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Abstract—The stationary Schrödinger equation is studied in a domain bounded by two confocal
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1. INTRODUCTION

It is well-known that a billiard in a domain bounded by confocal quadrics is integrable. Recent works
by Fomenko and Vedyushkina (see [1–4], as well as other publications of these authors) have again
attracted attention of researchers to this topic. In particular, singularities of a billiard in a ring bounded
by confocal ellipses were studied in work [1]. In the current work we consider the corresponding quantum
system, namely, we study the spectrum of the Schrödinger operator in this domain and in its coverings.
We obtain asymptotics of eigenvalues when the focal distance tends to zero.

Note that the problem of finding the eigenvalues and eigenfunctions of the Laplace operator in the
disk under the condition that the function is zero at the disk boundary is classical (see [5, Section 200,
p. 262; 6]). The corresponding equation is split in polar coordinates, the dependence on the angle is
described by the (co)sine, and the dependence on the polar radius is described by the Bessel function of
the first kind. In particular, the eigenvalues are proportional to the squares of zeros of Bessel functions.

A similar problem for the ellipse is split in elliptic coordinates and is reduced to two Mathieu
equations, angular and radial ones (we bring the necessary information in Section 3).

The same problem in the circular ring bounded by concentric circles is split in polar coordinates and,
in a certain sense, is similar to the problem in the disk. The difference is in that in the radial equation
another boundary conditions are imposed. Therefore, in the solution we obtain a linear combination of
Bessel functions of the first and second kinds (this result is also classical, see [5, Section 207, p. 276]).

The problem in the finite-sheeted covering of the circular ring is an easy generalization of the previous
one and is solved by the same methods; for completeness we present derivation of eigenfunctions and
eigenvalues. For the covering of multiplicity p = 1 the results coincide with the classical ones (for the
circular ring).

Our main result concerns the finite-sheeted covering of elliptic ring, that is, the domain bounded
by two ellipses with identical foci (see Theorems 2 and 3). Namely, we obtain the asymptotics of
eigenvalues in dependence on the focal distance up to the second order inclusively (this is equivalent
to the decomposition in terms of powers of eccentricity of the inner or outer ellipse). For coinciding
foci (for zero eccentricity) the results coincide with the formulas for the covering of circular ring (see
Theorem 1).
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2. MODEL PROBLEM

Before proceeding to the main result, we consider a minor generalization of the classical problem.
Let Ω be a domain p-sheeted covering the ring bounded by two concentric circles with radii 0 < r0 < r1.
The case p = 1 is referred to the classical theory of oscillations (see [5]). We assume that both circles
have centers at the origin of coordinates. In the domain Ω it is convenient to consider an analog of polar
coordinates, the distance r to the origin of coordinates and the angle ϕ defined by mod 2πp. In Ω we
consider the stationary Schrödinger equation

Ĥψ =

(
−�

2

2M
∇2 + V (r)

)
ψ = Eψ,

where the potential V (r) is zero inside the domain Ω and turns into infinity outside it. Such problem is
equivalent to searching eigenfunctions and eigenvalues of the Laplace operator in the domain Ω for the

functions vanishing at the boundary of Ω. We put κ2 =
2ME

�2
. Further, Jν and Yν are Bessel functions

of the first and second kinds, respectively.

Theorem 1 (for p = 1 see [6, p. 165.]). In the domain Ω (p-sheeted covering of the circular ring)
the eigenfunctions ψk,m(r, ϕ) and the eigenvalues Ek,m of the operator Ĥ have the form

ψk,m(r, ϕ) =

[
Yν(αk,ν)Jν

(
αk,νr

r0

)
− Yν

(
αk,νr

r0

)
Jν(αk,ν)

]
cos (νϕ+ ϕ0), Ek,m =

κ
2
k,m�

2

2M
,

where ν =
m

p
, λ =

r1
r0

, κ
2
k,m =

α2
k,ν

r20
, k,m ∈ N, αk,ν is the kth zero of the function f(x) =

Yν(x)Jν(λx)− Yν(λx)Jν(x).

Proof. We write the sought function in the form ψ(r, ϕ) = R(r)Φ(ϕ); then the equation (∇2 +

κ
2)ψ = 0 becomes

R(r)Φ′′(ϕ)

r2
+

R′(r)Φ(ϕ)

r
+Φ(ϕ)R′′(r) + κ

2R(r)Φ(ϕ) = 0. We multiply both sides

of the equation by
r2

R(r)Φ(ϕ)
:

Φ′′(ϕ)

Φ(ϕ)
+

rR′(r)

R(r)
+

r2R′′(r)

R(r)
+ κ

2r2 = 0.

We introduce the dividing parameter ν and obtain two equations (below, we do not specify the
variables explicitly, assuming Φ = Φ(ϕ), R = R(r)):⎧⎪⎨

⎪⎩
Φ′′

Φ
= −ν2,

rR′

R
+

r2R′′

R
+ κ

2r2 = ν2.

The solution to the angular equation is the functionΦ(ϕ) = cos (νϕ+ ϕ0) for some real valueϕ0. The

periodicity condition Φ(0) = Φ(2πp) implies that ν =
m

p
, where m is an arbitrary nonnegative integer

number.

