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We consider a set PV of monadic predicates defined on a certain nonempty finite set V (see the definitions

in [1]).
Let A be some finite set of predicates, F be some set of Boolean functions. Define the notion of a predicate

formula over (A, F ):
1) expressions P (x), where P (x) ∈ A, are (atomic) formulas over (A, F );
2) let f(x1, . . . , xn) ∈ F and A1, . . . , An be formulas over (A, F ), then the expression f(A1, . . . , An) is a

formula over (A, F ).
The closure of a system of predicates A ⊆ PV over a system of Boolean functions F (notation [A]F ) is

the set of all predicates expressed by formulas over (A, F ).
A system of predicates A is called complete over a system of functions F if [A]F = PV . The theorem that

a system of predicates A = {A1(x), . . . , As(x)} is complete over a system F = {x ∨ y, x&y, x, x → y} if and
only if for any two distinct elements a and b of the set V there exists a predicate Ai(x), 1 ≤ i ≤ s, such that
Ai(a) �= Ai(b) is known, see [1].

In this paper for the system of functions F we take arbitrary systems of Boolean functions. We obtain a
completeness criterion for a system of predicates over F for an arbitrary system F of Boolean functions.

It is clear that if F and H are such systems of Boolean functions that [F ] = [H ], then for an arbitrary
system of predicates A the completeness criteria over F and over H are the same. Therefore, in order to
obtain a completeness criterion of a system A over an arbitrary system F , it is sufficient to establish the
completeness criterion over the closed class [F ].

Let P (x) ∈ PV and V ′ ⊆ V, V ′ �= ∅. By P (x)|V ′ we denote the restriction of the predicate P (x) onto
the set V ′. Further, let A ⊆ PV . By A|V ′ we denote the set of all restrictions of predicates from A onto the
set V ′.

Let A be an arbitrary system of predicates defined on a set V such that |V | ≥ m, where m ≥ 2, and let
F ⊆ P2. We say that the system A is m-complete over F if for any set V ′ ⊆ V such that |V ′| = m the system
A|V ′ is complete over F .

The definitions directly imply
Lemma 1. Let V be an arbitrary set such that |V | ≥ 3, A be an arbitrary system of predicates, F be an

arbitrary system of functions, and there exist a number m, 2 ≤ m ≤ |V |, such that A is not m-complete over
F . In this case A is not complete over F .

Introduce the notion of order of a closed class of Boolean functions. The order of a function f is the number
of its essential variables (notation ord(f)). The order of a finite system of functions A is the maximum of
orders of its functions (notation ord(A)). The order of a closed class F (notation ord(F )) is defined as

ord(F ) = min
A

ord(A),

where the minimum is taken over all possible bases A of the class F .
Below we consider all closed classes of Boolean functions (see description of closed classes in [2]). Classes of

constants (order 0) and monadic functions (order 1) cannot generate new predicates differing from constants
and negations of predicates. Therefore, we restrict ourselves with consideration of closed classes of order p,
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where p ≥ 2. Those classes can be divided into several groups with its own completeness criterion for each
group.

Let a1, . . . , ak ∈ V, k ≥ 1, define the predicate Pa1,...,ak
(x) in the following way:

Pa1,...,ak
(x) =

{
1, for x ∈ {a1, . . . , ak};
0, otherwise.

We denote the identically-false predicate by P 0 and the identically-true predicate by P 1.
It is easy to see that the following result is valid.
Lemma 2. Let A be an arbitrary system of predicates, F be a system of functions, P c ∈ [A]F , where

c ∈ {0, 1}. In this case, [A]F = [A]F∪{c}.

Consider an arbitrary predicate P (x) ∈ PV . The predicate dual to it is the predicate P ∗(x) = P (x).
Further, let A be an arbitrary system of predicates. The system dual to A is the system

A
∗ =

⋃
P (x)∈A

P ∗(x).

It is easy to show that the following result is valid.
Lemma 3 (duality principle). Let P1(x), . . . , Pn(x) be arbitrary predicates from PV , f(x1, . . . , xn) be a

Boolean function. If P (x) = f(P1(x), . . . , Pn(x)), then P ∗(x) = f∗(P ∗
1 (x), . . . , P

∗
n(x)).

Lemma 4. Let V be an arbitrary set, |V | = n, n > 3; F be a system of functions such that x∨y, x&y ∈ [F ];
a system of predicates A be (n− 1)-complete over F . In this case the system A is complete over F .

