ISSN 0027 1330, Moscow University Mechanics Bulletin, 2015, Vol 70, No 1, pp 1 7 (© Allerton Press, Inc , 2015
Original Russian Text © V G Vil’ke, I L Shapovalov, 2015, published in Vestnik Moskovskogo Universiteta, Matematika
Mekhanika, 2015, Vol 70, No 1, pp 34 40

Self-Induced Vibrations in a String Bow System
V.G. Vil’ke® and I.L. Shapovalov’

“Moscow State University, Faculty of Mechanics and Mathematics,
Leninskie Gory, Moscow, 119899, Russia; e mail: polenova t m@mail ru
® Moscow State University, Faculty of Mechanics and Mathematics,
Leninskie Gory, Moscow, 119899, Russia; e mail: nazarovich 90@Qmail ru

Received April 12, 2013; in final form, October 27, 2014

Abstract The vibrations of a thin stretched string is studied in the case when a bow slides on it
with a constant velocity orthogonal to the string The interaction between the bow and the string is
governed by a smooth nonlinear law of friction with a falling segment of the characteristic The motion
of this mechanical system is described by an infinite coupled system of nonlinear ordinary differential
equations Some averaged equations of motion are derived in terms of the action angle variables The
stationary points corresponding to self vibration modes are found The stability of these modes is
analyzed
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1 A MODEL OF INTERACTION BETWEEN A STRING AND A BOW EQUATIONS OF MOTION

Wave and self vibration processes are discussed in [1 7] for systems with finite and infinite degrees of
freedom

In this paper a string is considered as a thin elastic rod under longitudinal and bending deformation
Let an undeformed stretched rod be situated along the Oz axis By u(s,t), 0 < s < [, we denote the
displacements of its points along the Oy axis The motion of the rod proceeds on the plane Oxy The ends
of the rod are hinged on the Ox axis at the points whose coordinates are s = 0 and s = The kinetic and
potential energies of a deformed rod can be expressed by the formulas [8]
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where p is the linear density of the rod’s material, Ny is the tension of the rod, and N is the bending
stiffness of the rod It is assumed that the rod’s material possesses the dissipation properties described by
the Rayleigh dissipation functional [1]
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where x is the coefficient specifying the dissipation properties of the rod’s material
Let us assume that, at the point with the sg coordinate, a force pF' directed along the Oy axis is exerted
on the rod This force used to model the interaction between the string and the bow is represented as [6]

pF(V)=pf (V—-aV3+gV?), V=v—1(sot), (2)

where v is the velocity of the bow moving translationally along the Oy axis and f is a constant coefficient
In our further discussion, we assume that v is constant on a certain time interval The coefficients g; and gs
used in (2) are constant and can be expressed in terms of other constants V7 and V2 as follows:
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When V' > 0, the function F' (V) has a positive maximum for V' = V; and a positive minimum for
V = V4 The derivative F’ (V) is positive for v € [0,V1)U(Va,00) and is negative for v € (V1,V3) The
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friction law (2) can be characterized as a nonlinear model of viscous friction This model has no stagnation
zones and approximates the dry friction law when the friction of rest is greater than the sliding friction
An advantage of our model consists in the fact that it uses a smooth function without the absolute values
of relative velocities of two bodies at the points of contact This fact significantly simplifies the studies
connected with the motion of systems with dry friction

The Hamilton Ostrogradskii variational principle

T l
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Y ou(s,t), ou(0,t) =du(l,t)=0

is used to derive the following equations of motion and the dynamic boundary conditions:
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The configuration space of our mechanical system is the Hilbert space
Hy = {u(s,t):u" (s,t) € L2 ([0,1]), u(0,t) =u(l,t)=0}.
The velocity space is defined as the following subspace of square integrable functions:
Hy = {u(s,t):u(s,t) € Ly ([0,1]),u(0,t) =u(l,t) = 0}.

In these spaces we choose the orthogonal basis {1y, (5)}$°, where ¢y, (s) = 1/2/l sinwksl~! This basis satisfies
the conditions

2
/ i ()05 (5) ds = 85,
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where ¢;; is the Kronecker symbol We represent the function u (s,t) as

u(s,t) =Y ar (t) v (s) (4)
k=1
The convergence of the series
o) (o)
D i) <oo, D K'qi(t) <oo
k=1 k=1

follows from the existence condition (1) for the functionals of the kinetic and potential energies
The Lagrange generalized coordinates q = (¢1, o, - ..) and the representation expressed by (4) are used
to obtain the following expressions for the kinetic and potential energies and the dissipation function:
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The multiplier p is omitted in (5) The generalized forces Qx = F (V) ¥ (s0), k = 1,2, ..., can be determined
from the following formula for the elementary work of the force expressed by (2) on virtual displacements:

o0 (o)
SA=F(V)> dathe (s0), V=0=> duthn(s0), FV)=f(V-aV®+gV°).
k=1 n=1
The equations of motion are written in the form of the second kind Lagrange equations:

oo
Gk + XVRGE + VRak = [k (50) (V=1 VP 4+ 02V°) . Vi=v—=) duthu(s0), k=12.... (6)
n=1
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SELF INDUCED VIBRATIONS IN A STRING BOW SYSTEM 3