The solution to the radial equation is sought in the form of linear combination of Bessel functions of
the first and second kinds [7, Section 9, p. 358]:

R(r) = AJν(κr) +BYν(κr).

From the boundary condition R(r0) = 0 we establish the values of the constants: A = Yν(κr0), B =
−Jν(κr0) (or those proportional to them).
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Now, we consider the function f(x) = Yν(x)Jν(λx)− Yν(λx)Jν(x), where λ =
r1
r0

. Then the bound-

ary conditionR(r1) = Yν(κr0)Jν(κr1)− Jν(κr0)Yν(κr1) = 0 can be written as f(κr0) = 0. We denote
the kth positive zero of this function by αk,ν (see also the below Lemma 1). Then κr0 = αk,ν for some
value of k, which implies that κ can take only the values κ2

k,m given in the formulation of the theorem. �
Lemma 1 [7, Section 9.5, p. 374; 8]. The asymptotically mth positive zero αm,ν of the function

f(x) = Yν(x)Jν(λx)− Yν(λx)Jν(x) as m → ∞ behaves as

αm,ν = σ +
χ

σ
+

ω − χ2

σ3
+

η − 4χω + 2χ3

σ5
+ . . . ,

where μ = 4ν2, σ =
πm

λ− 1
, χ =

μ− 1

8λ
, ω =

(μ− 1)(μ − 25)(λ3 − 1)

6(4λ)3(λ− 1)
, η =

(μ− 1)(μ2 − 114μ + 1073)(λ5 − 1)

5(4λ)5(λ− 1)
. �

3. PRELIMINARY INFORMATION

3.1. Separation of Variables in Equation in Ellipse

We consider the area bounded by an ellipse with the lengths of the major and minor semiaxes equal
to w and h, respectively. We denote the half of the ellipse focal distance by δ =

√
w2 − h2. We introduce

the elliptic coordinates ρ, ϕ, ρ ≥ 0, 0 ≤ ϕ ≤ 2π, where

(x, y) = (δ cosh ρ cosϕ, δ sinh ρ sinϕ).

They are regular outside the line segment connecting the foci (±δ, 0). The considered domain is given

by the inequality 0 � ρ � arccosh(
w

δ
). Under a fixed w = r0 and δ → 0 the domain “tends” to a circle

of radius r0.
In this coordinate system the Laplace operator is as follows:

∇2 =
∂2

∂x2
+

∂2

∂y2
=

∂2

∂ρ2
+

∂2

∂ϕ2

δ2(cosh2 ρ− cos2 ϕ)
=

∂2

∂ρ2
+

∂2

∂ϕ2

δ2

2
(cosh 2ρ− cos 2ϕ)

.

The stationary Schrödinger equation is rewritten as

∇2ψ + κ
2ψ = 0, where κ

2 =
2ME

�2
,

under the condition thatψ vanishes at the domain boundary. Dividing the variables ψ(ρ, ϕ) = R(ρ)Φ(ϕ),
we reduce the equation to the form

Φ
∂2

∂ρ2
R+R

∂2

∂ϕ2
Φ+

(κδ)2

2
(cosh 2ρ− cos 2ϕ)RΦ = 0.

In parentheses we add and subtract the separating parameter
2a

(κδ)2
and obtain the Mathieu equations,

in which q =
(κδ)2

4
:

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

∂2

∂ϕ2
Φ+ (a− 2q cos 2ϕ)Φ = 0 (the angular Mathieu equation),

∂2

∂ρ2
R− (a− 2q cosh 2ρ)R = 0 (the radial Mathieu equation).

(1)
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Table 1. Periodic Mathieu functions of even order

a Periodic solution of angular Mathieu equation* Period Evenness of function

a2n(q) ce2n(z, q) period π even

a2n+1(q) ce2n+1(z, q) antiperiod** π even

b2n+1(q) se2n+1(z, q) antiperiod π odd

b2n+2(q) se2n+2(z, q) period π odd

* In Table 1 we provide just the eigenvalues of the period π or 2π.
** Antiperiod π: f(x+ π) = −f(x).

Table 2. Periodic Mathieu functions of fractional order ν

a Periodic solution of angular Mathieu equation Period Evenness of function

λν(q) ceν(z, q) period πp even

λν(q) seν(z, q) antiperiod πp odd

3.2. Some Properties of Mathieu Functions

Consider the angular Mathieu equation
d2

dz2
Φ(z)+ (a− 2q cos 2z)Φ(z) = 0. Because the coefficients

of the angular Mathieu equation are periodic in z, by the Floquet theorem [7] there exists a solution in
form Fν(z) = eiνzP (z), where ν depends on the parameters a and q, while the function P (z) has the
same period π as the coefficients of the equation. The constant ν is called the characteristic exponent.
For ν /∈ Z the functions Fν(z) and Fν(−z) are independent solutions to the differential equation. For
ν ∈ Z the functions Fν(z) and Fν(−z) are proportional and have the period π or 2π (see [7]).

According to the Sturm theory, for q 	= 0 existence of at most one periodic solution with the period π

or 2π is possible. Depending on the evenness and the period of this solution, the parameter1 a is referred
to one of the two types:

a =

⎡
⎣ aν(q), ν ∈ {0} ∪ N;

b−ν(q), −ν ∈ N,

more precisely, for n ∈ {0} ∪ N (see Table 1).

