Robust Utility Maximization in Terms of Supermartingale Measures

A. A. Farvazova1*

1Chair of Probability Theory, Faculty of Mechanics and Mathematics, Lomonosov Moscow State University, Moscow, 119992 Russia Received January 22, 2021

Abstract—We consider a dual description of the optimal value of robust utility in the abstract financial market model $(\Omega, \mathcal{F}, P, \mathcal{A}(x))$, where $\mathcal{A}(x) = x\mathcal{A}, x \geq 0$, is the set of the investor's terminal capitals corresponding to strategies with the initial capital x . The main result of the paper addresses the question of the transition in the definition of the dual problem from the polar of the set $\mathcal A$ to a narrower set of limit values of supermartingale densities.

DOI: 10.3103/S0027132222010028

Keywords: *utility maximization, robust utility, supermartingale measure*

1. INTRODUCTION

In this paper, as a robust utility maximization problem with a penalty function, we mean the problem of maximizing the functional

$$
\xi \leadsto \inf_{\mathsf{Q} \in \mathcal{Q}} \bigl(\mathsf{E}_{\mathsf{Q}} U(\xi) + \gamma(\mathsf{Q}) \bigr), \quad \xi \in \mathcal{A},
$$

over some convex set A of random variables defined on a probability space (Ω, \mathcal{F}, P) .

Assumption 1 (on a utility function): $U : \mathbb{R} \to [-\infty, +\infty)$ is a monotonically nondecreasing concave function such that $U(x) = -\infty$ for $x < 0$ and $U(x) \in \mathbb{R}$ for $x > 0$.

Let Q be some convex set of probability measures on (Ω, \mathcal{F}) , and let the penalty function γ be convex (see [1]).

We introduce the function V conjugate to U by the relation

$$
V(y) = \sup_{x>0} (U(x) - xy), \quad y \in \mathbb{R}.
$$

For a function $f: X \to \mathbb{R} \cup \{+\infty\}$, the effective set dom f is defined as

$$
\operatorname{dom} f := \{ x \in X \colon f(x) < +\infty \}.
$$

By Assumption 1, dom $V \subseteq \mathbb{R}_+$, the function V is not monotonically increasing, and

$$
\lim_{y \to +\infty} \frac{V(y)}{y} = 0.
$$

By the standard utility maximization problem we mean the case where $\mathcal{Q} = \{P\}$.

Denote by ba the space of bounded finitely additive set functions $\mu: \mathcal{F} \to \mathbb{R}$ such that

$$
A \in \mathcal{F}, \quad \mathsf{P}(A) = 0 \Rightarrow \mu(A) = 0,
$$

with the total variation norm. It is well known that ba is dual to the space L^{∞} , and the duality is given by the relation

$$
\langle \xi, \mu \rangle := \mu(\xi) := \int_{\Omega} \xi d\mu, \quad \mu \in ba, \quad \xi \in L^{\infty}.
$$

 $\mathrm{^{*}E}$ -mail: <code>aisylu.farvazova@yandex.ru</code>

A subspace of the space ba consisting of countably additive measures is denoted by *ca*. For $\mu \in ba$, there exists a unique decomposition $\mu = \mu^r + \mu^s$ into a countably additive measure $\mu^r \in ca$ and a purely finitely additive set function $\mu^s \in ba$. The space ca is naturally identified with L^1 by the relations $\xi \in L^1$ and $\xi \leftrightarrow \xi \cdot P \in ca$, where $\xi \cdot P$ is a measure with density ξ in P.

