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Abstract It is shown that central exponents of a local diffeomorphism of a Riemannian manifold
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Let n € N and M be an n dimensional differentiable manifold of class C'' with a countable base where
a Riemannian metrics § (of class C°) be given Thus, for each € M the tangent space T, M to M at the
point z is endowed with the norm || = \/5(§, £), & €T, M. By TM we denote the variety of tangent vectors
to the manifold M, and by df: TM — TM we denote the derivative (differential) of a smooth mapping
f: M — M. By S we denote the set of all mappings M — M of class C' whose derivative is not degenerate
at each point x € M.

Since we do not require on M any boundedness of derivatives of considered mappings, the values defined
below are points of extended number axis R = R U {—o0,+o0}, which we endow with the standard order
and order topology

Define the characteristic indicator of a tangent vector £ € TM under a mapping f € S by the equality
1]

lim m~'In|df™¢| for |€] # 0,

)\ , — m——+00
(£:4) {—oo for [£] = 0.

Lyapunov’s exponents of a mapping f € S at a point z € M are defined by the equalities [1]

Ai ) = inf A 'S )y .:]—a"'v s
(f;2) R (f,€), i n

where G4(z) is the set of all ¢ dimensional vector subspaces of the tangent space T, M.

Further, for all f € S,z € M, and i = 1,...,n assume E;(f,z) = {§{ € T.M : X(f,€) < Xi(f,z)}. Tt is
well known and easily proved that F;(f,x) is a vector subspace of the space T, M [2]

Central exponents of a mapping f € S at a point € M are defined by the equalities [1]

i N RS .
Q@O (f,2) = inf lim mT;h’ldeT|df(k—1)TEi(f7,qg)||7 1=1,...,n,

where Y|, is the restriction of the mapping Y onto the subspace L and the norm of the linear mapping of
normed spaces is defined in the standard way (as the maximum of the norm of the image of the normed
vector)

Remark 1. In the case of compact manifold M the values introduced above are finite and do not depend
on the choice of Riemannian metrics on M (since any two Riemannian metrics on a compact manifold are
equivalent)

We endow the space S with the C'! compact open topology Recall its definition [3, §2 1] Let f € S and
(p,U), (¢,V) be maps of the manifold M. Further, let K C U be a (not empty) compactum such that
f(K) C V. For each € > 0, define the set

K(f; (@, U), (4, V), K, €) (1)
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as the set of g € S such that g(K) C V and the following inequalities hold:

max |(¥fe ) (x) = (Pge~ )(z)| <&, max [[(¥fe7!) (x) — (bgp™ ) (2)]| <,
z€p(K) z€p(K)
where | - | is the Euclidean norm on the space R™ and || - || is the corresponding operator norm Since

the functions ¥ fp~! and 1gp~! are determined on the open set (U Ng= (V) N f~1(V)) D »(K), the
derivatives presenting in the latter inequality have sense The function f is called the center of the set (1) A
C' compact open topology is generated by sets (1), i e, finite intersections of indicated sets form the base
of this topology

Recall the definition of Baire’s classes [4, §31 IX] of functions determined on a topological space X.
Zero Baire’s class consists of all continuous functions f: X — R. If classes with numbers less than k& have
been already defined, then the kth Baire class consists of functions f: X — R admitting the representation
f(x) = limy, 00 frm (), © € X, where the functions f,,, m € N, belong to classes with numbers less than k.

In [5], Millionshchikov formulated the problem on determination of the least Baire class containing the
function Q) and pointed out that the function Q) belongs to the second class After that, in [6], he
formulated the assertion that the functions Q) i = 1,...,n — 1, belong to the fourth class (in the case
of diffeomorphisms of a compact manifold), however, in [7], this assertion was replaced by the author by a
weaker one, namely, that those functions belong to the fifth class Proofs of assertions mentioned here were
not published

The aim of this paper is the proof of the initial conjecture of Millionshchikov that the central exponent
belongs to the fourth Baire class The problem of lover estimate of the number of Baire class remains open