Equations (6) can be considered as an infinite system of nonlinear second order ordinary differential
equations The mechanical system corresponding to (6) can be treated as an infinite system of harmonic
oscillators related to each other by the nonlinear forces of viscous friction

Let gro be defined by the relations l/iqko = fir (so) (v —g1v3 —|—g2v5) Denoting qx — qxo by qx, we
represent Eqs (6) as

G + XVidr + vk = fPr (s0) [V —v —g1 (V= 0%) + g2 (VO —0%)],

V=v=> gntn(s0), k=12,....
n=1

In order to study the dynamics of the system expressed by (7), we use the action angle variables

(ks ar) & ko), pr=dx = V/2@wg cos o, qr = /21 /vy, singy.

Then, the Hamiltonian H = Y7, (pi + V,%q,%) /2 takes the form K = "7, vl < oo Now we rewrite
the equations of motion in the following form of the canonical Hamiltonian equations with the generalized
forces [8]:

Iy, = —2xvilcos’py + [F (V)—-F (v)]wk (s0) (ZIk/Vk)l/Z COS Yy,

_ (8)
Or = Vg + XI/% cos g, sinpy — [F (V)-F (v)] Ui (so) (20 vy) Y2 gin Ok

Here

Vzv—ZdJn(so)\/QInl/ncosgon, k=1,2,....
n=1

If ¢k (so) = 0 for a particular value of k, then the corresponding equation of (7) can be separated from
the other equations This equation describes the damped eigenvibrations with respect to the variable gy

2 SELF INDUCED VIBRATIONS IN THE STRING BOW SYSTEM

System (8) is well suitable for the application of the averaging method over the fast variables (¢1, @2, ...)
Since the total energy is bounded, the series Y ;- | vi 1) is convergent and I, < bk—3~, where the constant b
is bounded and o > 0 It is assumed that the velocity of the bow is bounded with respect to the string:
V < oo The series specifying the velocity V in (8) is convergent and I, < ck~*~# where the positive
constant ¢ is bounded and 8 > 0 Hence, the right hand sides of (8) are small if the coefficients x and f
are small, where x characterizes the internal friction in the rod and f characterizes the friction during the
interaction between the bow and the rod

Let us assume that the rod’s eigenfrequencies v, k = 1,2,..., are independent This means that the
linear combination Zszl myV, where my are integer, becomes equal to zero for any N only for my = 0,
k=1,...,N Applying the averaging operation over the angle variables (¢1, ¢2,...) to Eqs (8), we get

Dn= 2k + 16ka Z [—8 (1= 3g102 + 5gav*) + 6 (g1 — 10g20%) (Zk +23) Zn) — 59, (Z,i
n#k

o0 o0 o0
+6Zk Y Zn+3Y Zi+12 Y Zan)}, Op = vk,  Zip = 2Jait0? (s0), k=1,2,....

(9)

The averaging operation consists in the calculation of the mean value for the expansions of the corre
sponding functions in the infinite dimensional Fourier series

n—oo

27 27
. 1
(G(I1, Iz, ..., 01,02,...)) = lim (Qﬂ)n/.../Gdgal...dgon. (10)
0 0

After calculating (10), we replace the variables (I1, Is,...) by the variables (Ji, Ja,...) and the deriva
tives (41, @2,...) in (9) by the variables (91, 0y, .. ) From (9) it follows that the derivatives of the angle
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variables ), are coincident with the eigenfrequencies v of the unperturbed system of equations describing
the harmonic oscillations of an infinite system of independent oscillators
The series of (9) are convergent, since

2
D In<biy nl+B’ D ZnZm <t Y] nl+Bml+s’

where b, and [ are positive constants
Based on (3), we represent the first group of equations of (9) in the form

o0 o0 o0 o0
vy = —CZ), [Ak—2E(Zk+2 3 Zn)+Z,f+6Zk S 2,433 22412 Y Zan], k=1,2,..., (11)
n#k n#k n#k n#m#k

where
C=f/(16VEVY) >0, Ap=16xiVPVif 1 +8 (v —V3) (v* = V), E=V2+V3 60"