The proof of the results of this paper uses the notion of f -divergence. Let us give its formal definition. Let $f : \mathbb{R} \to \mathbb{R} \cup \{+\infty\}$ be a proper, lower semicontinuous and convex function with dom $f \subseteq \mathbb{R}_+$. In [2], Gushchin gave a definition of the f-divergence $\mathcal{J}_f(\mu,\nu)$ of finitely additive functions μ and ν given on (Ω, \mathcal{F}) . For $\mu, \nu \in ba$, this definition is equivalent to the following:

$$
\mathcal{J}_f(\mu,\nu) = \sup_{\xi,\,\eta\,\in\,L^\infty\colon\,\eta+f^*(\xi)\leqslant 0} \big(\mu(\xi)+\nu(\eta)\big),
$$

where f^* is the Fenchel transform of the function f. It follows from the definition that the function $\mathcal{J}_f(\mu, \nu)$ on $ba \times ba$ takes values in $\mathbb{R} \cup \{+\infty\}$ and is convex and lower semicontinuous in the topology $\sigma(ba \times ba, L^{\infty} \times L^{\infty})$. The properties used in this paper were proved in [2, Theorem 1].

It will be convenient for us to extend the domain of the penalty function γ to the space ba by setting it equal to $+\infty$ outside Q. Then Q is characterized as the effective domain dom γ .

Assumption 2 (on a penalty function): γ : $ba \to \mathbb{R} \cup \{+\infty\}$ is a proper convex function such that dom $\gamma=:\mathcal{Q}$ is a subset of the set of all probability measures on $(\Omega,\mathcal{F}),$ $\inf_{\mathsf{Q}\in\mathcal{Q}}\gamma(\mathsf{Q})\geqslant 0,$ and the set

$$
\{d\mathsf{Q}/d\mathsf{P}\colon \mathsf{Q}\in\mathcal{Q}, \gamma(\mathsf{Q})\leqslant c\}
$$

is closed in L^1 and uniformly integrable with respect to P for any $c\geqslant 0.$

Denote by L^0 the space of P-a.s. equivalence classes of equal random variables with real values. When we speak of random variables, we mean the equivalence classes that they generate.

Assumption 3 (on the set of terminal wealths): A is a convex subset L^0 containing a random variable $\xi_0 \geqslant \varkappa$ for some $\varkappa > 0$.

The cone of nonnegative random variables is denoted by L^0_+ . We define

$$
\mathcal{D} := \{ \eta \in L^0_+ : \ \mathsf{E}_{\mathsf{P}} \eta \xi \leqslant 1 \text{ for any } \xi \in \mathcal{A} \}. \tag{1}
$$

It is clear that $\mathcal{D}\subseteq L^1_+$ since $\mathsf{E}_\mathsf{P}\eta\leqslant \varkappa^{-1}$ for any $\eta\in\mathcal{D}.$ For $x>0$ and $y\geqslant 0,$ we put

$$
\mathcal{A}(x) := x\mathcal{A}, \quad \mathcal{D}(y) := y\mathcal{D}.
$$

We define primal and dual optimization problems:

$$
u(x) := \sup_{\xi \in \mathcal{A}(x)} \inf_{\mathsf{Q} \in \mathcal{L}} \big(\mathsf{E}_{\mathsf{Q}} U(\xi) + \gamma(\mathsf{Q}) \big), \quad x > 0; \tag{2}
$$

$$
v(y) := \inf_{\eta \in \mathcal{D}(y), \, \mathbf{Q} \in \mathcal{L}} \left(\mathsf{E}_{\mathbf{Q}} V \left(\frac{\eta}{d\mathbf{Q}/d\mathbf{P}} \right) + \gamma(\mathbf{Q}) \right), \quad y \ge 0.
$$
 (3)

We have the equalities (see [3]):

$$
u(x) = \min_{y \ge 0} (v(y) + xy), \quad x > 0;
$$
 (4)

$$
v(y) = \sup_{x>0} (u(x) - xy), \quad y \ge 0.
$$
 (5)

The main result of this paper is new and answers the question: when the set D defined in (1) can be replaced by a convex set $\mathcal{D} \subseteq \mathcal{D}$ in the definition of the dual function v (see (3))? This situation is considered in abstract form in Lemma 1 and in a more concrete form in Theorem 1. A similar result for the nonrobust case was obtained in the joint work of Kramkov and Schachermayer (see [4]).