Proof. Let V = {a1, . . . , an}. Consider the sets Vi = V \ {ai} and the corresponding restrictions A|Vi , i =
1, . . . , n. The system A is (n−1)-complete over F , therefore, the systems A|Vi are complete over F, i = 1, . . . , n.

Consider an element a1 from V and construct a predicate Pa1(x). The system A|V2 is complete over F and
hence Pa1(x)|V2 belongs to [A|V2 ]F . Let Pa1(x)|V2 be implemented by the formula Φ(A1(x)|V2 , . . . , Ap(x)|V2 ),
where A1(x), . . . , Ap(x) belongs to A. In this case the formula Φ(A1(x), . . . , Ap(x)) realizes either Pa1(x), or
Pa1,a2(x). In the first case we have Pa1(x) ∈ [A]F . In the second case we have Pa1,a2(x) ∈ [A]F .

Consider the system A|V3 and the predicate Pa1(x). Applying similar arguments, we get that either
Pa1(x) ∈ [A]F , or Pa1,a3(x)∈ [A]F . Thus, either Pa1(x) ∈ [A]F , or Pa1,a3(x), Pa1,a2(x) ∈ [A]F . In the second
case the predicate Pa1(x) is realized by the formula Pa1,a3(x)&Pa1,a2(x). Thus, for any a ∈ V the predicate
Pa(x) belongs to [A]F .

Let P (x) be an arbitrary predicate from PV . If P (x) is the identically-false predicate, then it is imple-
mented by formula Pa1(x)&Pa2(x). Now let P (x) be not identically-false and a1, . . . , ar be all the elements
of the set V on which P (x) takes the value 1, r ≥ 1. In this case the formula Φ(x) of the form

∨r
i=1 Pai(x)

implements the predicate P (x). Thus, any predicate P (x) belongs to [A]F . Therefore, system A is complete
over F . The lemma is proved.

Define the functions dp(x1, . . . , xp), p ≥ 2, in the following way:

dp(x1, . . . , xp) =
∨

1≤i<j≤p

xixj .

Lemma 5. Let n and m be natural numbers such that m ≥ 2, n > m+1; V be an arbitrary set such that
|V | = n; F be a system of functions such that dm+1 ∈ [F ]; the system of predicates A be (n − 1)-complete
over F . In this case, P 0, P 1 ∈ [A]F .

Proof. Let V = {a1, . . . , an}. Consider the sets Vi = V \ {ai} and the corresponding restrictions A|Vi , i =
1, . . . , n. By the hypothesis, the system of predicates A is (n − 1)-complete over F . Therefore, the systems
A|Vi are complete over F, i = 1, . . . , n. Construct the identically-false predicate.

The system A|V1 is complete over F , therefore, P 0|V1 ∈ [A|V1 ]F . Let the predicate P 0|V1 be implemented
by the formula Φ of the following form: Φ(A1(x)|V1 , . . . , Al(x)|V1 ), where A1(x), . . . , Al(x) ∈ A. In this case
the formula Φ(A1(x), . . . , Al(x)) realizes either P 0, or Pa1(x). In the first case we have P 0 ∈ [A]F . In the
second case we have Pa1(x) ∈ [A]F . Since n > m + 1, we can also consider the systems A|V2 ,. . . ,A|Vm+1 .
Applying similar arguments, we get either P 0 ∈ [A]F , or Pa1(x), . . . , Pam+1(x)∈ [A]F . In the latter case the
identically-false predicate is realized by the formula dm+1(Pa1(x), . . . , Pam+1(x)). Thus, P 0 ∈ [A]F . Applying
similar arguments, we get P 1 ∈ [A]F . The lemma is proved.

