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Abstract—We consider a dual description of the optimal value of robust utility in the abstract
financial market model (Ω,F ,P,A(x)), where A(x) = xA, x � 0, is the set of the investor’s terminal
capitals corresponding to strategies with the initial capital x. The main result of the paper addresses
the question of the transition in the definition of the dual problem from the polar of the set A to a
narrower set of limit values of supermartingale densities.
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1. INTRODUCTION
In this paper, as a robust utility maximization problem with a penalty function, we mean the problem

of maximizing the functional

ξ � inf
Q∈Q

(
EQU(ξ) + γ(Q)

)
, ξ ∈ A,

over some convex set A of random variables defined on a probability space (Ω,F ,P).
Assumption 1 (on a utility function): U : R → [−∞,+∞) is a monotonically nondecreasing

concave function such that U(x) = −∞ for x < 0 and U(x) ∈ R for x > 0.
Let Q be some convex set of probability measures on (Ω,F), and let the penalty function γ be convex

(see [1]).
We introduce the function V conjugate to U by the relation

V (y) = sup
x>0

(
U(x)− xy

)
, y ∈ R.

For a function f : X → R ∪ {+∞}, the effective set dom f is defined as

dom f := {x ∈ X : f(x) < +∞}.
By Assumption 1, domV ⊆ R+, the function V is not monotonically increasing, and

lim
y→+∞

V (y)

y
= 0.

By the standard utility maximization problem we mean the case where Q = {P}.
Denote by ba the space of bounded finitely additive set functions μ : F → R such that

A ∈ F , P(A) = 0 ⇒ μ(A) = 0,

with the total variation norm. It is well known that ba is dual to the space L∞, and the duality is given
by the relation

〈ξ, μ〉 := μ(ξ) :=

∫

Ω

ξdμ, μ ∈ ba, ξ ∈ L∞.
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A subspace of the space ba consisting of countably additive measures is denoted by ca. For μ ∈ ba,
there exists a unique decomposition μ = μr + μs into a countably additive measure μr ∈ ca and a purely
finitely additive set function μs ∈ ba. The space ca is naturally identified with L1 by the relations ξ ∈ L1

and ξ � ξ · P ∈ ca, where ξ · P is a measure with density ξ in P.

The proof of the results of this paper uses the notion of f-divergence. Let us give its formal definition.
Let f : R → R∪{+∞} be a proper, lower semicontinuous and convex function with dom f ⊆ R+. In [2],
Gushchin gave a definition of the f-divergence Jf (μ, ν) of finitely additive functions μ and ν given on
(Ω,F). For μ, ν ∈ ba, this definition is equivalent to the following:

Jf (μ, ν) = sup
ξ, η∈L∞ : η+f∗(ξ)�0

(
μ(ξ) + ν(η)

)
,

where f∗ is the Fenchel transform of the function f . It follows from the definition that the function
Jf (μ, ν) on ba× ba takes values in R ∪ {+∞} and is convex and lower semicontinuous in the topology
σ(ba× ba, L∞ × L∞). The properties used in this paper were proved in [2, Theorem 1].

It will be convenient for us to extend the domain of the penalty function γ to the space ba by setting it
equal to +∞ outside Q. Then Q is characterized as the effective domain domγ.

Assumption 2 (on a penalty function): γ : ba → R∪ {+∞} is a proper convex function such that
dom γ =: Q is a subset of the set of all probability measures on (Ω,F), infQ∈Q γ(Q) � 0, and the set

{dQ/dP : Q ∈ Q, γ(Q) � c}

is closed in L1 and uniformly integrable with respect to P for any c � 0.

Denote by L0 the space of P-a.s. equivalence classes of equal random variables with real values.
When we speak of random variables, we mean the equivalence classes that they generate.

Assumption 3 (on the set of terminal wealths): A is a convex subset L0 containing a random
variable ξ0 � κ for some κ > 0.

The cone of nonnegative random variables is denoted by L0
+. We define

D := {η ∈ L0
+ : EPηξ � 1 for any ξ ∈ A}. (1)

It is clear that D ⊆ L1
+ since EPη � κ

−1 for any η ∈ D. For x > 0 and y � 0, we put

A(x) := xA, D(y) := yD.