MOSCOW UNIVERSITY MATHEMATICS BULLETIN Vol. 77 No. 1 2022

2. AUXILIARY RESULTS

Given a probability measure $\mathsf{Q} \ll \mathsf{P}$, we define the functions

$$
v_{\mathsf{Q}}(y) := \inf_{\eta \in \mathcal{D}} \mathsf{E}_{\mathsf{Q}} V\left(\frac{y\eta}{d\mathsf{Q}/d\mathsf{P}}\right), \quad y \geq 0;
$$

$$
\widetilde{v}_{\mathsf{Q}}(y) := \inf_{\eta \in \widetilde{\mathcal{D}}} \mathsf{E}_{\mathsf{Q}} V\left(\frac{y\eta}{d\mathsf{Q}/d\mathsf{P}}\right), \quad y \geq 0.
$$

It can be seen from (3) that it suffices to consider whether or not the functions v_Q and \tilde{v}_Q coincide.

Definition 1. For a set $\mathcal{E} \subseteq L^0_+$, we define its *polar* \mathcal{E}° by

$$
\mathcal{E}^{\circ} := \{ \xi \in L^0_+ : \mathsf{E}_{\mathsf{P}} \eta \xi \leqslant 1 \text{ for any } \eta \in \mathcal{E} \}.
$$

Using these terms, the definition of the set $\mathcal D$ in (1), in which $\mathcal A$ can be replaced by $\mathcal C_+ := (\mathcal A - L_+^0) \cap I$ L^∞_+ , is written as $\mathcal{D}=\mathcal{C}^\circ_+;\, \overline{\mathcal{C}}^0_+$ denotes the closure of the set \mathcal{C}_+ in $L^0.$

Lemma 1. Suppose that the set A satisfies Assumption 3, $A \subseteq L^0_+$, the set D is defined in (1) and $\widetilde{\mathcal{D}} \subseteq \mathcal{D}$, and the set $\widetilde{\mathcal{D}}$ *is convex and not empty. We introduce the following conditions:*

(i) *For any* $\eta \in \mathcal{D}$, there exists $\tilde{\eta} \in \tilde{\mathcal{D}}$ *such that* $\eta \leq \tilde{\eta}$.

(ii) $v_Q(y) = \tilde{v}_Q(y)$ for all $Q \ll P$ and $y \ge 0$ for any function U satisfying Assumption 1*.*
(iii) $v_Q(y) = \tilde{v}_Q(y)$ for all $Q \ll P$ and $y > 0$ for some strictly increasing function U so

(iii) $v_{\mathbf{Q}}(y) = \tilde{v}_{\mathbf{Q}}(y)$ for all $\mathbf{Q} \ll P$ and $y \geq 0$ for some strictly increasing function U satisfying sumption 1. *Assumption* 1*.*

 (iv) *For any* $f \in L^0_+,$

$$
\sup_{g \in \mathcal{D}} \mathsf{E} f g = \sup_{g \in \widetilde{\mathcal{D}}} \mathsf{E} f g.
$$

Then $(i) \Rightarrow (ii) \Rightarrow (iii) \Rightarrow (iv)$. *If the closure* $\overline{\tilde{D}}_+^0$ *of the set* \tilde{D} *in* L^0 *lies in* $\tilde{D} - L^0_+$ *, then all four conditions are equivalent.*

Remark 1. We have $\mathcal{D}^{\circ} = (C_+^{\circ})^{\circ}$. As is easily seen, condition (iv) of Lemma 1 is equivalent to the fact that $\mathcal{D}^{\circ} = \widetilde{\mathcal{D}}^{\circ}$. On the other hand, since C is convex and solid, the Brannath–Schachermayer bipolar theorem [5] states that $\left({\cal C}_+^\circ \right)^\circ$ coincides with the closure $\overline {\cal C}_+^0$ of the set ${\cal C}_+$ in $L^0.$

