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Abstract—A Liouville classification of integrable Hamiltonian systems being geodesic flows on a two-
dimensional torus of revolution in an invariant potential field is obtained in the case of linear integral.
This classification is obtained using the Fomenko–Zieschang invariant (so called marked molecules)
of the systems under consideration. All types of bifurcation curves are described. A classification of
singularities of the system solutions is also obtained.
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1. INTRODUCTION

Many papers are focused on the theory of Liouville classification of integrable Hamiltonian systems
developed by A. T. Fomenko and his school, see [1]. The essence of Fomenko’s theory is that each integrable
system with two degrees of freedom restricted to a three-dimensional non-singular compact constant-energy
manifold is associated with some invariant being a graph with numeric marks at edges. By means of this
invariant called a marked molecule or a Fomenko–Zieschang invariant one can obtain a complete description
of Liouville foliation of a given system on constant-energy surfaces (up to fiberwise equivalence).

E. N. Selivanova obtained the Liouville classification of integrable geodesic flows on a torus (see [1, v. 2,
§3.1]), Nguyen Tien Zung, L. S. Polyakova, and V. S. Matveev classified integrable geodesic flows on a two-
dimensional sphere (see [1, v. 2, §3.3]). E. O. Kantonistova (see [2]) continued this study and constructed a
complete classification of integrable geodesic flows in a potential field on manifolds of revolution in the case
of linear integral.

In this paper we generalize the theorem of E. N. Selivanova. Namely, a Liouville classification of integrable
geodesic flows in a potential field on a torus is obtained in the case of linear integral. This classification is
based on calculation of Fomenko–Zieschang invariants (marked molecules) of the systems considered here
(see details in Theorems 2 and 3).

The fundamentals of the topological classification theory of integrable Hamiltonian systems and its ap-
plications to the study of mechanical systems were expounded in [3–14].

2. FORMULATION OF THE PROBLEM

Describe the problem studied and solved in this paper.
Definition 1. A manifold M with a given metric g is called a manifold of revolution or a manifold with

a metric of revolution if an effective action of the circle S1 on M by isometries is defined.
Consider a Riemannian manifold M diffeomorphic to a two-dimensional torus (M = T 2) endowed with

standard angular coordinates ϕ ∈ R/2πZ, θ ∈ R/2πZ and a metric g of the following form:

ds2 = dθ2 + f2(θ)dϕ2, (1)

where f(θ) : R/2πZ → R is a smooth positive function.
Remark. The manifold M = T 2 endowed with metric (1) is a manifold of revolution.
Consider a natural mechanical system on the cotangent bundle T ∗M of M endowed with the standard

symplectic structure ω = dp ∧ dq and a Hamiltonian function

H =
1

2
gij(q)pipj + V (q), (2)
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where q = (q1, q2) are local coordinates on M = T 2, p = (p1, p2) are the corresponding impulses. i.e.,
coordinates in T ∗

q M , and gij denote the components of the matrix inverse to the matrix g of the metric.
Assertion 1. The Hamiltonian system with Hamiltonian function (2) on a manifold of revolution M = T 2

is completely integrable in the Liouville sense for any pair of functions (f(θ), V (θ)).
Proof. The system has two first integrals, the energy integral

H =
p2θ
2

+
p2ϕ

2f2(θ)
+ V (θ)

and the additional integral K = pϕ (because ṗϕ = −∂H
∂ϕ = 0). Assertion 1 is proved.

The aim of the paper is to classify considered systems up to Liouville equivalence, in particular, to describe
all possible types of bifurcation curves, to construct rough molecules, and to calculate numeric marks on
them.

3. RESULTS OF THE PAPER

3.1. The bifurcation diagram of momentum mapping.
Assertion 2. A natural mechanical system on the manifold M = T 2 such that (f ′(θ))

2
+(V ′(θ))

2 �= 0 has

critical points (pθ, pϕ, θ, ϕ) = (0, k(θ), θ, ϕ) of rank 1, where k(θ) := ±f(θ)
√

f(θ)V ′(θ)
f ′(θ) , θ ∈ I∪{θ : V ′(θ) = 0},

ϕ ∈ R/2πZ, where I is an open subset of R/2πZ defined by the inequality V ′(θ)f ′(θ) > 0 (the set I is a
finite or countable set of pairwise non-intersecting intervals Ii = (θi1, θ

i
2)). At each end of each interval Ii

the equality V ′(θ)f ′(θ) = 0 holds.
The system has no points of rank 0.
The bifurcation diagram is symmetric with respect to the axis h. It consists of the curves that are images

of rank 1 singular points‘ family under the momentum mapping and permitting a parameterization of the
form

h(θ) :=
f(θ)V ′(θ)