Now we find the stationary solutions to Eqs (11) Obviously, these equations have the trivial solutions
Zr =0,k =1,2,... The stability of these solutions is studied using the system of equations in variations
In the right hand sides of (11), we keep the terms linear in Z;, As a result, we come to the following infinite
system of first order ordinary differential equations:

Vka = —CAka, k= 1, 2, e (12)

The stability of the trivial solution depends on the sign of the coefficient Ay: the solution Z; = 0 is stable
if Ay > 0; otherwise, this solution is unstable The coefficients Ay are positive if v € (0, V1) U (Va, 00), since
they are the sums of the two positive summands The coefficients Ay are dependent on v; their minima with
respect to v are

min Ay = 16xvVEVEF 1 —2(VE — V32)2.
0<v<oo

Since the eigenfrequencies v, increase as k2, the minimum of A, becomes positive for k greater than or
equal to n The function Ay (v) is greater than zero for k > n; the zero equilibrium positions Z, = 0, k > n,
are stable If n = 0, then the zero equilibrium position is stable for all normal modes of vibrations, which is
the case for a sufficiently large value of x

Let us consider the existence of nonzero vibrations when 7y # 0 and Z,, = 0 for all n # k In this case
the right hand side of (11) becomes equal to zero:

Ay —2EZy+ 77 = 0. (13)

The quadratic equation (13) has real roots Z;;, = E ++/Dy, j = 1,2, if its determinant is not negative:
Dy, = E?— A, >0 If Ay, < 0, then there exists a negative root Z; < 0 and a positive root Zy; > 0 The
trivial solution becomes unstable; as a result, there appears a nonzero stationary solution Zsj corresponding
to the self vibration mode with the frequency v, The stability of this solution is studied on the basis of the
variational equations

Vkék = _QCZQk\/Dké-k; VmZim :_CAmva m=12..., m#kv £:Zk_Z2k~

Analyzing these equations, we come to the conclusion that this self vibration mode is stable For other modes,
however, the trivial solutions may be unstable, depending on the sign of A,,, Since A} < As < ... < A <...,
the self vibration mode is stable with respect to all variables if this mode corresponds to the mode with the
lowest frequency when A; < 0 and A4,, >0, m=2,3,...

The roots of (13) are positive if

Dy >0, Ay>0, o*<(VZ+V3)/6. (14)

Taking into account the inequality in (3), we obtain the estimate v? < V;? from the last inequality of (14)
Based on this estimate, we conclude that Ay > 0 and Dy, < 0, since

(VE+VE —60%)2 =8 (02 = V) (02 = V&) = 280" —4 (V2 + VZ) v = T(V2+ V)2 <0

for v2 < (Vl2 + V22) /6 The existence of two stationary modes is impossible

MOSCOW UNIVERSITY MECHANICS BULLETIN Vol 70 No 1 2015
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Now we study the existence of stable two frequency self vibration modes when Z; > 0 and Z,, > 0 Since
the other vibration modes should be absent (Z; = 0, j # k, j # m) and should be stable (4; > 0), the
stable two frequency self vibration modes are possible for £ = 1 and m = 2, which corresponds to the case
A1 < As < 0 Hence, the system of equations expressed by (11) can be rewritten as

nZy = —CZy [Ay —2E(Zy + 225) + Z} + 621 Z> + 3Z3]

. (15)
VQZQ = —CZQ [AQ —2F (ZQ + 2Z1) + 222 + 6Z1Z2 + 3212] .
The nonzero stationary solutions to system (15) satisfy the equations
Ay = 2E(Zy + 22) + Z3 + 62172 + 323 = 0, 16)
Ay —2E(Zy+2Z1) + Z3 + 62122+ 3Z7 = 0.
Hence,
Ay — Ay —2E(Z1 — Zy) +2 (27 — Z5) = 0. (17)

The difference As — A; is proportional to the coefficient x specifying the energy dissipation in the string
during its vibrations Assuming that y is small, we put As — A; = 0 Equation (17) is valid if Z; & Z5 or
Z1 + Zy 2 E In the first case, from (16) we get

T2 Ty Ty, Zo= (\/9E2 — 104 + SE) J10>0, A=A = A, <0. (18)
In the second case, the system expressed by (16) has no solution, since the inequality (Z; — 22)2 =
A — E? <0 follows from it

The solution expressed by (18) describes the self vibrations for the frequencies 14 and v» and is unstable
Let us consider the variational equations

& =—2C12[(42Z0 — E) €1 +2(3Z0 — E) &],

€y = —20570[(4% — E) &2+ 2 (3Zy — E) &]

and represent them as

né + (2V9E2 — A+ E) & + (3V9E? — A~ E) & =0,

(19)
&y + (2VI9E? — A+ E) &+ (3V9E2 — A— E) & =0,

where & = Zj — Zy and the prime indicates the differentiation with respect to 7 = fZot/(40V32V3) The
characteristic equation of (19) is of the form

s\ + (v1 + ) (2\/9E2 A4 E) A—5V9E2 — A (\/9E2 A 2E) —0.