We define primal and dual optimization problems:

u(x) := sup
ξ∈A(x)

inf
Q∈L

(
EQU(ξ) + γ(Q)

)
, x > 0; (2)

v(y) := inf
η∈D(y),Q∈L

(
EQV

(
η

dQ/dP

)
+ γ(Q)

)
, y � 0. (3)

We have the equalities (see [3]):

u(x) = min
y�0

(
v(y) + xy

)
, x > 0; (4)

v(y) = sup
x>0

(
u(x)− xy

)
, y � 0. (5)

The main result of this paper is new and answers the question: when the set D defined in (1) can
be replaced by a convex set D̃ ⊆ D in the definition of the dual function v (see (3))? This situation is
considered in abstract form in Lemma 1 and in a more concrete form in Theorem 1. A similar result for
the nonrobust case was obtained in the joint work of Kramkov and Schachermayer (see [4]).
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2. AUXILIARY RESULTS

Given a probability measure Q 
 P, we define the functions

vQ(y) := inf
η∈D

EQV

(
yη

dQ/dP

)
, y � 0;

ṽQ(y) := inf
η∈ ˜D

EQV

(
yη

dQ/dP

)
, y � 0.

It can be seen from (3) that it suffices to consider whether or not the functions vQ and ṽQ coincide.

Definition 1. For a set E ⊆ L0
+, we define its polar E◦ by

E◦ := {ξ ∈ L0
+ : EPηξ � 1 for any η ∈ E}.

Using these terms, the definition of the set D in (1), in which A can be replaced by C+ := (A−L0
+)∩

L∞
+ , is written as D = C◦

+; C0
+ denotes the closure of the set C+ in L0.

Lemma 1. Suppose that the set A satisfies Assumption 3, A ⊆ L0
+, the set D is defined in (1)

and D̃ ⊆ D, and the set D̃ is convex and not empty. We introduce the following conditions:

(i) For any η ∈ D, there exists η̃ ∈ D̃ such that η � η̃.
(ii) vQ(y) = ṽQ(y) for all Q 
 P and y � 0 for any function U satisfying Assumption 1.

(iii) vQ(y) = ṽQ(y) for all Q 
 P and y � 0 for some strictly increasing function U satisfying
Assumption 1.

(iv) For any f ∈ L0
+,

sup
g∈D

Efg = sup
g∈ ˜D

Efg.

Then (i) ⇒ (ii) ⇒ (iii) ⇒ (iv). If the closure D̃
0

+ of the set D̃ in L0 lies in D̃ −L0
+, then all four

conditions are equivalent.

Remark 1. We have D◦ =
(
C◦
+

)◦. As is easily seen, condition (iv) of Lemma 1 is equivalent to the fact

that D◦ = D̃◦. On the other hand, since C is convex and solid, the Brannath–Schachermayer bipolar
theorem [5] states that

(
C◦
+

)◦ coincides with the closure C0
+ of the set C+ in L0.

Proof of Lemma 1. The implications (i) ⇒ (ii) ⇒ (iii) are obvious. Suppose that condition (iii)
holds, while condition (iv) is not satisfied. Then there are f ∈ L0

+ and η ∈ D such that

Efη > sup
g∈ ˜D

Efg. (6)

Cutting off f and η from above, we can consider that f and η are bounded, and, adding a small constant
to f (recall that Eg � κ

−1 for any g ∈ D ⊇ D̃), we have f � ε > 0. Let us now set q = yη/U
′
+(f), where

y > 0 is chosen from the normalization condition Eq = 1, and Q = q · P. Note that here U
′
+ is the right

derivative of the utility function U . It exists since, by Assumption 1, the utility function never goes to
infinity on the positive semiaxis R+. Note that P and Q are probability measures, i.e., countably additive
measures: P = Pr, Q = Qr, and Ps = Qs = 0. We have [2, Theorem 1]

EQV

(
yg

dQ/dP

)
= EQV

(
yg

dP/dP
dQ/dP

)
=

[
JV

(
0, 0

)
= 0

]
= JV

(
(yg) · P,Q

)
+ JV

(
0, 0

)

= JV

(
(yg) · Pr,Qr

)
+ JV

(
(yg) · Ps,Qs

)
= JV

(
(yg) · P,Q

)
= sup

ξ∈L∞:U(ξ)∈L∞

(
EQU(ξ)− yEgξ

)
.

Note that here JV is the V -divergence. The last equality follows from the definition of the V -divergence
in terms of mathematical expectation.
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Note that, for g = η, the upper bound is attained on f :

EQU(ξ)− yEηξ = yEη
(

U(ξ)

U
′
+(f)

− ξ

)
� yEη

(
U(f)

U
′
+(f)

− f

)
,

the inequality follows from the concavity of U , since the local maximum is global for a concave function.
Therefore,

EQV

(
yη

dQ/dP

)
= EQU(f)− yEηf,

while

EQV

(
yg

dQ/dP

)
� EQU(f)− yEgf.