The third type is also distinguished: a = λν(q), ν /∈ Z, which corresponds to the Mathieu functions
of fractional order ceν(z, q), seν(z, q). In the general case for ν /∈ Q both functions are nonperiodic, but

for ν ∈ Q \ Z, ν =
n

p
, both have a period not larger than 2πp. Table 1 for ν =

n

p
can be continued (see

Table 2).

The meaning of the parameter ν becomes understandable when we substitute q = 0 into the angular
Mathieu equation (1). In this case the angular function appears to be the same as in the case of disk;
consequently, λν(0) = ν2, ceν(z, 0) = cos(νz), seν(z, 0) = sin(νz).

1 We can consider the Mathieu equation as a eigenvalue problem for the operator D(y) =
d2y

dx2
− 2q cos(2x)y (or operator

D(y) =
d2y

dx2
− 2q cosh(2x)y). Therefore, in the literature a is often called the eigenvalues.
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The Fourier series for the angular Mathieu functions converge uniformly and absolutely on all
compact sets in the complex plane. In the below given formulas it is assumed that n ∈ {0} ∪N,
ν ∈ R \ Z:

ce2n(z, q) =

∞∑
m=0

A2n
2m(q) cos 2mz, ce2n+1(z, q) =

∞∑
m=0

A2n+1
2m+1(q) cos (2m+ 1)z,

se2n+1(z, q) =

∞∑
m=0

B2n+1
2m+1(q) sin (2m+ 1)z, se2n+2(z, q) =

∞∑
m=0

B2n+2
2m+2(q) sin (2m+ 2)z,

ceν(z, q) =

∞∑
m=−∞

cν2m(q) cos (ν + 2m)z, seν(z, q) =

∞∑
m=−∞

cν2m(q) sin (ν + 2m)z.

The coefficients Al
k, B

l
k, c

ν
k satisfy certain recurrent relations (see [7]).

Now, we proceed to the radial Mathieu functions. The radial Mathieu functions of the first and second
orders are defined as Cen(z, q) = cen(±iz, q), Sen(z, q) = ∓isen(±iz, q) (see, e.g., [9]). For them and

for the radial function of fractional order M (1)
ν (z, q), there exist expansions in terms of Bessel functions of

the first kind (here, the equality is understood up to a constant factor independent of z, which is irrelevant
for the current work):

Ce2n(z, q) ∝
∞∑

m=0

(−1)mA2n
2m(q)J2m(x), Ce2n+1(z, q) ∝

∞∑
m=0

(−1)m+1A2n+1
2m+1(q)J2m+1(x),

Se2n(z, q) ∝ tanh z

∞∑
m=1

(−1)m2mB2n
2m(q)J2m(x),

Se2n+1(z, q) ∝ tanh z

∞∑
m=1

(−1)m(2m+ 1)B2n+1
2m+1(q)J2m+1(x),

M (1)
ν (z, q) ∝

∞∑
m=−∞

(−1)mcν2m(q)Jν+2m(x), everywhere, for brevity, x = 2
√
q cosh z. (2)

Here, the coefficients Al
k, B

l
k, c

ν
k are the same as in the Fourier expansion of the functions cel(z, q),

sel(z, q), ceν(z, q) (see [9, Chapter VIII, pp. 158–169]). By replacing the Bessel functions of first
kind Jm(x) with the Bessel functions of the second kind Ym(x) in the above formulas, we can obtain
independent solutions to the corresponding equations. For instance, for the radial functions of the first
kind of integer order Cen(z, q), we have the second solution Feyn(z, q), while for the functions Sen(z, q)
such second solution is denoted by Geyn(z, q) (see [9, Chapter VIII, Sections 8.11–13, pp. 158–162]).

The same reasoning applied to M
(1)
ν (z, q) leads to the independent solution M

(2)
ν (z, q) for the case of

fractional order.

4. MAIN RESULT

We consider the domain (“elliptic ring”) bounded by two ellipses with long semiaxes 0 < r0 < r1 and
with common foci at the points (±δ, 0). In the elliptic coordinates (ρ, ϕ) this domain is given by the

inequalities ρ0 = arccosh
(r0
δ

)
� ρ � arccosh

(r1
δ

)
= ρ1, 0 � ϕ � 2π. For the p-sheeted covering Ωδ

of the elliptic ring, the inequality on the angular coordinate is different: 0 � ϕ � 2πp. For convenience

we introduce κ
2 =

2ME

�2
.