Theorem 1. Let F be one of the classes P2, M , M0, M1, M01, T0, T1, T01, S, S01, SM , Op, MOp, Op
0 ,

MOp
0 , Ip,MIp, Ip1 ,MIp1 , where p ≥ 2, ord(F ) = m, V be an arbitrary finite set, |V | ≥ m. In this case the

system of predicates A is complete over the class F if and only if it is m-complete over F .
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Proof. Necessity. Lemma 1 implies that if the system A is complete over F , then it is m-complete over F .
Sufficiency. Consider the two following cases: ord(F ) = 2 and ord(F ) = m,m > 2.
Let ord(F ) = 2. In this case we have F ∈ {P2,M,M0,M1,M01, T0, T1}. Let the hypothesis be true. Prove

the assertion by induction over the cardinality n of the set V .
The basis of induction. Let |V |=2. Obviously, if the system A is 2-complete over F , then it is complete

over F .
The inductive passage. Let the assertion be valid for all V such that 2≤|V |≤k. Prove it for all V such

that |V |=k+1.
Let V = {a1, . . . , ak+1}. Consider the sets Vi = V \ {ai} and the corresponding restrictions A|Vi , i =

1, . . . , k + 1. The system A is 2-complete over F and hence the systems A|Vi are 2-complete over F, i =
1, . . . , k + 1. In this case, according to the inductive hypothesis, the systems A|Vi are complete over F,
i = 1, . . . , k + 1. Therefore, the system A is k-complete over F . Since x ∨ y, x&y ∈ F and the system A is
k-complete over F , then the system A is complete over F by Lemma 4.

Now consider the second case. Let ord(F ) = m,m > 2, then F is one of the classes T01, S, S01, SM , Op,
MOp, Op

0 , MOp
0 , Ip, MIp, Ip1 , MIp1 . Let the hypothesis be true. Prove the assertion by induction over the

cardinality n of the set V .
The basis of induction. Let |V |=m. Obviously, if the system A is m-complete over F , then it is complete

over F .
The inductive passage. Let the assertion be valid for all V such that m≤|V |≤k. Prove it for all V such

that |V |=k+1.
Let V = {a1, . . . , ak+1}. Consider the sets Vi = V \ {ai} and the corresponding restrictions A|Vi , i =

1, . . . , k + 1. The system A is m-complete over F , therefore, the systems A|Vi are m-complete over F,
i = 1, . . . , k+1. According to the inductive hypothesis, the systems A|Vi are complete over F, i = 1, . . . , k+1.
Therefore, the system A is k-complete over F .

For F ∈ {T01, S, S01, SM} we have ord(F ) = 3 and d3 ∈ F (see [1]).
For F ∈ {Op,MOp, Op

0 ,MOp
0 , I

p,MIp, Ip1 ,MIp1} we have ord(F ) = p+ 1 and dp+1 ∈ F (see [1]).
Thus, since dm ∈ F and the system A is k-complete over F , by Lemma 5 we get P 0, P 1 ∈ [A]F . According

to Lemma 2, for completeness of A over F it is sufficient to show that A is complete over the system F∪{0, 1}.
The following relations hold:

[T01 ∪ {0, 1}] = [S ∪ {0, 1}] = [S01 ∪ {0, 1}] = P2,

[Op ∪ {0, 1}] = [Op
0 ∪ {0, 1}] = [Ip ∪ {0, 1}] = [Ip1 ∪ {0, 1}] = P2,

[SM ∪ {0, 1}] = [MOp ∪ {0, 1}] = [MOp
0 ∪ {0, 1}] = [MIp ∪ {0, 1}] = [MIp1 ∪ {0, 1}] = M.

If the system A is k-complete over P2 (over M , respectively), then it is 2-complete over P2 (over M ,
respectively). According to the arguments presented for the first case, the system A is complete over P2

(over M , respectively). Thus, A is complete over F ∪ {0, 1} and hence over F too. The theorem is proved.
Lemma 6. Let V be an arbitrary set such that |V | ≥ 2. In this case the system of predicates A is complete

over the system F = {0, x ∨ y} if and only if for any element a ∈ V the relation Pa(x) ∈ A holds.
Proof. Necessity. Consider an arbitrary predicate Pa(x). Since the system A is complete over F , then

Pa(x) ∈ [A]F . The definition of the set [A]F implies that the formula Φ(x) realizing Pa(x) has the form
A1(x) ∨A2(x) ∨ . . . ∨Ak(x), where A1(x), . . . , Ak(x) ∈ {A∪ P 0}, k ≥ 1. Obviously, the inequalities Pa(x) ≥
Ai(x) hold for all 1 ≤ i ≤ k. This implies Ai(x) ∈ {0, Pa(x)}, i = 1, . . . , k. If all Ai(x) are identically-false,
then the above formula realizes the identically-false predicate, but not Pa(x). Therefore, at least one of the
predicates Ai(x) realizes the predicate Pa(x), i.e., Pa(x) ∈ A.