2f ′(θ)
+ V (θ), k(θ) := ±f(θ)

√
f(θ)V ′(θ)

f ′(θ)
,

where θ ∈ I ∪ {θ : V ′(θ) = 0}. Each such parameterized curve consists of a finite or a countable number of
arcs, and the (2i−1)th and (2i)th arcs, i = 1, 2, . . . (these two arcs differ in the sign of k(θ) only) correspond
to the interval Ii of variation of the parameter θ.

Proof. The explicit form of points of rank 1 follows from the condition of linear dependence for dH and
dpϕ, i.e.,

adH + bdpϕ = 0,

where a2 + b2 �= 0. Assertion 2 is proved.
Lemma 1. For k > 0 the velocity vector at the points of the bifurcation diagram lies either in the first

quadrant, or in the third quadrant of the coordinate plane (h, k), or it is equal to zero.
Proof. The proof is similar to that of the corresponding lemma of Kantonistova [2] proved for the case of

a sphere.
Definition 2. We say that a curve γ has a singularity of “non-degenerate cusp” type at a point θ∗ if

γ′(θ∗) = 0 and the vectors γ′′′(θ∗) and v := γ′′(θ∗)
|γ′′(θ∗)| are non-collinear.

It is not difficult to verify that in this case limθ→θ∗
−

γ′(θ∗)
|γ′(θ∗)| = −v, and limθ→θ∗

+

γ′(θ∗)
|γ′(θ∗)| = v.

Now prove that all irregular (singular) points of bifurcation curves are non-degenerate cusps. To do that,
recall the definition of a non-degenerate singular point. Let x be a rank 1 critical point of the momentum
mapping. Let dK(x) �= 0. In this case, due to Darboux theorem, in a neighborhood of the point x there exists
a canonical coordinate system (p1, q1, p2, q2), where K = p1. Since K and H commute, then the function H
does not depend on q1, i.e., H = H(p1, p2, q2).

The point x is a critical point of the momentum mapping, therefore, ∂H
∂p2

= ∂H
∂q2

= 0.
Definition 3. Let H and K be the Hamiltonian function and the additional integral, respectively. A

singular rank 1 point x of the momentum mapping such that dK �= 0 is called non-degenerate if in some
symplectic coordinates the matrix

J :=

(
∂2H

∂p2∂p2

∂2H
∂p2∂q2

∂2H
∂p2∂q2

∂2H
∂q2∂q2

)

is non-degenerate at the point x.
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Apply Definition 3 to the case considered here. The system possesses a canonical coordinates (pθ, pϕ, θ, ϕ)
of the form described above, therefore,

|J | = det

(
∂2H

∂pθ∂pθ

∂2H
∂pθ∂θ

∂2H
∂pθ∂θ

∂2H
∂θ∂θ

)
= det

(
1 0

0
∂2Wpϕ

∂2θ

)
=

∂2Wpϕ

∂2θ
,

where Wpϕ(θ) :=
p2
ϕ

2f2(θ) + V (θ).
Lemma 2. For any θ ∈ Ii the following conditions are equivalent:
1) a singular point (0, k(θ), θ, ϕ) of rank 1 of the momentum mapping is non-degenerate;
2) the parameterized bifurcation curve is regular at the point θ;
3) the value k′(θ) is nonzero;
4) the point θ is a Morse type critical point of the function Wk(θ)(θ), i.e., the value W ′′

k(θ)(θ) is nonzero,
where

W ′′
k(θ)(θ) =

(
3f ′(θ)2 − f(θ)f ′′(θ)

)
V ′(θ)

f(θ)f ′(θ)
+ V ′′(θ).

Proof. The implication 1 ⇒ 2 is valid, see [1, v. 1, p. 48]).
The implication 3 ⇔ 4 can be verified by direct calculations.
The implication 3 ⇒ 2 is evident.
The implication 4 ⇔ 1 follows from Definition 3.
The implication 2 ⇒ 3 can be verified by direct calculations.
The lemma is proved.
Lemma 3. For any interval Ii the following conditions are equivalent:
1) the function k(θ) is a Morse function on Ii;
2) at any critical point θ0 of the function k(θ) on Ii the following conditions hold:

⎧
⎨
⎩
W ′

k(θ0)(θ0) = 0,
W ′′

k(θ0)(θ0) = 0,
W ′′′

k(θ0)(θ0) �= 0;

3) any non-regular point θ of an arc of the bifurcation curve parameterized by the interval Ii is a non-
degenerate cusp.