Theorem. Each of functions QW : S x M — R, i € {1,...,n — 1}, belongs to fourth Baire’s class, and
the function Q™ : S x M — R belongs to the second one

Remark 2. A similar problem for Bohl exponents was considered in [8]

Preface the proof of the theorem with several lemmas It is convenient to use another, coordinate free
definition of the C' compact open topology in the space S. To do that, consider the following auxiliary
construction

Let X and Y be topological manifolds with atlases chosen on them (not necessarily maximal) Endow
the space C'(X,Y) of continuous mappings from X to Y with a C° compact open topology defined in the
following way [3, §2 1] Let f € C(X,Y) and (¢,U), (¢, V) be maps belonging to the chosen atlases of the
manifolds X and Y, respectively Further, let K C U be a compact set such that f(K) C V. For each ¢ > 0
we define the set (the function f is called its center)

N(f: (o, U), (1, V), K. ¢e) ()
as the set of g € C(X,Y) such that g(K) C V and the following inequality holds:

max (¥ fe~")(x) = (Pge~ ' )(2)] < e.
zEP(K)
Sets of form (2) form the prebase of topology on the space C'(X,Y).
The following assertion shows how to define the same topology not using coordinate maps and also proves
its independence on the choice of atlases of the manifolds X and Y.
Lemma 1. Let X and Y be topological manifolds with atlases chosen on them (not necessarily mazimal)
In this case the C° compact open topology on the space C(X,Y) given by those atlases has the prebase
consisting of the sets
v(K,£W)={feCX,Y): f(K) Cc W}, (3)
where K C X is a compactum and W C Y is an open set
Proof 1 First we prove that the topology generated by sets (3) does not change if we consider only the
compact sets K C X and open sets W C Y lying in the domain of action of one of maps from the chosen
atlases Let f € v(K,W). Since the manifolds X and Y are compact and the function f is continuous, for
each point x € K there exists its neighborhood O(z) possessing the following properties: a) f(O(z)) C W;
b) the set O(x) lies in the domain of action of one map from the given atlas of the manifold X; c) the set
f(O(x)) lies in the domain of action V(z) of one map from the given atlas of the manifold Y. Let O(x;),
i=1,...,m, be a finite covering of the compactum K. Assume K; = K N O(x;), i = 1,...,m. In this case,
FeNZ v(K,WnV(x)) Cuv(K,W).
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2 Let (p,U) and (¢, V) be maps of the manifolds X and Y, respectively Further, let f € v(K, W),
where K C U is a compact set and W C V is an open set Show that the set v(K, W) has a subset of form
(2) containing the point f Assume

d=inf{|lz —y[:z € P(f(K)), y € p(V\ W)}

Taking into account that 1 (f(K)) is a compactum not intersecting the set (V' \ W) closed with respect to
P(V), we get d > 0. In this case, f € N(f; (¢,U), (¥,V),K,d) C v(K,W).

3 Show that for any set P of form (2) and its point g there exists a set () open in the topology generated
by sets of form (3) such that g € Q C P. Let P = N(f;(p,U),(¥,V),K,e) and g € P. Assume n =
(e — max,epry (W™ )(x) — (Yget)(2)])/4. Below by B,(z) we denote the open ball with the center at
the point z and the radius r > 0 lying in the corresponding subspace Since the function 1 gy ~! is continuous,
for each x € ¢(K) there exists a ball B,.(,)(x) C ¢(U) such that (g™ ") (B, (2)) C By((Yge~')(x)). Take
a finite subcovering B, (y,)/2(x:), i = 1,...,m, from the covering of the compactum (K) by the balls
By.(z)/2(x) In this case we have

m

i=1
Assume

Q = (vl M (C), ¢ (By((ge™ ") (@) N (V).

i=

=

By construction, g € Q. Show that Q@ C P. Let h € @ and = € o(K). In this case, x € C; for some
i € {1,...,m} and (hep~')(z) € V. Thus, h(K) C V. The inclusions (he~1)(C;) C By((vgp1)(x;))
and (vgp~1)(C;) C By((¥ge1)(z;)) imply |(Yhe~1)(z) — (Yge~1)(x)] < 2n. Therefore, the inequality
|(Who~ ) (x) — (Wfe~ 1) (z)] < e — 27 is valid, which gives h € P. The lemma is proved