Proof of Lemma 1. The implications (i) \Rightarrow (ii) \Rightarrow (iii) are obvious. Suppose that condition (iii) holds, while condition (iv) is not satisfied. Then there are $f\in L^0_+$ and $\eta\in\mathcal{D}$ such that

$$
\mathsf{E}f\eta > \sup_{g \in \widetilde{\mathcal{D}}} \mathsf{E}fg. \tag{6}
$$

Cutting off f and η from above, we can consider that f and η are bounded, and, adding a small constant to f (recall that $E_g \le \varkappa^{-1}$ for any $g \in \mathcal{D} \supseteq \widetilde{\mathcal{D}}$), we have $f \ge \varepsilon > 0$. Let us now set $q = y\eta/U_+^{\prime}(f)$, where $y>0$ is chosen from the normalization condition $\mathsf{E} q=1,$ and $\mathsf{Q}=q\cdot\mathsf{P}.$ Note that here U_{+}' is the right derivative of the utility function U . It exists since, by Assumption 1, the utility function never goes to infinity on the positive semiaxis \mathbb{R}_+ . Note that P and Q are probability measures, i.e., countably additive measures: $P = P^r$, $Q = Q^r$, and $P^s = Q^s = 0$. We have [2, Theorem 1]

$$
\mathsf{E}_{\mathsf{Q}}V\left(\frac{yg}{d\mathsf{Q}/d\mathsf{P}}\right) = \mathsf{E}_{\mathsf{Q}}V\left(yg\frac{d\mathsf{P}/d\mathsf{P}}{d\mathsf{Q}/d\mathsf{P}}\right) = \left[\mathcal{J}_V(0,0) = 0\right] = \mathcal{J}_V\left((yg)\cdot\mathsf{P},\mathsf{Q}\right) + \mathcal{J}_V(0,0)
$$

$$
= \mathcal{J}_V\left((yg)\cdot\mathsf{P}^r,\mathsf{Q}^r\right) + \mathcal{J}_V\left((yg)\cdot\mathsf{P}^s,\mathsf{Q}^s\right) = \mathcal{J}_V\left((yg)\cdot\mathsf{P},\mathsf{Q}\right) = \sup_{\xi\in L^\infty : U(\xi)\in L^\infty} \left(\mathsf{E}_{\mathsf{Q}}U(\xi) - y\mathsf{E}g\xi\right).
$$

Note that here \mathcal{J}_V is the V-divergence. The last equality follows from the definition of the V-divergence in terms of mathematical expectation.

Note that, for $q = \eta$, the upper bound is attained on f:

$$
\mathsf{E}_{\mathsf{Q}}U(\xi) - y \mathsf{E} \eta \xi = y \mathsf{E} \eta \left(\frac{U(\xi)}{U'_+(f)} - \xi \right) \leqslant y \mathsf{E} \eta \left(\frac{U(f)}{U'_+(f)} - f \right),
$$

the inequality follows from the concavity of U , since the local maximum is global for a concave function. Therefore,

$$
\mathsf{E}_{\mathsf{Q}} V\left(\frac{y\eta}{d\mathsf{Q}/d\mathsf{P}}\right) = \mathsf{E}_{\mathsf{Q}} U(f) - y \mathsf{E} \eta f,
$$

while

$$
\mathsf{E}_{\mathsf{Q}} V\left(\frac{yg}{d\mathsf{Q}/d\mathsf{P}}\right) \geqslant \mathsf{E}_{\mathsf{Q}} U(f) - y \mathsf{E} gf.
$$

Hence,

$$
v_{\mathsf{Q}}(y) \leq \mathsf{E}_{\mathsf{Q}} V\left(\frac{y\eta}{d\mathsf{Q}/d\mathsf{P}}\right) = \mathsf{E}_{\mathsf{Q}} U(f) - y \mathsf{E} \eta f < \mathsf{E}_{\mathsf{Q}} U(f) - y \sup_{g \in \widetilde{\mathcal{D}}} \mathsf{E} gf
$$

$$
\leq \inf_{g \in \widetilde{\mathcal{D}}} \mathsf{E}_{\mathsf{Q}} V\left(\frac{yg}{d\mathsf{Q}/d\mathsf{P}}\right) = \widetilde{v}_{\mathsf{Q}}(y),
$$

where the strict inequality follows from (6). We come to the required contradiction.