Proof. The proof is similar to the proof of the corresponding lemma from Kantonistova in [2] proved for
the case of a sphere.

We include the keystone of the equivalence of Conditions 2 and 3 proof only. In accordance with Def-
inition 2, the point θ0 is a non-degenerate cusp point of a parametric curve (h(θ), k(θ)) if and only if the
following conditions hold:

h′(θ0) = 0, k′(θ0) = 0, h′′′(θ0)k
′′(θ0)− h′′(θ0)k

′′′(θ0) �= 0.

We can verify that these conditions are equivalent to Conditions 3 by direct calculations.
Definition 4. A “parabola” type arc is said to be a continuous arc symmetric with respect to the axis

h, having a single point belonging to the axis h, consisting of smooth sub-arcs separated by cusp points
(no cusp points could be), and tending to plus infinity with respect to both coordinates in the upper half
plane. The velocity vector of those sub-arcs lies either in the first quadrant, or in the third quadrant of the
coordinate plane.

Definition 5. A “lune” type arc is said to be a closed continuous arc symmetric with respect to the axis
h, having two points lying on the axis h, and consisting of smooth sub-arcs separated by cusp points. The
velocity vector of those sub-arcs lies either in the first quadrant, or in the third quadrant of the coordinate
plane.

Definition 6. A “beak” type arc is said to be a continuous arc consisting of smooth sub-arcs separated
by cusp points and whose both ends tends to plus infinity with respect to both coordinates in the upper half
plane. The velocity vector of those sub-arcs lies either in the first quadrant, or in the third quadrant of the
coordinate plane.

Examples of arcs described in Definitions 4, 5, and 6, are shown in Figure 1, a, d ; b, e; c, f, respectively.
Theorem 1. Let a natural mechanical system on the manifold M = T 2 be given by a pair of functions

(f(θ), V (θ)) , θ ∈ R/2πZ. Let the following conditions be valid:
1) f(θ), V (θ), and k(θ) are Morse functions,
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2) (f ′(θ))
2
+ (V ′(θ))

2 �= 0.
Let I be an open subset of R/2πZ defined by the inequality V ′(θ)f ′(θ) > 0 and consisting of pairwise

non-intersecting intervals Ii = (θi1, θ
i
2).

In this case the following statements are valid:
1) a parameterized bifurcation arc is regular in a neighborhood of any end point of any interval

(
θi1, θ

i
2

)
;

2) a parameterized bifurcation arc has no accumulation points of irregular points, and each its irregular
point is a non-degenerate cusp point;

3) bifurcation arcs are smooth at the points θ = θij, where V ′(θ) = 0;
4) the bifurcation diagram consists of points and arcs of “parabola”, “beak”, and “lune” types, i.e.,
a) if f ′ (θi1

)
= f ′ (θi2

)
= 0, then the arc parameterized by the interval Ii is of “beak” type;

b) if f ′ (θi1
)
= V ′ (θi2

)
= 0 (or f ′ (θi2

)
= V ′ (θi1

)
= 0), then the arc parameterized by the interval Ii is a

half of “parabola” type arc;
c) if V ′ (θi1

)
= V ′ (θi2

)
= 0, then the arc parameterized by the interval Ii is a half of “lune” type.

Proof. The proof of Theorem 1 is similar to that of the corresponding theorem from Kantonistova [2]
proved for the case of a sphere. Therefore, we include the proof for Items 1, and 4 only.

1) Since

k′(θ) =
V ′(θ)

(
3f2(θ)f ′(θ)2 − f3(θ)f ′′(θ)

)
+ f3(θ)V ′′(θ)f ′(θ)

(f ′(θ))2
,

then k′(θ) does not tend to zero for θ → θij (because at any end of any interval
(
θi1, θ

i
2

)
the relations

V ′(θ)f ′(θ) = 0, (f ′(θ))
2
+ (V ′(θ))

2 �= 0 are valid).

Fig 1.