By m: TM — M we denote the natural projection of the tangent bundle In addition, if (p,U) is a map
of the manifold M, then by Ty: 7= 1(U) — R"™ x R™ we denote the mappings acting according to the rule
To(&) = (p(n(€)),¢'(€)), € € 7 1(U). The pair (Tp, 7 *(U)) is a map on the manifold TM called the
naturel map [3, §1 2] corresponding to the map (¢, U). The natural atlas on T'M is defined similarly

The following lemma indicates the way to define a topology on the space S not using coordinate maps
and also establishes some properties of this topology

Lemma 2. The following assertions are valid:

1) the mapping Y: S — C(TM,TM) acting by the rule Y(f) = df is a homeomorphism onto its image;

2) the function acting from S x TM to R by the rule (f,£) — |df€| is continuous;

3) for each k € N the mapping acting from S to S by the rule f — f* is continuous

Proof 1 Choose some atlas on the manifold M and the corresponding natural atlas on TM Note that
each set of form (1) contains together with each its point a set of the same form with the center at this point
(with lesser value of the parameter €) The same is true for sets of form (2) Further, the image of any set
K(f; (o,U), (1, V), K,¢e) under the mapping T contains the set N(df; (T, 7 1 (U)), (T, 7~ *(V)),%,e) N
Y(S), where ¥ = {¢ € 77 Y(K) : |¢'(&)| = 1}. The equality X = (Tp) " (p(K) x B1(0)) implies that X is
compact Therefore, the image of each open set under the mapping Y is an open set in the space Y(.5).

On the other hand, let (p,U) and (¢,V) be maps of the chosen atlas of the manifold M Further,
let a compactum = C 7 1(U), ¢ > 0, and a mapping f € S be given and df(Z) Cc 7 (V). Assume
r = 2sup{|¢’(§)| : £ € Z} + 2. Then the following inclusion holds:

T(K(f; (@, U), (@, V), 7(E),¢/r)) C N(df; (T, (U)), (T, 7~ (V)), E,e).

Above arguments imply that the preimage of any open subset of the space Y(S) under the mapping Y is an
open set in the space S. Finally, T is one to one because of f = 7w odf o O, f € S, where O is a zero vector
field on M. Thus, we have established that the mapping Y: .S — Y(S) is a homeomorphism

2 Note that the function acting from S x TM to R by the rule (f,&) — |df¢| is a composition of the
following continuous mappings: a) the direct product of the mapping Y by the identical mapping of the
space T'M; b) the calculation mapping acting from C(T'M,TM) x T M to TM by the rule (F, &) — F(£); c)
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the function | - |: TM — R. The continuity of the first of indicated mappings follows from clause 1, and for
the second one it follows from Theorem 2 4 of [9, Ch XII] Assertion 2 is proved

3 Let k € N be given Due to clause 1, it is sufficient to show that the mapping acting from C(TM,TM)
to C(TM,TM) by the rule F ~ F* is continuous The latter can be proved by induction from Theorem 2 2

of [9, Ch XII] Assertion 3 is proved The lemma is proved
Lemma 3. The spaces S, M, and T M are metrizable

Proof Any manifold is a locally compact space Due to [10, §41 X, Theorem 2], such spaces are completely
regular [4, §14 I] and, therefore [4, §14 I, Theorem 1], are regular [4, §5 X] Therefore, by Urysohn’s theorem [4,
§22 II, Theorem 1], each manifold with a countable base is metrizable In particular, each of the spaces M
and T M is metrizable The metrizability of the space .S follows from assertion 1 of Lemma 2 and Theorem 1
of [10, §44 VII] (see also [3, Theorem 4 4]) The lemma is proved

By p: SxTM — S x M we denote the direct product of the identical mapping 1g of the space S and
the natural projection 7 of the tangent bundle, i e , the mapping acting by the rule (f, &) — (f,7(£)), f € S,
EeTM.