Let now $\overline{\tilde{D}}_+^0 \subseteq \tilde{D} - L_+^0$, and let condition (iv) hold. It follows from Remark 1 that (iv) implies $\mathcal{D} = (\widetilde{\mathcal{D}}^{\circ})^{\circ}$. On the other hand, since the set $\widetilde{\mathcal{D}}$ is convex and bounded in L^1 , standard arguments based on the transition to convex combinations show that the set $(\tilde{\mathcal{D}} - L^0_+) \cap L^0_+$ is closed in L^0 and, consequently, there is the smallest subset of L^0_+ containing $\widetilde{\mathcal{D}}$ that is convex, solid and closed in L^0 . By the Brannath–Schachermayer bipolar theorem [5], $(\widetilde{\mathcal{D}}^{\circ})^{\circ} = (\widetilde{\mathcal{D}} - L_{+}^{0}) \cap L_{+}^{0}$. Thus, condition (i) is satisfied.

3. MAIN RESULTS

Assume that the probability space (Ω, \mathcal{F}, P) is endowed with a filtration $\mathbb{F} = (\mathcal{F}_t)_{t \geq 0}$ satisfying the usual conditions. We have ${\cal F}=\sigma(\cup_{t\geqslant 0} {\cal F}_t)$ and ${\cal F}_0$ contains only sets of P-measure 0 or 1. We denote by $\mathbb D$ the set of real consistent random processes $X=(X_t)_{t\geqslant 0}$ whose trajectories are continuous on the right and have finite limits on the left; let $\mathbb{D}_+=\{X\in\mathbb{D}:\ X\geqslant 0\}$ and $\mathbb{D}_{++}=\{X\in\mathbb{D}:\ \mathsf{P}(\inf_t X_t>0\}$ 0) = 1}. If $X \in \mathbb{D}$ and there P-a.s. exists a finite limit lim_{t→∞} X_t , then the element L^0 corresponding to this limit is denoted by X_{∞} .

We assume that a family of processes $X \subseteq \mathbb{D}_+$ is given such that its elements are interpreted as wealth processes corresponding to all possible investment strategies, with a unit initial capital. If an investor has an initial capital $x > 0$, then the wealth processes corresponding to his different strategies form the family $\mathcal{X}(x) = x\mathcal{X}$.

Assumption 4 (on a family of wealth processes): the set $X \subseteq \mathbb{D}_+$ is convex, $X_0 = 1$ for any process $X \in \mathcal{X}, 1 \in \mathcal{X}$, and there P-a.s. exists a finite limit $\lim_{t\to\infty} X_t$ for any $X \in \mathcal{X}$.

We set $\mathcal{A}=\{X_\infty:X\in\mathcal{X}\}.$ If \mathcal{X} satisfies Assumption 4, then \mathcal{A} satisfies Assumption 3 and $\mathcal{A}\subseteq L^0_+.$ We define \mathcal{D} by (1).

Definition 2. A process $Y \in \mathbb{D}_+$ is called the *supermartingale density* for the class of processes \mathcal{X} if $Y_0 = 1$ and YX is a P-supermartingale for any $X \in \mathcal{X}$.

The class of all supermartingale densities is denoted by \mathcal{Y} ; let $\widetilde{\mathcal{D}} := \{Y_{\infty} : Y \in \mathcal{Y}\}\$.

The next lemma is standard.

