¢ in the concept of the process image at each point of the strain
trajectory causes some difficulties, since, in the deviatoric subspace Fs, only the forming strain is described
by definition As a consequence, some test programs with og # 0 and ¢y # 0 are used in experimental studies
to check the isotropy postulate, which leads to the discovery of effects of the third invariants and to the
violation of the isotropy postulate The consideration of the isotropy postulate in Eg instead of F5 eliminates
these difficulties for the processes of simple and quasisimple loading

cos 3¢

4 THE IDENTITY PRINCIPLE FOR THE TENSORS AND VECTORS
OF STRESSES AND STRAINS IN Fjs

The six dimensional Euclidean space Eg is defined by the set of the strain and stress vectors [1, 2, 23]:
£ = X;é; =i, S=VYié;=Spix (i=12,...,6; k=0,1,...,5).

Here {¢;} and {7} are the orthonormal coordinate bases in Fg
As shown in Section 3 of this paper, the vector coordinates are changed according to the following relations

if the vector O is fixed and the coordinate basis &, = ;;€;, é; = [3;;€/ is orthogonally transformed:

J
Xi = Bi; X;. (42)

Here all the invariants of a six dimensional vector remain the same in FEg, since this vector remains the same
as a whole On the other hand, if the coordinate basis is fixed and the orthogonal transformation of the
vector ¢ is used, then we have

Xl/ = ainj. (43)

If the length of this vector remains unchanged, then the conditions expressed by (37) and (38) should be
valid From (42) and (43) it follows that a;; = B;; In other words, the transformations of rotation and
reflection are mathematically the same, but are physically different if the coordinate axes, or the bases for
fixed vectors, or the process images for fixed coordinate bases are transformed In the case of (42), all the
invariants of the transformation remain the same, whereas, in the case of (43), only the moduli of vectors
remain the same and the other invariants remain indefinite In the first case, the vector € being transformed
to a new position ¢’ may take a position such that

EI = )\6, XZ/ = ainj = )\Xl (44)
The vector ¢ satisfying (44) is said to be the eigenvector with the eigenvalue A [15, 16] Since
Xi:&ij, Xj:EX;, X;X;:]‘7 (45)
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from (44) and (45) we come to the following system of homogeneous linear algebraic equations:

(Oéij - (5”>\)Xj* = 0, (46)

According to (45), its determinant is of the form

D= —|Oéij — (Szj)\| =X — ]\41/\5 + Mg)\4 — ]\43/\3 + M4)\2 — Mz + Mg =0, (47)
whose coefficients M,, (n = 1,2,...,6) are the sums of the principal minors of order n for the transformation
matrix A = (a;):

1
M1 = Qj, Mg = z(aiiajj —aijaij), ceey M6 = |aij|.

The equation expressed by (47) is said to be the characteristic equation of system (46) and its coeflicients
are the invariants of the space Eg [15] The roots of Eq (47) are the eigenvalues of the matrix A = (a;;)
According to Vieta’s theorem, the coefficients M,, can be expressed in terms of \,, using the formulas

6 6 6
My=> X, M= > XX (i<j), Ms= > X\h (i<j<kh),
i=1 i,j=1 0,4, k=1
My=320 s MMM (<G <k <7), ..., Mg =Adadshads .

Equation (47) has no more than six roots If all A, are different and real, then the transformation matrix
A = (oyj) is diagonalizable Substituting A, into (46), we can find the eigenvectors €,, and their moduli ¢,
Multiplying M, by ", where € = |¢| is the modulus of the strain vector, we obtain the following six invariants
of the strain vector in Fg:
I =¢"M, (n=1,2,...,6).

Similarly, for the stress invariants we have I = S™M,,

If Eq (47) has multiple roots, then the number of linearly independent eigenvectors in Fjg is less than
six [16] Let Eq (47) have the multiple roots A,, It is important that the physical processes are different when
the vectors () and S(t) are transformed It is well known that, in the physical space, the transformation of
the coordinate axes z; is defined by the three parameters called the Euler angles being a particular case of
the rotation transformation in Eg for some values of a;; [2] If the transformations of rotation and reflection

for the vectors &’ = (a;)e and S = (a;)S are not coincident with the three parameter rotation, then we
obtain the class of trajectories that do not correspond to the physical processes for the strain and stress
tensors This fact allows us to assume that in Eg the following three multiple roots should be equal to zero:
A = A5 = Ag = 0 In this case, Eq (47) takes the form

/\3()\3 — ]\41)\2 + Mo — Mg) =0,
where
My =X+ A2+ A3, Mo= A A2+ Xods + Ash, M3z = Ad2)s.