4) Suppose the relation f ′ (θi1
)
= f ′ (θi2

)
= 0 holds at the end of the interval

(
θi1, θ

i
2

)
. Then h(θ) → ∞

and k(θ) → ∞ for θ → θi1
(
θi2
)

and hence the arc parameterized by the interval
(
θi1, θ

i
2

)
is of “beak” type.

Suppose the relation V ′ (θi1
)
= V ′ (θi2

)
= 0 holds at an end of the interval

(
θi1, θ

i
2

)
. Then h(θ) →

V
(
θi1
) (

V
(
θi2
))

and k(θ) → 0 for θ → θi1
(
θi2
)
, therefore, the arc parameterized by the interval

(
θi1, θ

i
2

)
is a

half of “lune.”
Suppose the relation f ′ (θi1

)
= V ′ (θi2

)
= 0 holds at the end of the interval

(
θi1, θ

i
2

)
. Then h(θ) → ∞ and

k(θ) → ∞ for θ → θi1, and h(θ)→ V
(
θi2
)

and k(θ) → 0 for θ → θi2, therefore, the arc parameterised by the
interval

(
θi1, θ

i
2

)
is a half of “parabola.” (Similarly, for f ′ (θi2

)
= V ′ (θi1

)
= 0.)

3.2. Rough molecule construction.
Construct the rough molecule for the system under consideration.
Assertion 3. A constant energy surface Q3

h is non-singular if and only if h �= V (θi), where V ′(θi) = 0.

MOSCOW UNIVERSITY MATHEMATICS BULLETIN Vol. 72 No. 3 2017



LIOUVILLE CLASSIFICATION OF INTEGRABLE GEODESIC FLOWS 125

Lemma 4. The function K is a Bott function on a non-singular constant energy surface Q3
h if and only

if the function Uh(θ) := 2f2(θ) (h− V (θ)) called an effective potential is a Morse function.
Remark. If Q3

h is a non-singular constant energy surface, then K is a Bott function on it if and only if
the straight line h = const does not pass through cusp points on the bifurcation diagram.

Fig 2.

List definitions of some 3-atoms.
1. The 3-atom A. Topologically, this 3-atom is

a solid torus foliated into concentric tori shrink-
ing to the axis of the solid torus.

2. The 3-atom Vs (s ≥ 2, V2 = B). This 3-
atom is the direct product of the 2-atom shown
in Figure 2 and the circle S1. The Liouville foli-
ation is naturally induced by the 2-atom.

3. The 3-atom Pm (m ≥ 1, P1 = B). This 3-atom is the direct product of the 2-atom shown in Figure 3
and the circle S1. The Liouville foliation is naturally induced by the 2-atom.

Fig 3.

Lemma 5. Let Q ⊆ Q3
h be a connected component of a

non-singular constant energy surface such that the integral K
is a Bott function on it. Then the rough molecule correspond-
ing to Q can contain atoms of the following three types only:
Vs, (s ≥ 2), Pm, (m ≥ 1), and A. In the case K > 0 each
atom Vs has a single incoming edge and s outgoing edges,
each atom Pm has two incoming edges and m outgoing edges
(for K < 0 the situation is antisymmetric, i.e., each atom
Vs has s incoming edges and a single outgoing one, and the
atom Pm has m incoming edges and two outgoing ones). The
molecule itself is symmetric (not taking the orientation into
consideration).

Fig 4.

Fix the values of both the in-
tegrals H = h, K = k. We get the
points (pθ, k, θ, ϕ), ϕ ∈ R/2πZ in
T ∗M satisfying the following equa-
tion:

p2θ
2

+
k2

2f2(θ)
+ V (θ) = h.

Rewrite this equation in the form

pθ = ± 1

f(θ)

√
Uh(θ) − k2,

where the periodic function
Uh(θ) := 2f2(θ) (h− V (θ)) with the period 2π is called the effective potential.

On each segment [θ1; θ2] such that Uh(θ) − k2 ≥ 0 the set pθ(θ) is either a point, or a circle, or an open
chain of circles, or a closed chain of circles (Figure 4). Changing the value k, we see that neighborhoods
of those singular fibers correspond to 2-atoms shown in Figures 2 and 3. Therefore, we conclude that the
bifurcation arcs correspond either to the atom A, or to the atom Vs (where V2 = B), or to the atom Pm

(where P1 = B, P2 = C2), and the momentum mapping preimage of a point that does not belong to the
bifurcation arcs is either a single Liouville torus, or several Liouville tori. In the case when the expression
Uh(θ) − k2 is positive for any θ the pre-image of the point (h, k) is a union of two tori.