We want to obtain the solutions to the stationary Schrödinger equation in the p-sheeted covering Ωδ

and the asymptotics of the corresponding energy levels at focus distance 2δ tending to zero.
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Theorem 2. In the domain Ωδ (p-sheeted covering of the elliptic ring) the eigenfunctions
ψk,m(ρ, ϕ) and the eigenvalues Ek,m of the operator Ĥ have the form

ψk,m(ρ, ϕ) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

[
Ceν(ρ0, q)Feyν(ρ, q)− Ceν(ρ, q)Feyν(ρ0, q)

]
ceν(ϕ, q)

∣∣∣∣
q=βk,ν

,

Ek,m =
κ
2
k,m�

2

2M
, ν ∈ {0} ∪ N;

[
Se−ν(ρ0, q)Gey−ν(ρ, q)− Se−ν(ρ, q)Gey−ν(ρ0, q)

]
se−ν(ϕ, q)

∣∣∣∣
q=βk,ν

,

Ek,m =
κ
2
k,m�

2

2M
, −ν ∈ N;

[
M

(1)
ν (ρ0, q)M

(2)
ν (ρ, q)−M

(1)
ν (ρ, q)M

(2)
ν (ρ0, q)

]
(A1ceν(ϕ, q) +A2seν(ϕ, q))

∣∣∣∣
q=βk,ν

,

Ek,m =
κ
2
k,m�

2

2M
otherwise,

where ν =
m

p
, κ2

k,m =
4βk,ν
δ2

, k,m ∈ N, βk,ν is the kth zero of the function

f(q) =

⎡
⎢⎢⎢⎣
Ceν(ρ0, q)Feyν(ρ1, q)− Ceν(ρ1, q)Feyν(ρ0, q), ν ∈ {0} ∪ N;

Se−ν(ρ0, q)Gey−ν(ρ1, q)− Se−ν(ρ1, q)Gey−ν(ρ0, q), −ν ∈ N;

M
(1)
ν (ρ0, q)M

(2)
ν (ρ1, q)−M

(1)
ν (ρ1, q)M

(2)
ν (ρ0, q) otherwise.

(3)

Proof. We will seek the solution to the equation
−�

2

2M
∇2ψ = Eψ in the form ψ(ρ, ϕ) = R(ρ)Φ(ϕ),

where ρ and ϕ are elliptic coordinates. Then R and Φ are the solutions to the Mathieu equations⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

∂2

∂ϕ2
Φ+ (a− 2q cos 2ϕ)Φ = 0,

∂2

∂ρ2
R− (a− 2q cosh 2ρ)R = 0,

(4)

where q =
(κδ)2

4
and a is the separating variable. Firstly, we consider the angular Mathieu equation and

determine under which a the condition Φ(0) = Φ(2πp) holds.
By the Floquet theorem, for some ν there exists a solution Φν(ϕ) to the Mathieu equation such

that Φν(ϕ+ 2πp) = e2iπpνΦν(ϕ). In the case of p-sheeted covering we need to impose the periodicity

condition Φν(0) = Φν(2πp). Consequently, e2iπpν = 1. Hence, pν = m ∈ Z and, therefore, ν =
m

p
,

where m ∈ Z. We put Φ(ϕ) = Φν(ϕ).
By R1(ρ, q), R2(ρ, q) we denote two independent solutions to the radial Mathieu equation (4)

depending on the parameter q. The solution to Eq.(4) is their linear combination R(ρ, q) = AR1(ρ, q) +
BR2(ρ, q). From the condition R(ρ0, q) = 0 we establish the values of the constants: A = R2(ρ0, q),
B = −R1(ρ0, q) (or the values proportional to them). Now, we consider the function f(q) = R2(ρ0, q)×
R1(ρ1, q)−R1(ρ0, q)R2(ρ1, q); depending on the value ν this is one of functions (3). Then the condition
R(ρ1, q) = 0 can be written as f(q) = 0. We denote the kth positive zero of this function by βk,ν , then

q = βk,ν for some value of k, which implies that κ2 =
4q

δ2
can take on only the values κ

2
k,m given in the

formulation of the theorem.
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In conclusion of the proof, we just need to present the explicit form of the functions Φ(ϕ), R(ρ).

Depending on the value ν =
m

p
, the separating parameter a in the system of differential equations (4) is

referred to one of the three types:

a =

⎡
⎢⎢⎢⎣
aν(q), ν ∈ {0} ∪ N;

b−ν(q), −ν ∈ N;

λν(q) otherwise.

The periodic angular solutions in the first two cases are the functions described in Table 1; they are the
functions Φ(ϕ) depending on the value of ν.

The radial functions are obtained in as linear combinations of integer-order radial Mathieu functions.
As R1(ρ, q) we take the radial Mathieu functions of the first kind (2): Ceν(ρ, q) for ν ∈ {0} ∪ N and
Seν(ρ, q) for −ν ∈ N. The independent solutions R2(ρ, q) for these two cases are Feyν(ρ, q) and
Geyν(ρ, q), respectively.

In the case ν =
m1

m2
∈ Q \Z both angular functions ceν(ϕ, q), seν(ϕ, q) are periodic and have a period

not larger than 2πm2 (see [7]); therefore, also their linear combination suits as Φ(ϕ). The solution
to the radial Mathieu equation is represented as a linear combination of the functions Ceν(ρ, q) and
Seν(ρ, q). However, in the next theorem it is more convenient to use a linear combination of the functions

M
(1)
ν (ρ, q),M

(2)
ν (ρ, q) (see [10, Section 28.23; 11, Chapter 2, Section 2.4, p. 165]), also forming a

fundamental system. �
We introduce the function

Wa,b(u) = Ya(u)Jb(λu)− Ya(λu)Jb(u), λ =
r1
r0
. (5)

We denote: ν =
m

p
,m ∈ Z.