In Fj the invariants of the stress strain state are

{Ils =eMy =¢€1 +e9+e3 = 3¢, 125 = 52M2 = €1€9 + €2€3 + €3€1,

I§=€3M32515263, IZZIEZIEZO, 2([5)’26225%4-&%4-6%,

{Ii’ = SM, =014 02 +03 =300, 15 =S*My=0102+ 0203+ 0301,

I = S3M3 = 010903, 1§ =1 =1 =0, 2(I§) =82 =0?+0%+ 02,

where €5 and oy, (k = 1,2, 3) are the principal strains and stresses This result is in agreement with the fact
that, in the particular case of the physical space, we obtain the three dimensional space of principal stress
and strain directions [23] The obtained result is an additional requirement formulated in [21] and predicted
in [1, 2, 10, 20] We call this requirement as a generalized identity principle for the second rank tensors in Fg:
the vectors of Eg and the stress and strain tensors in the physical three dimensional space are identical if
their moduli and their three eigenvectors are coincident; note that in Ejg these eigenvectors form a local
three dimensional invariant subspace equivalent to the three dimensional subspace of principal directions in
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the physical space According to the identity principle, the three invariants of each of the stress and strain
tensors are valid in the physical space and are also invariant in Eg [10]

The above result is related to the macroscopic definability postulate and to its constitutive relations (22),
(23) and (29) (32) in Es when the process image and its vectors are fixed If the coordinate basis is fixed and
the process image and its vectors (43) are orthogonally transformed, then the situation is physically changed
when the isotropy postulate is formulated as a consequence of the macroscopic definability postulate In this
case, only the length of a vector remains invariant The first and third invariants remain mathematically
indefinite in the framework of the basic hypothesis on the material continuum and may become not invariant
because of changes in structural mechanical properties of the medium at the mesolevel In the theory of
elastoplastic deformation processes, hence, experimental studies become important for each class of materials
to analyze the effect of the invariants of the stress strain state on the fulfilment of the isotropy postulate
It is experimentally shown that, for the stable metals and their alloys, this effect is weak [20] The I’yushin
isotropy postulate formulated in [2, 3, 7, 8, 10] originates a new direction in the plasticity theory and allows
one to model the complex loading processes in continuum mechanics

5 CONCLUSION

The above discussion allows us to state that, for the initially isotropic continuous media, the isotropy
postulate completely corresponds to the fundamental hypothesis of continuum mechanics In its original
state, a material is isotropic (quasi isotropic) and homogeneous near each point of small volume The material
possesses the elastoviscoplastic properties During a deformation process, there appears the strain induced
anisotropy caused by changes in the structural mechanical properties at the mesolevel when the stress strain
state and the elastic constants are changed Under simple loading, the parameters of the strain induced
anisotropy are described for the stable materials on the basis of the single hardening curve law Under
complex loading, such a curve is absent and the functionals of elastoplastic processes (except for the complex
loading parameters of internal geometry of the strain trajectory) are dependent on the forming parameters
of the stress strain state corresponding to the hidden structural mechanical parameters at the mesolevel
Under complex loading or in the case of elastoplastic deformation, thus, the fundamental hypothesis should
be refined

On the other hand, the isotropy postulate contains the following fundamental idea: the history of complex
loading processes is mainly defined by the parameters of internal geometry of strain trajectories (the arc
length s and the curvature parameters s¢,,) rather than by the effect of the forming parameters of the stress
strain state caused by changing the structural mechanical state at the mesolevel; this change has a secondary
effect Nevertheless, such changes become noticeable for some materials with the physical nonlinearity in an
elastic domain (cast iron, concrete, graphite, etc ) The curvature parameters of complex trajectories can be
considered as a mathematical measure of complexity in loading; the delay principle leads to the concept of the
delay trace considered as a characteristic size in the classification of strain trajectories The isotropy postulate
defines the vector properties of materials and geometrically visualize the processes of complex loading Under
complex loading, the scalar properties define the functionals of processes There is no universal functional
describing the hardening process during the elastoplastic deformation Therefore, the general mathematical
theory of plasticity should be a theory of plasticity of anisotropic bodies in the case of complex loading [10]
This way of development takes time However, this fact does not prevent from refining the isotropy postulate
by constructing the approximate functionals for the complex elastoplastic processes of deformation That
is why the II’yushin isotropy postulate provides a basis for the experimental and theoretical studies of
various histories of complex deformation of elastoplastic media and shows the most efficient direction in
the development of the plasticity theory for engineering studies compared to the other versions of plasticity
theories that do not contain such a variety of complex loading histories At present, a number of new results
are obtained in this direction [22 31, 45 54]
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