Thus, changing continuously the value k of the second first integral, we can use the following algorithm
to construct the rough molecule from the graph of the function Uh(θ).

1. Take the graph of the function Uh(θ) and construct horizontal lines corresponding to different values of
k2. The segments of these lines lying strictly “lower” the graph of the function Uh(θ) correspond to Liouville
tori (each segment corresponds to one torus except for the case when the graph of the function Uh(θ) is
positive on the whole domain. Then the segments located lower the global minimum of the function Uh(θ)
correspond to two Liouville tori).
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2. If the function Uh(θ) is positive on the whole domain, then the segment passing through the global
minimum of Uh(θ) corresponds to the atom Pm. Otherwise there are no atoms Pm (m > 1) in the molecule.
If the function Uh(θ) takes negative values, then Q3

h could have several connected components, otherwise Q3
h

is a connected manifold.
3. Consider a single connected component Q3

h. Each segment passing through a local minimum (minima)
of the function Uh(θ) corresponds to the atom Vl, where (l− 1) is the number of local minima passed by the
segment.

4. Each local maximum of the function Uh(θ) corresponds to the atom A.
Therefore, we construct this way a half of the rough molecule of the connected component of Q3

h. The
second half is symmetric. The lemma is proved.

Lemma 6. Let Q ⊆ Q3
h be a connected component of a non-singular constant energy surface such that

K is a Bott function on it. In this case the value K = 0 cannot correspond to a bifurcation of Liouville tori
(i.e., 0 is not a critical value of the function K).

Theorem 2. Let a system be given on the manifold of rotation M = T 2 by a pair of functions (V (θ),
f(θ)). Let Q ⊆ Q3

h be a connected component of a non-singular constant energy surface such that K is a
Bott function on it. In this case the molecule of the system is symmetric with respect to the axis h (not taking
into account the orientations of edges), and the edges are oriented in accending order of k. The molecule has
the following form depending on the graph of the effective potential:

1) if the function Uh(θ) is positive on the whole domain, then W ≡ Pm = Pm ≡ W , where “≡” stands
for m Liouville tori. The number m is equal to the number of global minima of the function Uh(θ). In this
case Q3

h has only one connected component;
2) if the function Uh(θ) takes negative values, then the molecule corresponding to Q has the form W −W .

In this case the number of connected components of the manifold Q3
h is equal to the half of the number of

intersections of the graph of the function Uh(θ) with the axis Uh(θ) = 0 (i.e., each segment [θi, θj ] such that
Uh(θ) ≥ 0 corresponds to a single connected component of Q3

h).
Each molecule W is either a single atom A, or a tree, or a forest. All non-ending vertices of the tree

are atoms V
l
, and the ending vertices correspond to atoms A. In the case K > 0 each atom Vl has a single

incoming edge and l outgoing edges (and for K < 0 the situation is antisymmetric, i.e., not taking into
account the orientations on the edges, the molecule is symmetric with respect to the level K = 0, and the
orientations on the pieces W+ = W (K > 0) and W− = W (K < 0) are opposite).

The rough molecule is constructed by the graph of the function Uh(θ) in accordance with the algorithm
described above.

Proof. Assertions of the theorem follow from Lemmas 5, and 6.
Lemma 7. Consider the half-plane k > 0. In a neighbourhood of a cusp point, a regular fragment of

the bifurcation curve consisting of points corresponding to the atom A lies above the regular fragment of the
bifurcation curve consisting of points corresponding to the atoms Vk and Pm. In the half-plane k < 0 the
situation is antisymmetric, i.e., in a neighbourhood of a cusp point a regular fragment of the bifurcation
curve consisting of points corresponding to the atoms A lies below a regular fragment of the bifurcation curve
consisting of points corresponding to the atoms Vk and Pm.

Proof. The assertion of the lemma follows from the fact that the local minimum of the effective potential
(it can correspond to atoms Vk and Pm) lies below the neighbouring local maximum (corresponding to the
atom A).

Assertion 4. Let Q be a connected component of a non-singular constant energy surface Q3
h. Cut it into

two parts along the surface K = 0. It falls into two connected pieces. If h < maxV (θ), θ∈ R/2πZ, then each
component is a solid torus and for h > maxV (θ) these components are T 2 ×D1.