Lemma 2. *The set* $\widetilde{\mathcal{D}}$ *is convex,* $\widetilde{\mathcal{D}} \subseteq \mathcal{D}$ *, and* $\overline{\widetilde{\mathcal{D}}}_+^0 \subseteq \widetilde{\mathcal{D}} - L_+^0$ *.*

MOSCOW UNIVERSITY MATHEMATICS BULLETIN Vol. 77 No. 1 2022

Proof of Lemma 2. The convexity of $\overline{\mathcal{D}}$ is obvious. If $Y \in \mathcal{Y}$, then, for any process $X \in \mathcal{X}$, due to Fatou's lemma and the supermartingale property, we have

$$
\mathsf{E} Y_{\infty} X_{\infty} \leq \lim_{t \to \infty} \mathsf{E} Y_t X_t \leq \mathsf{E} Y_0 X_0 = 1;
$$

therefore, $Y_{\infty} \in \mathcal{D}$.

Let now a sequence (Y^n) of Y be given, and let Y^n_{∞} converge P-a.s. to η . By Lemma 5.2 of [6], there are a sequence $Z^n \in \text{conv}(Y^n, Y^{n+1}, \ldots)$ and a supermartingale Z with $Z_0 \leq 1$ such that Z^n are *Fatou convergent* on a countable everywhere dense subset of \mathbb{R}_+ (we refer the reader to the mentioned paper [6] for the definition of Fatou convergence); in this case, we can assume that $Z_\infty^n \to Z_\infty$ P-a.s. (by a deterministic change of time, we can reduce the processes Yⁿ to [0, 1) and continue them to [1, ∞) by Y_∞^n). Since XZ^n are Fatou convergent to XZ for $X\in\mathbb{D}_+$ and the Fatou convergence retains the supermartingale property, the process XZ is a supermartingale for any $X \in \mathcal{X}$. Since it is obvious that $\xi = Z_\infty$, it remains to note that, in the case $0 < Z_0 \leq 1$, we have $Z/Z_0 \in \mathcal{Y}$ and the quantity Z_∞/Z_0 majorizes ξ , and the case $Z_0 = 0$ is trivial.

Recall that we are interested in the following question: under what assumptions the set $\mathcal Y$ is nonempty and conditions (i)–(iv) of Lemma 1 are satisfied for $\tilde{\mathcal{D}}$, i.e., when the solution of the robust utility maximization problem (2) satisfies equalities (4) and (5) with the dual function v , in the definition (3) of which the set ${Y_\infty : Y \in \mathcal{Y}}$ stands instead of the set \mathcal{D} ?

Definition 3. A family $X \subseteq \mathbb{D}_+$ is called *forked* if, for any $X^i \in \mathcal{X} \cap \mathbb{D}_{++}$, $i = 1, 2, 3$, for any $s \geq 0$ and every $B \in \mathcal{F}_s$, the process

$$
X_t = X_t^1 \mathbb{1}_{\{t < s\}} + X_s^1 \left(\mathbb{1}_B \frac{X_t^2}{X_s^2} + \mathbb{1}_{\Omega \setminus B} \frac{X_t^3}{X_s^3} \right) \mathbb{1}_{\{t \ge s\}}
$$

belongs to \mathcal{X} .

This definition is very close to the definition of the *fork-convex* family (see [7]), in which $\mathbb{1}_B$ and $\mathbb{1}_{\Omega\setminus B}$ are replaced by h and $1 - h$, respectively, where h is a \mathcal{F}_s -measurable random variable with values in [0, 1]. Even when combined with convexity, our forking property is rather weaker than the property of fork-convexity.

Obviously, for any family $\mathcal{X} \in \mathbb{D}_+$ there is the smallest forked family containing \mathcal{X} , which we denote by fork (\mathcal{X}) .