This characteristic equation has a positive root and a negative root, since, according to Vieta’s theorem, the
product of the roots is negative, whereas their sum is positive This means that the singular point of (15)
is a saddle The two frequency self vibrations of the string are unstable Depending on perturbations, the
self vibrations become stable for the frequency 11 or for the frequency v» If our mechanical system tends to
the self vibrations at the lowest frequency, then, during the transition process, there are the vibrations at
the fundamental tone and the damping vibrations at the frequency vo On the plane (Z1, Z3), the domain
Z1 >0, Zs > 0is divided into two parts by two separatrices: one of them connects the coordinate origin with
the singular point (Zy, Zp), whereas the second one comes to this singular point from infinity Each of these
parts is the attraction domain of the corresponding one frequency self vibration The two other separatrices
connect the singular point (Zp, Zp) with the singular points (Z19, 0) and (0, Za)

Let us show that the self vibration mode Z1 = ... = Zny = Zony >0, Z; =0, j = N +1,.. ., is unstable
for x =0if N > 2 Here

(2N —1)E + /(2N — 1)2E2 — A(12N2 — N —8)
12N2 -~ N -8 ’

A=8(v2—V12)(v2—V22)<0.

ZoN =
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The case N = 2 was considered above For system (11), the variational equations are of the form

N N
ykg,g+aN(gk+225n) + &+ (12N? — 24N +54) 3" 6, =0, k=1,2,...,N,
Lode)

() an = —E/Zy, > 0.

T 2022, dt

The characteristic equation of (20) can be represented as [9]

Cg;"'z N N N
)= =0 = J[(ar—w+ud ] (ax—u)=0.
k=1 i=1 ki
U U...aN

Here ar, = i\ + (ay + 1), u = 2ay + 12N? — 24N + 54, and fy (\) = byAY + ... + biA + by, where
by = v1 +...4+ vy > 0 Let us find the coefficient by = fy (0) = (a —u)V l[a + (N —1)u], where
a=any+1>0and a—u <0 If N is even, then by < 0 and there exists a positive root of the characteristic

equation Hence, the self vibration mode Z; = ... = Zny = Zoy > 0 is unstable If N is odd, then b; < 0
Indeed,
0f (0) < N2
= = —_— N .
b1 2 321 v (a —u) (a+Nu) <0

The necessary condition of stability is not valid, since one of the coefficients of the characteristic equation
is negative; hence, the corresponding self vibration mode is unstable If x # 0 is small, then the stationary
mode 71 = ... = Zny = Zyny > 0 exists for bounded values of N and is unstable, since the roots of the
characteristic equation are slightly perturbed and a number of roots remain with negative real parts

Now we summarize our analysis of the existence of self vibration modes and their stability when the
internal dissipative forces are taken into account The self vibration modes exist when the velocity of the
bow belongs to the interval (V1, V2), where the derivative F’ (V) is negative The friction coefficient f should
be sufficiently large in order that the inequality A; > 0 be valid in (12) The one frequency stable vibrations
exist as long as the coefficients A,, remain positive From a certain number M, we have Aj, < 0; hence, the
self vibration modes are absent at the corresponding frequencies All multifrequency self vibration modes
are unstable The domain D, = {Z; > 0,...,Zy—1 > 0} is divided into the attraction domains of the
one frequency stable self vibration modes The transition process toward the corresponding one frequency
mode is accompanied by the overtone vibrations with decaying amplitudes

If, before its vibrations, the string is in the state of rest, then the initial conditions take the form
Z, (O)zy,zzfzw,% (50) (v — 10> 4+ g2v°)?,  k=1,2,....

The motion trajectory described by (11) comes to the attraction domain specified by the point of contact
between the bow and the string (more specifically, by the value of ¥y (sp)) and by the value of v The
attraction domain of the first harmonic is larger than those of higher harmonics Varying the parameters sg
and v, we can change the initial conditions and the overtone amplitudes during the transition process in
the attraction domain of the first harmonic Note that 1 (s¢) > 0 if so € (0,1) The vibrations of the first
fundamental tone are always excited at the beginning of the transition process This is not the case for higher
overtones, i e , it may occur that a certain overtone is absent if 1 (s9) = 0
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