Lemma 4. Let H C S x T'M. In this case the following assertions are valid:

1) if the set H is open, then the set p(H) is open too;

2) if the set H is of type Fy, then p(H) is also a set of type F,.

Proof 1 Let {(pi,U;)}ien be the atlas of the manifold M and (Tp;, 71 (U;))ien be the corresponding
natural atlas of its tangent bundle To prove the first assertion, it is sufficient to verify that for any ¢ € N the
restriction of the natural projection 7 to the space 7~ 1(U;) is open In fact, this restriction is a composition
of open mappings T'p;, projection of the product of ¢;(U;) x R™ on the first cofactor, and the mapping ¢; 1

2 Now let H be a set of type F,. Fix ¢ € N and show that p(H) N (S x U;) is a set of type F,. Define
the mapping 0, : ¢;(U;) x R™ — U; x R" by assuming 0;(x,v) = (¢; *(z),v) for any x € ¢;(U;) and v € R™.
In this case the mapping h; = 1g X (6; 0 Tp;): S x 7= 1(U;) — S x U; x R™ is a homeomorphism The set
H; = HN (S x 7~ 1(U;)) is a set of type F, in the space S x 7~ 1(U;), therefore, the set h;(H;) is a set of
type F, in the space S x U; x R™. Due to [10, §41 IV, Remark 2], the projection of the set h;(H;) onto the
product of first two cofactors of the product S x U; x R™ is a set of type F, in the space S x U;. Note that
this projection coincides with the set p(H;). The definition of the relative topology implies that there exists
a set P of type F, relative to the entire space S x M such that p(H;) = PN(SxU;) [4, §5 V] Since the space
S x M is metrizable (see Lemma 3), each its open subset is a set of type F,, [4, §21 IV] Thus, p(H;) is a set
of type Fy in the space S x M. The required assertion follows now from the equality p(H) = oy p(H;)-

The lemma, is proved
Lemma 5. For any r € R the set {(f,£) € S x TM : X(f,§) <} is a set of type F,.

Proof The required assertion follows from the equality (we assume In0 = —o0)
{((f, e SxTM:Af,8) <ry=J J {9 € SXxTM :In|dfm¢V/™ <r— '}, reR.
kEN jEN m>k

In fact, the functions acting from S x TM to R by the rule (f,£) — In |df™¢|'/™, m € N, are continuous
due to assertions 2 and 3 of Lemma 2, therefore, the sets under the sign of intersection are closed as well as
the result of intersection The lemma, is proved

Proof of the theorem 1 By (T'M). we denote the subset of tangent bundle TM obtained from it by
throwing out the zero vector in each layer Fix arbitrary k, 7 € N and define the function ¢*7: S x (T M), —
R by the equality

9" (f,) = 1dfFTEl - |dfITE T fe S, Ee (TM)..

Due to assertions 2 and 3 of Lemma 2, the function ¢*7 is continuous
Fix i € {1,...,n — 1} and for each j € N define the function hi’f: S x M — R by the equality

Wol(fe)y= sup  g"T(f€), feS, zel,
EEE; j(f,z)\{0}

where E; ;(f,z) = {& € Tu.M : ®(\(f,€)) < ®(Ni(f,z)) + '}, and ®: R — [—1,1] is the increasing

homeomorphism
B(x) = { ol forz €R,

sgnr for x = fo0.
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Fix arbitrary 7 € R and show that the set CfJTT ={(f,x) € SxM: hij(f, x) > r} is a set of
type Gso. Assume GET = {(f,€) € S x (TM), : g*T(f,&) > r}. Moreover, for each ¢ € Q assume
Ag ={(f,6) € S xTM : ®(\(f,€)) < q}, By ={(f,x) € S x M : ®(\;(f,2z)) +j' > ¢q}. In this case the
following representation is valid:
il = JpGET N A) N By (4)
q€Q

