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Abstract—The paper presents conditions providing the existence of a common fixed point of a family
of commuting isotone multivalued mappings of a partially ordered set and the existence of the minimal
element in the set of common fixed points. Additional conditions that guarantee the existence of the
least element in that point set are also presented. Relations of the obtained results to well-known fixed
point theorems are discussed.
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In this paper we consider existence issues for a common fixed point of a family of single-valued and

multivalued commuting mappings of partially ordered sets. In the category of metric spaces the existence of
a fixed point is as important as an estimate of a distance from a given element to some fixed point. Similarly,
in the category of ordered sets the existence of the minimal element and the least element in the set of
fixed points is of interest. The results on existence of fixed points for mappings of partially ordered sets
have many applications. Among recent publications, let us mention paper [1] where an application of the
Knaster–Tarski theorem in the computational geometry was demonstrated. In [2, Ch. 18], a relation between
problems concerning fixed points of mappings of metric spaces and the corresponding results for mappings
of partially ordered sets were presented. In particular, it was shown that the well-known Nadler theorem [3]
can be derived from Smithson’s theorem [4]. In collaboration with T. N. Fomenko, the author also studied
the issues related to common fixed points and coincidence of non-commuting families of mappings of partly
ordered sets.

In this paper we use standard definitions of a linearly ordered set, a partially ordered set, a chain, and a
minimal element that can be found, for example, in [5, 6].

Introduce necessary definitions. Let we be given with a non-empty set A and a partially ordered set
(X,�). In what follows, by ⇒ we always denote a multivalued mapping taking each element x ∈ X to a non-
empty subset F (x) ⊆ X . Besides, suppose a family of multivalued mappings is given, G = {Gα}α∈A, where
Gα : X ⇒ X , α ∈ A. For an arbitrary subset Z ⊆ X and an index α ∈ A define the set Gα(Z) =

⋃
z∈Z

Gα(z).

A neighborhood of a point x0 ∈ X in the set X is defined as a set OX(x0) = {x ∈ X |x � x0}. For the
intersection of neighborhoods of elements x1, x2 ∈ X we use the standard notation ΩX(x1, x2) = OX(x1) ∩
OX(x2). An element y ∈ Y such that y � y′ for all y′ ∈ Y is called the least element of the subset Y ⊆ X .

Definition 1. A family of mappings G = {Gα}α∈A is said to be commuting if for any pair of indices
α, β ∈ A and any element x ∈ X the equality Gα(Gβ(x)) = Gβ(Gα(x)) holds.

Definition 2. A multivalued mapping F : X ⇒ X is said to be isotone if for any x1, x2 ∈ X , x1 � x2

and any y2 ∈ F (x2) there exists an element y1 ∈ F (x1) such that y1 � y2. In particular, a single valued
mapping f : X → X is said to be isotone if the relation x1 � x2 implies f(x1) � f(x2).

Definition 3. The set {yα}α∈A ⊆ X is called the set of G-values at a point x ∈ X if yα ∈ Gα(x), α ∈ A.
Fix some element x0 ∈ X . By S(x0;G) we denote the set of elements x ∈ OX(x0) such that there exists

a set {yα}α∈A of G-values at the point x such that yα � x, α ∈ A. In the case when G is a family of
single-valued mappings we have S(x0;G) = {x ∈ OX(x0)|Gα(x) � x, ∀α ∈ A}.

By Comfix(G) = {x ∈ X |x ∈
⋂

α∈A

Gα(x)} we denote the set of common fixes points of a family

of multivalued mappings G. In the case when the family G consists of single-valued mappings we have
Comfix(G) = {x ∈ X |x = Gα(x) for all α ∈ A}.

Theorem 1. Let we be given with an ordered set (X,�), a commuting family of single-valued isotone
mappings G = {Gα}α∈A, where Gα : X → X,α ∈ A, and a point x0 ∈ X such that Gα(x0) � x0 for
all α ∈ A. In addition, suppose for any chain S ⊆ S(x0;G) there exists its lower bound u ∈ X such that
Gα(u) � u for all α ∈ A.
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In this case the set Comfix(G) of common fixed points is not empty and contains a minimal element.
Proof. To start with, note that the set S(x0;G) is not empty. Indeed, in accordance with the assumptions

for the element x0, the inequality Gα(x0) � x0 holds for all α ∈ A and hence x0 ∈ S(x0;G). Consider the set
C(x0;G) consisting of all possible chains S ⊆ S(x0;G). Order the set C(x0;G) with respect to inclusion. By �∗
we denote the ordering just defined. Due to the Hausdorff maximum principle, the ordered set (C(x0;G),�∗)
contains the maximal element S∗. In accordance with the assumptions of the theorem, there exists a lower
bound ξ ∈ X of the chain S∗ such that Gα(ξ) � ξ, α ∈ A.