Proof. Cut all Q3
h along the surface K = 0. Consider the part of Q3

h where pϕ ≥ 0. It is given by the
system {

p2
θ

2 +
p2
ϕ

2f2(θ) + V (θ) = h,

pϕ ≥ 0.

Transform it into the form {
p2ϕ = f2(θ)

(
2h− 2V (θ)− p2θ

)
,

pϕ ≥ 0,

and get the required assertion.
3.3. Calculation of marks.
A rough molecule contains a lot of information on the structure of Liouville foliation, however, this

information is incomplete in the sense that the molecule does not define the diffeomorphic type of the
manifold Q3

h and the Liouville structure on it (up to fiberwise diffeomorphism). Therefore, it is necessary to
add an information on glueing of individual atoms contained in numeric marks (see details in [1]).
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Theorem 3. Let Q3 be a connected component of a non-singular constant energy surface Q3
h. In this

case the molecule corresponding to Q3 satisfies the following properties.
1) The marks on the molecule’s edges of type A− Vl have the form r = 0, ε = 1.
2) The marks on the molecule’s edges of type A− Pk have the form r = 0, ε = 1.
3) The marks on the molecule’s edges of type Vk − Vl have the form r = ∞, ε = 1, where both saddle

atoms are located in a single half-plane (either k > 0, or k < 0).
4) The marks on the molecule’s edges of type Pk − Vl have the form r = ∞, ε = 1.
5) If the rough molecule has the form A−A, then the marks on the edge have the form r = ∞, ε = +1.
6) The marks on the central edge of the molecule (it is either Pm−Pm, or Vs−Vs depending on the form

of the rough molecule) have the form r = ∞, ε = −1.
7) If the molecule is distinct from the molecule A−A, then it contains a single family that can be obtained

by discarding all atoms A. The mark n is equal to zero in this case.
Proof. To calculate the marks, we have to chose admissible coordinate systems on boundary tori of the

atoms. Recall the rules of their choice. Let a 3-atom be of type A, i.e., a solid torus. In this case for the first
basic cycle λ we take the meridian of the solid torus, i.e., the cycle contracting to a point in the solid torus.
In our case we have

{
pθ = ± 1

f(θ)

√
Uh(θ) − k2, pϕ = const, θ ∈ [θ1, θ2], ϕ = const

}
.

For the second cycle we can take any cycle μ completing λ to a base. Take the fiber given as {pθ = const,
pϕ = const, θ = const, ϕ ∈ Rmod2πZ}. It is a fiber of Seifert fibration (its orientation is naturally defined
by the orientation of the Hamiltonian vector flow on the critical circle).

Let the 3-atom be a saddle one (Vl or Pm). It has the structure of trivial S1-fibration over a 2-atom. Take
a fiber of this fibration as the first basic cycle λ. In our case we have

{pθ = const, pϕ = const, θ = const, ϕ ∈ Rmod2πZ} .

Now consider a cross-section of the 3-atom over which this atom is represented as a trivial S1-fibration.
It intersects each boundary torus by some cycle that can be taken as the second basic cycle μ. In our case
it is either the cycle

{
pθ = ± 1

f(θ)

√
Uh(θ) − k2, pϕ = const, θ ∈ [θ1, θ2], ϕ = const

}
,

or the cycle
{pθ = const, pϕ = const, θ ∈ Rmod2πZ, ϕ = const}

depending on the atom (Vl or Pm) and the boundary torus.
Notice that ϕ̇ = f2(θ)pϕ. Therefore, if two atoms lie above the level k = 0 simultaneously (or below this

level simultaneously), then the derivative of the angle coordinate ϕ along the vector field sgradH has the
same sign and hence the orientations of the cycles

{pθ = const, pϕ = const, θ = const, ϕ ∈ Rmod2πZ}

of these atoms are the same. Otherwise, these cycles have opposite orientations.
Write down the gluing matrix at the edge A−Vl. Since the second basic cycle around the atom A coincides

with the first basic cycle around the atom Vl and these atoms lie in the same half-plane (k > 0 or k < 0),
then the gluing matrix has the form (

0 1
1 0

)
.

Therefore, r = 0, ε = 1.
The remaining gluing matrices can be obtained similarly.
If a molecule W −W does not equal A−A, then the molecule has a unique family obtained by discarding

all atoms A. The mark n in this case is equal to zero because all θi (from the definition of the mark n) turn
out to be equal to zero. The theorem is proved.

Corollary. If each rough molecule corresponding to Q3 has the form A− A, then Q3 = S1 × S2.
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