Hence,

vQ(y) � EQV

(
yη

dQ/dP

)
= EQU(f)− yEηf < EQU(f)− y sup

g∈ ˜D
Egf

� inf
g∈ ˜D

EQV

(
yg

dQ/dP

)
= ṽQ(y),

where the strict inequality follows from (6). We come to the required contradiction.

Let now D̃
0

+ ⊆ D̃ − L0
+, and let condition (iv) hold. It follows from Remark 1 that (iv) implies

D =
(
D̃◦)◦. On the other hand, since the set D̃ is convex and bounded in L1, standard arguments

based on the transition to convex combinations show that the set (D̃ − L0
+) ∩ L0

+ is closed in L0 and,
consequently, there is the smallest subset of L0

+ containing D̃ that is convex, solid and closed in L0.
By the Brannath–Schachermayer bipolar theorem [5],

(
D̃◦)◦ = (D̃ − L0

+) ∩ L0
+. Thus, condition (i) is

satisfied.

3. MAIN RESULTS

Assume that the probability space (Ω,F ,P) is endowed with a filtration F = (Ft)t�0 satisfying the
usual conditions. We have F = σ(∪t�0Ft) and F0 contains only sets of P-measure 0 or 1. We denote
by D the set of real consistent random processes X = (Xt)t�0 whose trajectories are continuous on the
right and have finite limits on the left; let D+ = {X ∈ D : X � 0} and D++ = {X ∈ D : P(inftXt >
0) = 1}. If X ∈ D and there P-a.s. exists a finite limit limt→∞Xt, then the element L0 corresponding to
this limit is denoted by X∞.

We assume that a family of processes X ⊆ D+ is given such that its elements are interpreted as
wealth processes corresponding to all possible investment strategies, with a unit initial capital. If an
investor has an initial capital x > 0, then the wealth processes corresponding to his different strategies
form the family X (x) = xX .

Assumption 4 (on a family of wealth processes): the set X ⊆ D+ is convex, X0 = 1 for any
process X ∈ X , 1 ∈ X , and there P-a.s. exists a finite limit limt→∞Xt for any X ∈ X .

We set A = {X∞ : X ∈ X}. IfX satisfies Assumption 4, thenA satisfies Assumption 3 and A ⊆ L0
+.

We define D by (1).
Definition 2. A process Y ∈ D+ is called the supermartingale density for the class of processes X

if Y0 = 1 and Y X is a P-supermartingale for any X ∈ X .

The class of all supermartingale densities is denoted by Y ; let D̃ := {Y∞ : Y ∈ Y}.
The next lemma is standard.

Lemma 2. The set D̃ is convex, D̃ ⊆ D, and D̃
0

+ ⊆ D̃ − L0
+.
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Proof of Lemma 2. The convexity of D̃ is obvious. If Y ∈ Y , then, for any process X ∈ X , due to
Fatou’s lemma and the supermartingale property, we have

EY∞X∞ � lim
t→∞

EYtXt � EY0X0 = 1;

therefore, Y∞ ∈ D.

Let now a sequence (Y n) of Y be given, and let Y n
∞ converge P-a.s. to η. By Lemma 5.2 of [6],

there are a sequence Zn ∈ conv(Y n, Y n+1, . . .) and a supermartingale Z with Z0 � 1 such that Zn are
Fatou convergent on a countable everywhere dense subset of R+ (we refer the reader to the mentioned
paper [6] for the definition of Fatou convergence); in this case, we can assume that Zn

∞ → Z∞ P-a.s.
(by a deterministic change of time, we can reduce the processes Y n to [0, 1) and continue them to [1,∞)
by Y n

∞). Since XZn are Fatou convergent to XZ for X ∈ D+ and the Fatou convergence retains the
supermartingale property, the process XZ is a supermartingale for any X ∈ X . Since it is obvious that
ξ = Z∞, it remains to note that, in the case 0 < Z0 � 1, we have Z/Z0 ∈ Y and the quantity Z∞/Z0

majorizes ξ, and the case Z0 = 0 is trivial.

Recall that we are interested in the following question: under what assumptions the setY is nonempty
and conditions (i)–(iv) of Lemma 1 are satisfied for D̃, i.e., when the solution of the robust utility
maximization problem (2) satisfies equalities (4) and (5) with the dual function v, in the definition (3)
of which the set {Y∞ : Y ∈ Y} stands instead of the set D?