Show that Gα(ξ) = ξ for all α ∈ A. Suppose there exists an index β ∈ A such that Gβ(ξ) ≺ ξ. Since
the mapping Gβ is isotone and Gα(ξ) � ξ, then we have Gβ(Gα(ξ)) � Gβ(ξ) for all α ∈ A. Taking into
account the commutativity property of the family G, we get the equality Gβ(Gα(ξ)) = Gα(Gβ(ξ)) and hence
Gα(Gβ(ξ)) � Gβ(ξ) for all α ∈ A. Besides, Gβ(ξ) ≺ x for each x ∈ S∗ because of Gβ(ξ) ≺ ξ and the element
ξ is a lower bound of the chain S∗. Thus, S∗ ∪ {ξ} ∈ C(x0;G) and S∗ ≺∗ S∗ ∪ {ξ}, which contradicts the
maximality of the chain S∗. As the result, we conclude that Gα(ξ) = ξ, α ∈ A, i.e., ξ ∈ Comfix(G).

It remains to show that ξ is the minimal element in the set Comfix(G). Suppose the contrary, i.e., there
exists an element η ∈ Comfix(G) such that η ≺ ξ. Since the equality Gα(η) = η is valid for all α ∈ A and
η ≺ ξ, then the element η is a lower bound of the chain S∗ that is not contained in S∗. As the result,
S∗ ∪ {η} ∈ C(x0;G) and S∗ ≺∗ S∗ ∪ {η}, which contradicts the maximality of the chain S∗ again. Thus, ξ is
the minimal element of the set Comfix(G). The theorem is proved.

Compare Theorem 1 and Smithson’s theorem, see [7, Theorem 2.1], presented below for dual ordering.
Theorem 2 (R. E. Smithson). Let we be given with a partially ordered set (X,�), a point x0 ∈ X, and

a commuting family of isotone single-valued mappings G = {Gα}α∈A, where Gα : X → X are such that for
any α ∈ A the relation Gα(x0) � x0 holds and any chain containing x0 possesses the infimum. In this case
the set of common fixed points of the family of mappings is not empty.

Assertion. Theorem 1 is a generalization of Theorem 2.
Proof. Let all the conditions of Theorem 2 be valid. Show that conditions of Theorem 1 are also valid.

To do that, it suffices to show that any chain S ⊆ S(x0;G) has a lower bound u ∈ X such that Gα(u) � u
for all α ∈ A. Consider an arbitrary chain S0 ⊆ S(x0;G) and the corresponding chain C0 = S0 ∪ {x0}.
In accordance with conditions of Theorem 2, there exists an infimum u ∈ X of the chain C0, which is an
infimum of the chain S0 too. Due to the isotone property of the mapping Gα and u � x, for any α ∈ A and
any x ∈ S0 we have Gα(u) � Gα(x) � x, i.e., Gα(u) is a lower bound of the chain S0. Taking into account
that u is the infimum of the chain S0, we conclude that Gα(u) � u for all α ∈ A. Thus, all conditions of
Theorem 1 are valid.

Now show that Theorem 1 does not follow from Theorem 2. To do that, consider the following example.
Example. Let X = [−1, 0) ∪ (0, 1] be endowed with the standard ordering of R. Define the family

G = {Gα}α∈A, where A = {x ∈ R : x > 1}, as

Gα(x) =

{
x
α , x ∈ (0, 1];

−1, x = [−1; 0).

It is easy to see that the mappings Gα are isotone. The family G is commuting because of Gα(Gβ(x)) =
Gβ(Gα(x)) =

x
αβ for x ∈ (0, 1], and Gα(Gβ(x)) = Gβ(Gα(x)) = −1 for x ∈ [−1, 0).

Fix an arbitrary element x0 ∈ (0, 1]. The chain (0, x0] contains x0 and has no infimum. Thus, the
conditions of Theorem 2 are not valid. Show that the conditions of Theorem 1 hold. To do that, it suffices to
show that for any chain S ⊆ S(x0;G) there exits its lower bound u ∈ X such that Gα(u) � u, α ∈ A. Since
S(x0;G) ⊆ OX(x0) and the element u = −1 is a lower bound of the set OX(x0) and Gα(−1) = −1, α ∈ A,
then the element u is the lower bound we look for. Thus, all the conditions of Theorem 1 are valid.