Theorem 3. The value κ
2
k,m(δ), k ∈ N, depends on the half of the focal distance δ with an

accuracy up to o(δ2) as follows:

κ
2
k,m(δ) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

α2
k,ν

r20
+ δ2

α3
k,ν

8νr40

ν−2
ν−1

(Wν−2,ν(u)+Wν,ν−2(u))− ν+2
ν+1

(Wν+2,ν(u)+Wν,ν+2(u))
∂Wν,ν (u)

∂u

∣∣∣∣
u=αk,ν

,

−ν ∈ N \ {1, 2};
α2
k,2

r20
− δ2

α3
k,2

12r40

(W4,2(u)+W2,4(u))
∂W2,2(u)

∂u

∣∣∣∣
u=αk,2

, −ν = 2;

α2
k,1

r20
− δ2

3α3
k,1

16r40

(W3,1(u)+W1,3(u))
∂W1,1(u)

∂u

∣∣∣∣
u=αk,1

, −ν = 1;

α2
k,0

r20
− δ2

α3
k,0

4r40

(W2,0(u)+W0,2(u))
∂W0,0(u)

∂u

∣∣∣∣
u=αk,0

, ν = 0;

α2
k,1

r20
− δ2

α3
k,1

16r40

(W3,1(u)+W1,3(u))
∂W1,1(u)

∂u

∣∣∣∣
u=αk,1

, ν = 1;

α2
k,ν

r20
+ δ2

α3
k,ν

2r40

1
4(ν−1)

(Wν−2,ν(u)+Wν,ν−2(u))− 1
4(ν+1)

(Wν+2,ν(u)+Wν,ν+2(u))

∂Wν,ν (u)

∂u

∣∣∣∣
u=αk,ν

,

⎡
⎣ ν ∈ N \ {1},

ν /∈ Z.

(6)
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Remark. This expansion is equivalent to the expansion in terms of the eccentricity εs of the inner or
outer ellipse with the major semiaxis rs, s = 0, 1, which results from the substitution δ = εsrs.

Remark. The case δ = 0 corresponds to the covering of the circular ring. It is easy to see that in this
case the result of Theorem 3 (that is, zero terms of expansions) corresponds to the result of Theorem 1

after multiplication by
�
2

2M
.

Remark. The derivative
∂Wν,ν(u)

∂u
admits expression through the Bessel functions of the first and

second kinds. We have the identities (see [10]): 2
∂Yν(u)

∂u
= Yν−1(u)− Yν+1(u), 2

∂Jν(u)

∂u
= Jν−1(u)−

Jν+1(u). By direct differentiation of Wν,ν(u) we obtain

∂Wν,ν(u)

∂u
= λ(Yν(u)Jν−1(λu) + Yν+1(λu)Jν(u))− (Yν(λu)Jν−1(u) + Yν+1(u)Jν(λu)).

Proof. By the previous theorem the eigenvalues Ek,m of the operator Ĥ and, consequently, the
numbers κ

2
k,m = κ

2
k,m(δ) are related with the zeros βk,ν of the function f(q). Here, the function f(q)

has one of the three possible types (see (3)).

We present two lemmas with which we are going to prove (6).

Let ν =
m

p
, m � 0, a = λν(q), q =

κ
2δ2

4
and suppose that ceν(ϕ, q) is the even solution to the

angular Mathieu equation with the specified parameters a, q. Recall that for small q the expansion holds
(see [11, Section 2.2, pp. 122–124]):

ceν(ϕ, q) = cν cos νϕ+ qcν+2 cos (ν + 2)ϕ+ qcν−2 cos (ν − 2)ϕ+ o(q).

The possible values κ
2 are determined from the condition that the radial Mathieu function vanishes

on the boundary ellipses. Namely, we put R(ρ) as the solution to the radial Mathieu equation with the
same parameters and the boundary condition R(ρ0) = R(ρ1) = 0, ρ0 < ρ1.

Lemma 2. Let r0 = δ cosh ρ0, r1 = δ cosh ρ1, λ =
r1
r0

and suppose that αk,ν is the kth zero of the

function Wν,ν(u). Then for small δ the value κ
2 is as follows:

κ
2 =

α2
k,ν

r20
+ δ2

α3
k,ν

2cνr40

× cν+2 (Wν+2,ν(u) +Wν,ν+2(u)) + cν−2 (Wν−2,ν(u) +Wν,ν−2(u))

∂Wν,ν(u)

∂u

∣∣∣∣∣∣∣
u=αk,ν

+ o(δ2).

Proof. At a = λν(q), ν =
m

p
, m � 0, the Fourier coefficients of the angular Mathieu function

ceν(ϕ, q) are coupled [7], up to a constant factor, with the expansion of the radial Mathieu function

R1(ρ, q) =

⎡
⎣ Ceν(ρ, q), ν ∈ {0} ∪ N;

M
(1)
ν (ρ, q), ν /∈ Z,

into an infinite sum of the Bessel functions as follows:

R1(ρ, q) = cνJν(2
√
q cosh ρ)− qcν−2Jν−2(2

√
q cosh ρ)− qcν+2Jν+2(2

√
q cosh ρ) + o(q).