Definition 3. A family X ⊆ D+ is called forked if, for any Xi ∈ X ∩ D++, i = 1, 2, 3, for any s � 0
and every B ∈ Fs, the process

Xt = X1
t 1l{t<s} +X1

s

(
1lB

X2
t

X2
s

+ 1lΩ\B
X3

t

X3
s

)
1l{t�s}

belongs to X .

This definition is very close to the definition of the fork-convex family (see [7]), in which 1lB and 1lΩ\B
are replaced by h and 1− h, respectively, where h is a Fs-measurable random variable with values in
[0, 1]. Even when combined with convexity, our forking property is rather weaker than the property of
fork-convexity.

Obviously, for any family X ∈ D+ there is the smallest forked family containing X , which we denote
by fork(X ).

Theorem. Suppose that Assumption 4 holds true, A = {X∞ : X ∈ X}, D = {0}, where the set

D is defined in (1), and D̃ := {Y∞ : Y ∈ Y}. In order that the set D̃ be nonempty and conditions
(i)–(iv) of Lemma 1 hold for it, it is necessary and sufficient that

{X∞ : X ∈ fork(X )} ⊆ C0
+. (7)

Proof. It is easier to prove necessity than sufficiency. Assume

X0 := fork(X ) ∩ {X ∈ D+ : XY is a supermartingale for any Y ∈ Y}.

It is easy to verify that the set X0 is forked. Hence, X0 = fork(X ) and the process XY is a supermartin-
gale for any X ∈ fork(X ) and Y ∈ Y .
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We take X ∈ fork(X ) and let η ∈ D. By condition (i) of Lemma 1, there exists a process Y ∈ Y such
that Y∞ � η. Then

EX∞η � EX∞Y∞ � EX0Y0 = 1,

i.e., X∞ ∈ D◦ = C0
+.

Let us prove the sufficiency of condition (7). Take an arbitrary variable η ∈ D, η = 0. We have
EX∞η � 1 for any process X ∈ fork(X ). For t ∈ R+, we define a random variable Yt by the equality

Yt = ess sup
X∈fork(X )∩D++

E(ηX∞|Ft)

Xt
.

Further, the proof of Lemma 4 from [8] is repeated almost verbatim, which requires only forking but
not fork-convexity of the set X> := fork(X ) ∩ D++. We first prove that, for each t ∈ R+, there is a

sequence (Xn) of X> such that the random variables
E(ηXn

∞|Ft)

Xn
t

are monotonically increasing towards

Yt. Then we verify the supermartingale property of the process Y X for any process X ∈ X>. Finally, we
check that the mathematical expectation EYt is right-continuous. This implies that the process Y has a
modification from D+, which we denote by Y from now on.

Let now X ∈ X . Then, for any positive integer n, the process Xn := (1− 1/n)X + 1/n belongs
to X ∩ X>; therefore, XnY is a supermartingale. Whence it follows in an elementary way that XY
is a supermartingale. Obviously, Yt � E(η|Ft) for every t, which implies Y∞ � η. On the other hand,
Y0 = supX∈X>

EηX∞ � 1. Therefore, Z := Y/Y0 ∈ D and Z∞ � η.

As a corollary, we obtain a slight generalization of the result of Rokhlin (see [7]), where a fork-convex
family of random processes was considered.

Corollary. Let W ⊆ D+ be a convex and forked family of random processes, 1 ∈ W , and let
X0 = 1 for any process X ∈ W. The following conditions are equivalent:

(i) The set {Xt : X ∈ W, t ∈ R+} is bounded in probability.
(ii) There exists a supermartingale density Y for the family W with P(Y∞ > 0) = 1.

Proof. The implication (ii) ⇒ (i) is elementary and can be proved in the same way as in [7]. Let us
prove (i) ⇒ (ii). To this end, we introduce a family of processes

X := {Xt : X ∈ W, t ∈ R+},

where Xt denotes the process stopped at time t : Xt
s = Xs∧t. Since the family W is forked and 1 ∈ W ,

we have X ⊆ W . It is obvious that the family X satisfies Assumption 4 and is forked.
Condition (i) means that the set A = {X∞ : X ∈ X} is bounded in probability. By Yan’s theorem [9,

Theorem 1], there exists η ∈ L∞
+ with P(η > 0) = 1 and supX∈X EηX∞ � 1. The theorem implies the

existence of a supermartingale density Y for the family X with Y∞ � η. But it can be easily seen that Y
is a supermartingale density for the family W as well.
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