Theorem. *Suppose that Assumption* 4 *holds true,* $A = \{X_\infty : X \in \mathcal{X}\}\$, $D \neq \{0\}$, *where the set* D is defined in (1), and $\mathcal{D} := \{Y_\infty : Y \in \mathcal{Y}\}\$. In order that the set \mathcal{D} be nonempty and conditions (i)–(iv) *of Lemma* 1 *hold for it, it is necessary and sufficient that*

$$
\{X_{\infty} : X \in \text{fork}(\mathcal{X})\} \subseteq \overline{\mathcal{C}}_{+}^{0}.
$$
\n
$$
(7)
$$

Proof. It is easier to prove necessity than sufficiency. Assume

 $\mathcal{X}_0 := \text{fork}(\mathcal{X}) \cap \{X \in \mathbb{D}_+ : XY \text{ is a supermartingale for any } Y \in \mathcal{Y}\}.$

It is easy to verify that the set \mathcal{X}_0 is forked. Hence, $\mathcal{X}_0 = \text{fork}(\mathcal{X})$ and the process XY is a supermartingale for any $X \in$ fork (X) and $Y \in \mathcal{Y}$.

We take $X \in \text{fork}(X)$ and let $\eta \in \mathcal{D}$. By condition (i) of Lemma 1, there exists a process $Y \in \mathcal{Y}$ such that $Y_{\infty} \geqslant \eta$. Then

$$
\mathsf{E} X_\infty \eta \leqslant \mathsf{E} X_\infty Y_\infty \leqslant \mathsf{E} X_0 Y_0 = 1,
$$

i.e., $X_{\infty} \in \mathcal{D}^{\circ} = \overline{\mathcal{C}}_{+}^{0}$.

Let us prove the sufficiency of condition (7). Take an arbitrary variable $\eta \in \mathcal{D}$, $\eta \neq 0$. We have $EX_{\infty} \eta \leq 1$ for any process $X \in$ fork (X) . For $t \in \mathbb{R}_+$, we define a random variable Y_t by the equality

$$
Y_t = \operatorname*{ess\ sup}_{X \in \text{fork}(\mathcal{X}) \cap \mathbb{D}_{++}} \frac{\mathsf{E}(\eta X_{\infty} | \mathcal{F}_t)}{X_t}.
$$

Further, the proof of Lemma 4 from [8] is repeated almost verbatim, which requires only forking but not fork-convexity of the set $\mathcal{X}_{>} := \text{fork}(\mathcal{X}) \cap \mathcal{D}_{++}$. We first prove that, for each $t \in \mathbb{R}_+$, there is a sequence (X^n) of $\mathcal{X}_{>}$ such that the random variables $\frac{\mathsf{E}(\eta X_\infty^n|\mathcal{F}_t)}{\mathbf{X}_n}$ $\overline{X_t^n}$ are monotonically increasing towards Y_t . Then we verify the supermartingale property of the process $Y X$ for any process $X \in \mathcal{X}_{>}$. Finally, we

check that the mathematical expectation EY_t is right-continuous. This implies that the process Y has a modification from \mathbb{D}_+ , which we denote by Y from now on.

Let now $X \in \mathcal{X}$. Then, for any positive integer n, the process $X^n := (1 - 1/n)X + 1/n$ belongs to $\mathcal{X} \cap \mathcal{X}_>$; therefore, X^nY is a supermartingale. Whence it follows in an elementary way that \overline{XY} is a supermartingale. Obviously, $Y_t \geqslant E(\eta|\mathcal{F}_t)$ for every t, which implies $Y_\infty \geqslant \eta$. On the other hand, $Y_0 = \sup_{X \in \mathcal{X}_{>}} \mathsf{E} \eta X_\infty \leq 1$. Therefore, $Z := Y/Y_0 \in \mathcal{D}$ and $Z_\infty \geq \eta$.

As a corollary, we obtain a slight generalization of the result of Rokhlin (see [7]), where a fork-convex family of random processes was considered.