The second solution R2(ρ, q) to the radial Mathieu equation can be obtained from R1(ρ, q) by
replacing the Bessel functions of the first kind Jν(x) with the Bessel functions of the second kind Yν(x).

In particular, these are the functions Feyν(ρ, q) for ν ∈ {0} ∪ N and M
(2)
ν (ρ, q) for ν ∈ Q \ Z, ν ≥ 0.
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We recall the boundary condition R2(ρ0)R1(ρ1)−R2(ρ1)R1(ρ0) = 0. Note that the arguments have

the form 2
√
q cosh ρs = 2

√
κ
2δ2

4

rs
δ

= κrs, s = 0, 1. Let us consider the first summand in the boundary

condition:

R2(ρ0)R1(ρ1) = (cνYν(κr0)− qcν−2Yν−2(κr0)− qcν+2Yν+2(κr0) + o(q))

× (cνJν(κr1)− qcν−2Jν−2(κr1)− qcν+2Jν+2(κr1) + o(q))

= c2νYν(κr0)Jν(κr1)− qcν

(
cν−2(Yν−2(κr0)Jν(κr1) + Yν(κr0)Jν−2(κr1))

+ cν+2(Yν+2(κr0)Jν(κr1) + Yν(κr0)Jν+2(κr1))
)
+ o(q). (7)

Dividing both sides of the last expression by c2ν , for convenience’s sake we determine u = κr0, λ =
r1
r0

,κr1 = λu. We write the full expression R2(ρ0)R1(ρ1)−R2(ρ1)R1(ρ0) = 0: because the terms differ

from each other only by permutation of the arguments u and λu, using formula (7) leads to appearance
of functions (5). Thus,

0 = R2(ρ0)R1(ρ1)−R2(ρ1)R1(ρ0)

= Wν,ν(u)− q

(
cν−2

cν
(Wν−2,ν(u) +Wν,ν−2(u)) +

cν+2

cν
(Wν+2,ν(u) +Wν,ν+2(u))

)
+ o(q). (8)

Suppose that αk,ν is the kth zero of the function Wν,ν(u). Then in a sufficiently small its neighborhood
it is true that

Wν,ν(u) = (u− αk,ν)
∂Wν,ν(u)

∂u

∣∣∣∣
u=αk,ν

+
(u− αk,ν)

2

2

∂2Wν,ν(u)

∂u2

∣∣∣∣
u=αk,ν

+ o((u− αk,ν)
2).

We put u = αk,ν + u1δ + u2δ
2 + o(δ2) and substitute q =

κ
2δ2

4
=

u2δ2

4r20
into expression (8):

(u1δ + u2δ
2 + o(δ2))

∂Wν,ν(u)

∂u

∣∣∣∣
u=αk,ν

+
u21δ

2 + o(δ2)

2

∂2Wν,ν(u)

∂u2

∣∣∣∣
u=αk,ν

−
α2
k,νδ

2 + o(δ2)

4r20

×
[(

cν−2

cν
(Wν−2,ν(u) +Wν,ν−2(u)) +

cν+2

cν
(Wν+2,ν(u) +Wν,ν+2(u))

)∣∣∣∣
u=αk,ν

+ o(δ)

]
+ o(δ2) = 0.

Because the equality must hold at each power of δ, we firstly obtain u1 = 0 and then, by equating the
coefficients at δ2, arrive at

u2 =
α2
k,ν

4r20

(
cν−2

cν
(Wν−2,ν(u) +Wν,ν−2(u)) +

cν+2

cν
(Wν+2,ν(u) +Wν,ν+2(u))

)

∂Wν,ν(u)

∂u

∣∣∣∣∣∣∣∣
u=αk,ν

.

Thus,

u = αk,ν + δ2
α2
k,ν

4r20

×

(
cν−2

cν
(Wν−2,ν(u) +Wν,ν−2(u)) +

cν+2

cν
(Wν+2,ν(u) +Wν,ν+2(u))

)

∂Wν,ν(u)

∂u

∣∣∣∣∣∣∣∣
u=αk,ν

+ o(δ2).
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Because u = κr0, we obtain

κ
2 =

α2
k,ν

r20
+ δ2

α3
k,ν

2cνr40

× cν+2 (Wν+2,ν(u) +Wν,ν+2(u)) + cν−2 (Wν−2,ν(u) +Wν,ν−2(u))

∂Wν,ν(u)

∂u

∣∣∣∣∣∣∣
u=αk,ν

+ o(δ2).

The lemma is proved.

Let a = λ−ν(q), ν ∈ N, q =
κ
2δ2

4
and suppose that seν(ϕ, q) is the odd solution to the angular

Mathieu equation with the specified parameters a, q. Recall that for small q the expansion holds (see
[11, Section 2.2, pp. 122–124]):

seν(ϕ, q) = cν sin νϕ+ qcν+2 sin (ν + 2)ϕ + qcν−2 sin (ν − 2)ϕ + o(q).

The possible values κ
2 are determined from the condition that the radial Mathieu function vanishes on

the boundary ellipses. Namely, we put R(ρ) as the solution to the radial Mathieu equation with the same
parameters and the boundary condition R(ρ0) = R(ρ1) = 0, ρ0 < ρ1.