Due to the continuity of the function ¢®7, the set G®7 is open in the metrizable (by Lemma 3) space S x TM
and hence it is a set of type F,, [4, §21 IV] Due to Lemma 5, the set A, is also a set of type F,. Therefore,
their intersection possesses the same property and hence, by Lemma 4, its image under the mapping p does
too Each set of type F,, in the metrizable (due to Lemma 3) space S x M is a set of type Gs, [4, §21 IV]
According to the result of [11], the function A;: S x M — R belongs to the second Baire class Therefore,
Bé’j is also a set of type G5, [12, §39 2] Thus, the sets standing in (4) under the sign of countable union are
sets of type G, as well as the results of this union

2 Define the functions sy, 1, 01,75, and ng?j, m,T,1,7 € N, from S x M to R by the equalities (f € S,
x €M)

1 - 7 .
Sm,TJ('ﬂ .13) = Zln hi]T(f7 .13), Ul,T,j(fa Z‘) = Su>pl Sm,T,j(fa Z‘), Q’(T,)j(,ﬂ .13) = llglg Ul,T,j(f7 .13) (5)

m

1

QP (fix) = lim kz_l W | dfT | yyevr,rals €S, €M,
and show that 4 ,
O (f.2) = nf OF)(f.2), feS, weM ©)
inf Q)

FixT > 0, f € S,and z € M. Note that for any j, k € N the definition of the function hi’jT implies the equality
hi’f(f, x) = ||dfT|df(k—l)TEi‘j(f’m)||. Further, for each j € N we have the inclusion E;(f,z) C E; ;(f,z), and
for certain j, € N it turns to equality because the set of values of the restriction of the function A onto
the tangent space T, M is finite [2] Finally, due to the definition of the upper limit we have the equality
ng)j (fa {E) = limp, 500 Sm,TJ(fa {E)

3 According to paragraph 1, for each of functions In hij, J,k, T € N, the preimage of each ray (r, o],
r € Ris the set of type Gs,, therefore, due to [12, §37 1 I], their sums s,, 7 ; possess the same property as well
as the functions o7, m,T,l,j € N. The equality [r, o0] = (,cy(7 — 1/5, 00] and properties of the preimage
of a set imply that the preimage of any ray [r,o0] is a set of type Gs,s for each of the functions oy 7 ;,
[,T,57 € N Due to the theorem [12, §39 2], these functions belong to the third Baire class The definition of
central exponents and equalities (5), (6) imply the representation

(4) - .
Q (f) Z‘) - (l,Tl,lj"l)fEN3 Ul,T,j (f7 J?), f E Sa X E M

Rewriting it in the form

(1) — . . .
Qv (f, ) kgngolﬂmﬁ?gkaz,ng(fw)’ fes, xeM,

we get that the function Q) is a limit of a nonincreasing sequence of functions of third Baire class and,
therefore, it belongs to the fourth class

4 Consider the case i = n separately Define the functions h*T, s,, 7, o117, k,l,m,T € N, from S x M
to R by the equalities (f € S, x € M)

1 m
WT(fa)=  swp  gMT(£.€), smr(fia)= > mbPT(f2), oir(f,2) = supsmr(f,2).
¢€T, M\{0} mi = m>1
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As was pointed out in paragraph 1, for each r € R the set G¥7 is open, therefore, the first assertion of
Lemma 4 implies that the set p(GFT) = {(f,z) € S x M : W*T(f,x) > r} is open too Thus, the functions
h*T are semicontinuous from below and hence the functions In 27 possess the same property as well as
their sums sy, v and the functions o7, k,m,T,l € N due to [12, §37 1 I] The definition of the upper limit
implies the chain

Q(")(f, z) = inf lim s, 7r(f,z) = lim minkal,T(f,m), fes, xzeM.

TeNm—o00 k—oo I+T<

Since each semicontinuous function belongs to the first Baire class [12, §38 I], taking into account [12, §37 II1],
we get that the function Q™) is the limit of a nonincreasing sequence of functions from the first class and
hence it belongs to the second class The theorem is proved
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