Corollary. Let $W \subseteq \mathbb{D}_+$ be a convex and forked family of random processes, $1 \in W$, and let $X_0 = 1$ *for any process* $X \in \mathcal{W}$. The *following conditions are equivalent*:

(i) *The set* $\{X_t : X \in \mathcal{W}, t \in \mathbb{R}_+\}$ *is bounded in probability.*

(ii) *There exists a supermartingale density* Y *for the family* W with $P(Y_\infty > 0) = 1$.

Proof. The implication (ii) \Rightarrow (i) is elementary and can be proved in the same way as in [7]. Let us prove (i) \Rightarrow (ii). To this end, we introduce a family of processes

$$
\mathcal{X} := \{ X^t : X \in \mathcal{W}, t \in \mathbb{R}_+ \},\
$$

where X^t denotes the process stopped at time $t:~X_s^t=X_{s\wedge t}.$ Since the family ${\cal W}$ is forked and $1\in{\cal W},$ we have $\mathcal{X}\subseteq\mathcal{W}.$ It is obvious that the family \mathcal{X} satisfies Assumption 4 and is forked.

Condition (i) means that the set $A = \{X_\infty : X \in \mathcal{X}\}\$ is bounded in probability. By Yan's theorem [9, Theorem 1], there exists $\eta \in L_+^{\infty}$ with $P(\eta > 0) = 1$ and $\sup_{X \in \mathcal{X}} E\eta X_{\infty} \leq 1$. The theorem implies the existence of a supermartingale density Y for the family $\mathcal X$ with $Y_\infty\geqslant\eta.$ But it can be easily seen that Y is a supermartingale density for the family W as well.

CONFLICT OF INTEREST

The author declares that she has no conflicts of interest.

REFERENCES

- 1. H. Follmer and A. Schied, *Stochastic Finance: An Introduction in Discrete Time* De Gruyter Textbook, vol. 27 (De Gruyter, Berlin, 2002). https://doi.org/10.1515/9783110463453
- 2. A. A. Gushchin, "On an extension of the notion of f-divergence," Theory Probab. Its Appl. **52**, 439–455 (2007). https://doi.org/10.1137/S0040585X97983134
- 3. A. A. Gushchin, "Dual characterization of the value function in the robust utility maximization problem," Theory Probab. Its Appl. **55**, 611–630 (2010). https://doi.org/10.1137/S0040585X9798508X
- 4. D. Kramkov and W. Schachermayer, "The asymptotic elasticity of utility functions and optimal investment in incomplete markets," Ann. Appl. Probab. **9**, 904–950 (1999). https://doi.org/10.1214/aoap/1029962818

26 FARVAZOVA

- 5. W. Brannath and W. Schachermayer, "A bipolar theorem for $L^0_+(\Omega,\mathcal{F},\mathbb{P})$," in *Seminaire de Probabilites XXXIII*, Ed. by J. Azema, M. Emery, M. Ledoux, and M. Yor, Lecture Notes in Mathematics, vol. 1709 (Springer, Berlin, 1999), pp. 349–354. https://doi.org/10.1007/BFb0096525
- 6. H. Follmer and D. Kramkov, "Optional decompositions under constraints," Probab. Theory Relat. Fields **109**, 1–25 (1997). https://doi.org/10.1007/s004400050122
- 7. D. B. Rokhlin, "On the existence of an equivalent supermartingale density for a fork-convex family of stochastic processes," Math. Notes **87**, 556–563 (2010). https://doi.org/10.1134/S0001434610030338
- 8. G. A. Žitković, "A filtered version of the bipolar theorem of Brannath and Schachermayer," J. Theor. Probab. **15**, 41–61 (2002). https://doi.org/10.1023/A:1013885121598
- 9. J. A. Yan, "Caracterisation d'une classe d'ensembles convexes de L¹ ou H¹," in *Seminaire de Probabilites XIV*, Ed. by J. Azema and M. Yor, Lecture Notes in Mathematics, vol. 784 (Springer, Berlin, 1980), pp. 220– 222. https://doi.org/10.1007/BFb0089488

Translated by I. Tselishcheva