Sufficiency. Let the relation Pa(x) ∈ A hold for any element a ∈ V and let P (x) be an arbitrary predicate
from PV . If P (x) is the identically-false predicate, then P (x) ∈ [A]F (because of 0 ∈ F ). Let P (x) be not
identically-false and let a1, . . . , ar be all the elements of the set V on which P (x) takes the value 1, r ≥ 1.
In this case the formula Φ(x) of the form

∨r
i=1 Pai(x) realizes the predicate P (x). Thus, any predicate P (x)

belongs to [A]F . The lemma is proved.
This lemma directly implies
Theorem 2. Let F ∈ {D,D0}, V be an arbitrary finite set such that |V |≥2. In this case the system of

predicates A is complete over the class F if and only if the relation Pa(x) ∈ A holds for any element a ∈ V .
Taking into account Theorem 2 and the duality principle, we obtain the following
Theorem 3. Let F ∈ {K,K1}, V be an arbitrary finite set such that |V |≥2. In this case the system of

predicates A is complete over the class F if and only if the relation Pa(x) ∈ A holds for any element a ∈ V .
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Lemma 7. Let V be an arbitrary finite set, |V | ≥ 2, F ⊆ O∞, and the system of predicates A is complete
over F . In this case, P 0 ∈ A.

Proof. By the hypothesis, A is complete over F . Therefore, there exists a formula implementing the
identically-false predicate.

Since any function f ∈ [F ], where F ⊆ O∞, is represented in the form f ′ ∨ x, where x is some variable,
then any formula for P 0 takes values equal to Φ(x) ∨ P (x), where P (x) ∈ A. This implies P (x) = P 0 ∈ A.
The lemma is proved.

The following theorem presents a completeness criterion for an arbitrary system of predicates over the
classes O∞, MO∞,MO∞

0 , O∞
0 , D1, D01.

Theorem 4. Let F ∈ {P2,M,M0, T0, D,D0}, V be an arbitrary finite set, |V |≥2. In this case the system
of predicates A is complete over the class F ∩O∞ if and only if P 0 ∈ A and the system A is complete over F .

Proof. Necessity. Let the system of predicates A be complete over F ∩O∞. By Lemma 7 we get P 0 ∈ A.
Suppose the system A is not complete over F . Since [A]F∩O∞ ⊆ [A]F , then the system A is not complete
over F ∩O∞, we have got a contradiction.

Sufficiency. Let the condition be valid. The following relations hold:

[P2 ∩O∞ ∪ {0}] = [O∞ ∪ {0}] = P2, [T0 ∩O∞ ∪ {0}] = [O∞
0 ∪ {0}] = T0,

[M ∩O∞ ∪ {0}] = [MO∞ ∪ {0}] = M, [M0 ∩O∞ ∪ {0}] = [MO∞
0 ∪ {0}] = M0,

[D ∩O∞ ∪ {0}] = [D1 ∪ {0}] = D, [D0 ∩O∞ ∪ {0}] = [D01 ∪ {0}] = D0.

We obtain [F ∩O∞ ∪ {0}] = F. Since P 0 ∈ A, then, according to Lemma 2, for the completeness of A over
F ∩ O∞ it is sufficient to show that the system A is complete over F . By the hypothesis, the system A is
complete over F , therefore, it is complete over F ∩O∞ too. The theorem is proved.

The following theorem presents a completeness criterion for an arbitrary system of predicates over the
classes I∞, MI∞,MI∞1 , I∞1 ,K0,K01.

Theorem 5. Let F ∈ {P2,M,M1, T1,K,K1}, V be an arbitrary finite set, |V |≥2. In this case the system
of predicates A is complete over the class F ∩I∞ if and only if P 1 ∈ A and the system A is complete over F .