Lemma 3. Let r0 = δ cosh ρ0, r1 = δ cosh ρ1, λ =
r1
r0

and suppose that αk,ν is the kth zero of the

function Wν,ν(u), then κ
2 depends on δ as

κ
2 =

α2
k,ν

r20
+ δ2

α3
k,ν

2νcνr40

× (ν − 2)cν−2 (Wν−2,ν(u) +Wν,ν−2(u)) + (ν + 2)cν+2 (Wν+2,ν(u) +Wν,ν+2(u))

∂Wν,ν(u)

∂u

∣∣∣∣∣∣∣
u=αk,ν

+ o(δ2).

Proof. At a = λ−ν(q), ν ∈ N, the Fourier coefficients of the odd angular Mathieu function seν(ϕ, q)
are coupled [7], up to a constant factor, with the expansion of the radial Mathieu function Seν(ρ, q) into
an infinite sum of Bessel functions as follows:

Seν(ρ, q) = νcνJν(2
√
q cosh ρ)− q(ν − 2)cν−2Jν−2(2

√
q cosh ρ)

− q(ν + 2)cν+2Jν+2(2
√
q cosh ρ) + o(q).

We can obtain the second solution to the radial Mathieu equations R2(ρ) = Geyν(ρ, q) from the solution
R1(ρ) = Seν(ρ, q) by replacing the Bessel functions of the first kind Jν(x) with the Bessel functions of
the second kind Yν(x).

In the boundary condition R2(ρ0)R1(ρ1)−R2(ρ1)R1(ρ0) = 0 the arguments have the form

2
√
q cosh ρs = 2

√
κ
2δ2

4

rs
δ

= κrs, s = 0, 1. Consider the first summand:

R2(ρ0)R1(ρ1) = (νcνYν(κr0)− q(ν − 2)cν−2Yν−2(κr0)− q(ν + 2)cν+2Yν+2(κr0) + o(q))

× (νcνJν(κr1)− q(ν − 2)cν−2Jν−2(κr1)− q(ν + 2)cν+2Jν+2(κr1) + o(q))

= ν2c2νYν(κr0)Jν(κr1)− qνcν

(
(ν − 2)cν−2 (Yν−2(κr0)Jν(κr1) + Yν(κr0)Jν−2(κr1))

+ (ν + 2)cν+2 (Yν+2(κr0)Jν(κr1) + Yν(κr0)Jν+2(κr1))
)
+ o(q).
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We divide both sides of the expression by ν2c2ν and, for convenience’s sake, determine u = κr0, λ =
r1
r0

κr1 = λu. We write the full expression R2(ρ0)R1(ρ1)−R2(ρ1)R1(ρ0) = 0 in the same manner as in

Lemma 2:

0 = R2(ρ0)R1(ρ1)−R2(ρ1)R1(ρ0) = Wν,ν(u)

− q

νcν

(
(ν − 2)cν−2 (Wν−2,ν(u) +Wν,ν−2(u)) + (ν + 2)cν+2 (Wν+2,ν(u) +Wν,ν+2(u))

)
+ o(q).

(9)

Suppose that αk,ν is the kth zero of the function Wν,ν(u). Then in its sufficiently small neighborhood it
is true that

Wν,ν(u) = (u− αk,ν)
∂Wν,ν(u)

∂u

∣∣∣∣
u=αk,ν

+
(u− αk,ν)

2

2

∂2Wν,ν(u)

∂u2

∣∣∣∣
u=αk,ν

+ o((u− αk,ν)
2).

We put u = αk,ν + u1δ + u2δ
2 + o(δ) and substitute q =

κ
2δ2

4
=

u2δ2

4r20
into expression (9):

(u1δ + u2δ
2 + o(δ2))

∂Wν,ν(u)

∂u

∣∣∣∣
u=αk,ν

+
u21δ

2 + o(δ2)

2

∂2Wν,ν(u)

∂u2

∣∣∣∣
u=αk,ν

−
α2
k,νδ

2 + o(δ2)

4r20

[(
(ν − 2)cν−2

νcν
(Wν−2,ν(u) +Wν,ν−2(u))

+
(ν + 2)cν+2

νcν
(Wν+2,ν(u) +Wν,ν+2(u))

)∣∣∣∣
u=αk,ν

+ o(δ)

]
+ o(δ2) = 0.

We equate the coefficients at each power and obtain

u = αk,ν + δ2
α2
k,ν

4r20

1

∂Wν,ν(u)

∂u

(
(ν − 2)cν−2

νcν
(Wν−2,ν(u) +Wν,ν−2(u))

+
(ν + 2)cν+2

νcν
(Wν+2,ν(u) +Wν,ν+2(u))

)∣∣∣∣
u=αk,ν

+ o(δ2),

which, by the definition u = κr0, implies the equality

κ
2 =

α2
k,ν

r20
+ δ2

α3
k,ν

2νcνr40

× (ν − 2)cν−2 (Wν−2,ν(u) +Wν,ν−2(u)) + (ν + 2)cν+2 (Wν+2,ν(u) +Wν,ν+2(u))

∂Wν,ν(u)

∂u

∣∣∣∣∣∣∣
u=αk,ν

+ o(δ2).