Now consider the case of multivalued mappings.
Theorem 3. Let we be given with a partially ordered set (X,�), a non-empty set A, and a family of

commuting isotone multivalued mappings G = {Gα}α∈A, Gα : X ⇒ X such that for any x ∈ X and α ∈ A
the set Gα(x) contains the least element. In addition, let there exist an element x0 ∈ X and a set {yα}α∈A

of G-values at the point x0 such that yα � x0 for all α ∈ A. In this case if for any chain S ⊆ S(x0;G) there
exists its lower bound z and the set {zα}α∈A of G-values at the point z such that zα � z for all α ∈ A, then
the set Comfix(G) is not empty and contains the minimal element.

Proof. Consider the family of single-valued mappings g = {gα}α∈A, gα : X → X , where gα(x) =
inf Gα(x), x ∈ X,α ∈ A. In accordance with [7, Proposition 2.2], the family g is commuting and each
mapping gα from this family is isotone. Show that the family g satisfies all the conditions of Theorem 1.
Consider the element x0 ∈ X and the corresponding set {yα}α∈A of G-values at the point x0 such that
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yα � x0 for all α ∈ A. Since gα(x0) = inf Gα(x0) and yα ∈ Gα(x0), then gα(x0) � yα � x0, α ∈ A. Similarly,
one can show that for any chain S ⊆ S(x0; g) there exists its lower bound u ∈ X such that gα(u) � u, α ∈ A.

Thus, all the conditions of Theorem 1 are valid and hence the set Comfix(g) is not empty and contains the
minimal element ξ that is the maximal lower bound of the chain S∗ from C(x0; g) with respect to the ordering
�∗, where the element ξ, the chain S∗, and the ordering �∗ are described in the proof of Theorem 1. Therefore,
Comfix(G) 
= ∅. Show that ξ is the minimal element in Comfix(G). Using the proof by contradiction, suppose
there exists η ∈ Comfix(G) such that η ≺ ξ. Since η ∈ Gα(η) and gα(η) = inf Gα(η), then gα(η) � η for an
arbitrary element α ∈ A. Thus, η ∈ S(x0; g) and η ≺ x, ∀x ∈ S∗, i.e., S∗∪{η} ∈ C(x0; g) and S∗ ≺∗ S∗∪{η},
which contradicts the maximality of the element S∗. Thus, we conclude that the inequality η ≺ ξ is impossible
and hence ξ is the minimal element of the set Comfix(G).

Note that if all mappings of the family G from the conditions of Theorem 3 are single-valued, then we
obtain exactly Theorem 1. It is easy to check that Theorem 3 is a generalization of [7, Theorem 2.3].

Now let us strengthen the conditions of Theorem 3 by adding requirements that guarantee the existence
of the least elements in the set of common fixed points. Consider the set S(G) =

⋃
x∈X

S(x;G).

Theorem 4. Let all the conditions of Theorem 3 be valid and for any pair x1, x2 ∈ X (for x1, x2 ∈
OX(x0), respectively) we have S(G) ∩ ΩX(x1, x2) 
= ∅. In this case the set Comfix(G) (the set Comfix(G) ∩
OX(x0), respectively) contains the least element.

Proof. Consider the case when for any pair x1, x2 ∈ X the relation S(G) ∩ ΩX(x1, x2) 
= ∅ holds. In
the second case the proof is rather similar. Consider the family of single-valued mappings g = {gα}α∈A,
gα : X → X, gα(x) = inf Gα(x), the maximal chain S∗ from C(x0; g) with respect to the ordering �∗,
and the lower bound ξ ∈ X of the chain S∗, where the element ξ, the chain S∗, and the ordering �∗ are
constructed in the proof of Theorem 3. Since ξ is the minimal element in the set Comfix(G) according to the
proof of Theorem 3, then to complete the proof it suffices to show that the element ξ is comparable with any
element of Comfix(G). Suppose there exists an element ζ ∈ Comfix(G) such that ζ and ξ are not comparable.
Then, in accordance with the assumptions of the theorem, there exists an element w ∈ S(G)∩ΩX (ξ, ζ). Since
ξ and ζ are not comparable, then w ≺ ξ. Since w ∈ S(G), then there exists a set {wα}α∈A of G-values at the
point w such that wα � w for all α ∈ A. And since gα(w) = inf Gα(w), then the inequalities gα(w) � wα � w,
α ∈ A, are valid. Thus, w ∈ S(x0; g) and w ≺ x, ∀x ∈ S∗, i.e., S∗ ∪ {w} ∈ C(x0; g) and S∗ ≺∗ S∗ ∪ {w},
which contradicts the maximality of the element S∗ in the set of chains C(x0; g). As the result, we get that
any element ζ ∈ Comfix(G) is comparable with ξ. Taking into account that ξ is the minimal element of the
set Comfix(G), we conclude that ξ is the least element of the set Comfix(G). The theorem is proved.
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