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Abstract—Asymptotics for mean values of complete rational trigonometric sums modulo a power of
a prime number are obtained. For polynomials of one variable these asymptotics are not improvable in
the degree of averaging of those sums.
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Vinogradov’s method for evaluation of Weyl’s trigonometric sums is based on the theorem on mean values

of such sums [1–6]. Here we consider a similar theorem on mean values of complete rational trigonometric
sums of the form

S(pm; f(x)) =

pm∑

x=1

e2πif(x), f(x) =
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asx
s

pms
, (as, p) = 1,ms ≤ m.

The mean value N(pm) has the form
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Assume t = max{m1, . . . ,mn}. We get
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= p2km−mn
m∑

t=0

pt−1∑

an=0

. . .

pt−1∑

a1=0

(an,...,a1,p)=1

∣∣∣∣p
−tS

(
pt;

anx
n + . . .+ a1x

pt

)∣∣∣∣
2k

= pm(2k−n)σ(pm). (1)

Write down all rational coefficients of the polynomial in the exponent of the sum as fractions with the
denominator pm. We obtain

N(pm) = p−mn

pm−1∑

an=0

. . .

pm−1∑

a1=0

∣∣∣∣S
(
pm;

g(x)

pm
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, g(x) =

n∑

s=1

asx
s,

which is equal to the number of solutions to the following system of comparisons:
⎧
⎨

⎩

x1 + . . .+ xk ≡ y1 + . . .+ yk (mod pm),
. . . . . . . . . . . .
xn
1 + . . .+ xn

k ≡ yn1 + . . .+ ynk (mod pm),

where the unknowns x1, . . . , xk, y1, . . . , yk take values from the complete system of residues modulo pm.
The following assertions are valid.
Theorem 1. Let n ≥ 2,m be natural numbers, p > n is a prime number. In this case for 2k > n(n+1)

2 +1
and m → ∞ we have

N(pm) = pm(2k−n)(σp +O(mnp((m−1)/n)(0,5n(n+1)+1−2k)),
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where

σp = 1 +

+∞∑

t=1

A(pt), A(pt) =

pt−1∑

an=0

. . .

pt−1∑

a1=0

(an,...,a1,p)=1

|p−tS(pt; (anx
n + . . .+ a1x)/p

t)|2k,

S(pt; (anx
n + . . .+ a1x)/p
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pt∑

x=1

e
2πi
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pt .

Proof. Since the series σp converges for 2k > n(n+1)
2 + 1 and

A(pt) ≤ n2k(tp)np((t−1)/n)(0,5n(n+1)+1−2k)

(see [4., p. 69]), then formula (1) implies

N(pm) = pm(2k−n)σ(pm) = pm(2k−n)(σp +O(mnp((m−1)/n)(0,5n(n+1)+1−2k))).

Theorem 1 is proved.
The assertion of the following Theorem 2 is based on the convergence of the series σ′

p for 2k > s+r+. . .+n
(see [3, p. 71, Theorem 5]).

Theorem 2. Let 1 ≤ s < r < . . . < n,m be natural numbers, the number of the numbers s, r, . . . , n
be equal to l and l < n, let p > n be a prime number, Nl(p

m) be the number of solutions to the system of
comparisons ⎧

⎪⎨

⎪⎩

xs
1 + . . .+ xs

k ≡ ys1 + . . .+ ysk (mod pm),
xr
1 + . . .+ xr

k ≡ yr1 + . . .+ yrk (mod pm),
. . . . . . . . . . . .
xn
1 + . . .+ xn

k ≡ yn1 + . . .+ ynk (mod pm),

where the unknowns x1, . . . , xk, y1, . . . , yk take values from the complete system of residues modulo pm. In
this case for 2k > s+ r + . . .+ n and m → ∞ we have

Nl(p
m) = pm(2k−l)(σ′

p +O(mnp((m−1)/n)(s+r+...+n−2k))),

σ′
p = 1 +
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s)/pt) =
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e
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Finally, formulate the mean value theorem for complete multiple rational trigonometric sums of the form

S

(
pt; r;

F (x1, . . . , xr)

pt

)
=

pt∑

x1=1

. . .

pt∑

x1=1

e
2πi

F (x1,...,xr)

pt ,

where F (x1, . . . , xr) =
n1∑

t1=0
. . .

nr∑
tr=0

a(t1, . . . , tr)x
t1
1 . . . xtr

r is a polynomial with integer coefficients, a(0, . . . , 0) =

0, and all the coefficients of the polynomial are prime in common with p. The number of coefficients of the
polynomial F (x1, . . . , xr) equals m = (n1 + 1) . . . (nr + 1).

The mean value N(ps; r) of these sums is the number of solutions to the system of comparisons

2k∑

j=1

(−1)jxt1
1,j . . . x

tr
r,j ≡ 0 (mod ps)

(0 ≤ t1 ≤ n1, . . . , 0 ≤ tr ≤ nr, t1 + . . .+ tr ≥ 1),

where the unknowns x1,j , . . . , xr,j , j = 1, . . . , 2k, take values from the complete system of residues modulo
ps.
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In this case, N(ps; r) = ps(2kr−m+1)σ(ps; r), where

σ(ps; r) =

s∑

t=0

pt−1∑

a(n1,...,nr)=0

. . .

pt−1∑

a(0,...,1)=0
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pt
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.

Assume n = max {n1, . . . , nr}. For 2k > nm the series σp(r) = lim
s→+∞

σ(ps; r) converges (see [3, p. 81,

Theorem 7]).
Theorem 3. The following asymptotic formula holds for 2k > nm and s → +∞:

N(ps; r) = p2kr−m+1(σp(r) + o(1)),

where

σp(r) =
+∞∑

t=0

pt−1∑

a(n1,...,nr)=0

. . .

pt−1∑
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∣∣∣∣p
−trS

(
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F (x1, . . . , xr)

pt

)∣∣∣∣
2k

.

Note that Theorems 1 and 2 are not improvable because the borders for the value k are the factors of
convergence for the corresponding series σp and σ′

p, the border for the value k in Theorem 3 is the best to
date because for r > 1 the exact value of the convergence factor of the series σp(r) is not found yet.
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