The lemma is proved.

Let us return to the proof of Theorem 3.
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Case 1: a = λν(q), ν =
m

p
, m � 0. Then for small q the even solution to the angular Mathieu

equation ceν(ϕ, q) can be represented as (see [7])

ceν(ϕ, q) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

cos νϕ+
q

4(ν − 1)
cos (ν − 2)ϕ − q

4(ν + 1)
cos (ν + 2)ϕ + o(q),

ν ∈ N \ {1} or ν ∈ Q \ Z;

cosϕ− q

8
cos 3ϕ + o(q), ν = 1;

1√
2
− 1√

2

q

2
cos 2ϕ + o(q), ν = 0.

Let ν ∈ N \ {1} or ν ∈ Q \ Z. Then cν = 1, cν+2 =
−1

4(ν + 1)
, cν−2 =

1

4(ν − 1)
. We apply Lemma 2:

κ
2 =

α2
k,ν

r20
+ δ2

α3
k,ν

2r40

×

1

4(ν − 1)
(Wν−2,ν(u) +Wν,ν−2(u))−

1

4(ν + 1)
(Wν+2,ν(u) +Wν,ν+2(u))

∂Wν,ν(u)

∂u

∣∣∣∣
u=αk,ν

+ o(δ2).

Suppose that ν = 1. Then cν = 1, cν+2 =
−1

8
, cν−2 = 0, and from Lemma 2 we obtain

κ
2 =

α2
k,ν

r20
− δ2

α3
k,ν

16r40

(Wν+2,ν(u) +Wν,ν+2(u))

∂Wν,ν(u)

∂u

∣∣∣∣∣∣∣
u=αk,ν

+ o(δ2).

Let ν = 0. Then cν =
1√
2
, cν+2 =

−1

2
√
2
, cν−2 = 0, and by Lemma 2 we have

κ
2 =

α2
k,ν

r20
− δ2

α3
k,ν

4r40

(Wν+2,ν(u) +Wν,ν+2(u))

∂Wν,ν(u)

∂u

∣∣∣∣∣∣∣
u=αk,ν

+ o(δ2).
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Case 2: a = λ−ν(q), ν ∈ N. In this case for small q the odd solution seν(ϕ, q) to the angular Mathieu
equation can be represented as (see [7])

seν(ϕ, q) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

sin νϕ+
q

4(ν − 1)
sin (ν − 2)ϕ − q

4(ν + 1)
sin (ν + 2)ϕ + o(q),

ν ∈ N \ {1, 2};

sin 2ϕ− q

12
sin 4ϕ+ o(q), ν = 2;

sinϕ− q

8
sin 3ϕ + o(q), ν = 1.

Let ν ∈ N \ {1, 2}. Then cν = 1, cν−2 =
1

4(ν − 1)
, cν+2 =

−1

4(ν + 1)
, and from Lemma 3 we obtain

κ
2 =

α2
k,ν

r20

+ δ2
α3
k,ν

8νr40

ν − 2

ν − 1
(Wν−2,ν(u) +Wν,ν−2(u))−

ν + 2

ν + 1
(Wν+2,ν(u) +Wν,ν+2(u))

∂Wν,ν(u)

∂u

∣∣∣∣∣∣∣
u=αk,ν

+ o(δ2).

Suppose that ν = 2. Then cν = 1, cν−2 = 0, cν+2 =
−1

12
, and by Lemma 3

κ
2 =

α2
k,ν

r20
− δ2

α3
k,ν(ν + 2)

24νr40

(Wν+2,ν(u) +Wν,ν+2(u))

∂Wν,ν(u)

∂u

∣∣∣∣∣∣∣
u=αk,ν

+ o(δ2).

Let ν = 1. Then cν = 1, cν−2 = 0, cν+2 =
−1

8
, and from Lemma 3 we arrive at

κ
2 =

α2
k,ν

r20
− δ2

α3
k,ν(ν + 2)

16νr40

(Wν+2,ν(u) +Wν,ν+2(u))

∂Wν,ν(u)

∂u

∣∣∣∣∣∣∣
u=αk,ν

+ o(δ2).

The proof of Theorem 3 is completed.

5. CONCLUDING REMARKS
Let us consider another problem formulation. Suppose that a circular ring is given bounded by

concentric circles with radii r1 > r0 >
c

2
.

We consider the mapping Fc(z) = z +
c2

4z
(an analog of the Zhukovsky function). It transfers our

circular ring to an elliptic one bounded by ellipses with foci at the points (± c

2
, 0) and major semiaxes

Fc(r0) = r0 +
c2

4r0
, Fc(r1) = r1 +

c2

4r1
.

Using the function Fc(z) the Laplacian ∇2 in the elliptic ring is transferred to the circular ring. The
obtained operator ∇2

c can be considered a perturbation of the original Laplacian ∇2 = ∇2
0.

The asymptotic of the eigenvalues of ∇2
c has additional correction terms compared with our original

problem, because under the action of Fc(z) the semiaxes change. We will dedicate a section in a further
publication to the discussion of asymptotics of eigenvalues of ∇2

c .
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