Proof. The theorem directly follows from the previous one and the duality principle.
Let A= {A1(x), . . . , An(x)} be an arbitrary system of predicates defined on V . We say that the system

A is linearly independent if the equality

c1 · A1(x) + . . .+ cn ·An(x) + cn+1 · P 1 = 0,

where c1, c2, . . . , cn, cn+1 ∈ {0, 1}, implies c1 = c2 = . . . = cn = cn+1 = 0 (here and below we mean the sum
modulo 2). Let A be an arbitrary system of predicates defined on V . We say that its subsystem A1 is the
maximal linearly independent subsystem if the following conditions hold:

1) A1 is linearly independent,
2) for any predicate P (x) from A \A1 the system A1 ∪ P (x) is not linearly independent.
The following result is valid.
Lemma 8. Let F = {x + y, 1}, A be an arbitrary system of predicates, A1 be the maximal linearly

independent subsystem of the system A. In this case, [A]F = [A1]F .
Proof. Since A1 ⊆ A, then [A1]F ⊆ [A]F .
Suppose [A1]F ⊂ [A]F . In this case there exists a predicate P (x) such that P (x) ∈ [A]F , but P (x) /∈ [A1]F .

The predicate P (x) is realized by the formula

A1(x) + . . .+An(x) +B1(x) + . . .+Bk(x) + c · P 1,

where A1(x), . . . , An(x) ∈ A \ A1, B1(x), . . . , Bk(x) ∈ A1, c ∈ {0, 1}.
Let A1 = {D1(x), . . . , Dm(x)}. Since A1 is the maximal linearly independent subsystem of the system A,

the systems A1 ∪Aj(x), where j = 1, . . . , n, are linearly dependent. Consider the system A1 ∪A1(x). There
exist c1, . . . , cm ∈ {0, 1} not all equal to zero and such that

c1 ·D1(x) + . . .+ cm ·Dm(x) + cm+1 · P 1 +A1(x) = 0.

This implies that the predicate A1(x) is realized by the formula

c1 ·D1(x) + . . .+ cm ·Dm(x) + cm+1 · P 1.
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We get A1(x) ∈ [A1]F . Similarly, considering the systems A1 ∪Aj(x), where j = 1, . . . , n, we get A1(x), . . . ,
An(x) ∈ [A1]F , therefore, P (x) ∈ [A1]F . We have got a contradiction. Thus, [A1]F = [A]F . The lemma is
proved.

Theorem 6. Let V be an arbitrary finite set, |V | ≥ 2. In this case the system of predicates A is complete
over the class L if and only if there exists a linearly independent system of predicates A′ ⊆ A such that
|A′| = |V | − 1.

Proof. Necessity. Consider the system F = {y+ z, 1}. Since [F ] = L, it is sufficient to prove the theorem
for the system F . Suppose the system A is complete over F , but the condition does not hold, i.e., the
maximal linearly independent subsystem A1 of the system A has the cardinality less than |V | − 1. Let
A1= {P1(x), . . . , Pm(x)}. In this case, m < |V | − 1. The system A is complete over F , therefore, Lemma 8
implies that the system A1 is also complete over F . In this case any predicate from [A1]F is realized by the
formula

c1 · P1(x) + c2 · P2(x) + . . .+ cm · Pm(x) + cm+1 · P 1,

where c1, c2, . . . , cm, cm+1 ∈ {0, 1}. Due to the linear independence of the system A1, we have |[A1]F | = 2m+1.
On the other hand, |PV | = 2|V | > 2m+1. Therefore, the system A1 and hence the system A are not complete
over F , we have got a contradiction.

Sufficiency. Let the condition hold and the maximal linearly independent subsystem of the system A

have the cardinality not less than |V | − 1. Denote this subsystem by A1. Let

A1 = {P1(x), . . . , Pm(x)},m ≥ |V | − 1.

Any predicate from [A1]F is realized by the formula

c1 · P1(x) + c2 · P2(x) + . . .+ cm · Pm(x) + cm+1 · P 1,

where c1, c2, . . . , cm, cm+1 ∈ {0, 1}. Due to the linear independence of the system A1, we have |[A1]F | = 2m+1.
On the other hand, |PV | = 2|V | ≤ 2m+1. Therefore, [A1]F = PV . Thus, the system A1 is complete over F .
According to Lemma 8, the system A is also complete over F . The theorem is proved.

Theorem 7. Let V be an arbitrary finite set, |V |≥ 2, F ∈ {L0, L1, L01, SL}. In this case the system of
predicates A is complete over the class F if and only if A is complete over L and P 0, P 1 ∈ [A]F .

Proof. Necessity. Let A be complete over the class F , then P 0, P 1 ∈ [A]F . Suppose the system A is not
complete over L. Since [A]F ⊆ [A]L, then the system A is not complete over F , we have got a contradiction.

Sufficiency. Let A be complete over L and P 0, P 1 ∈ [A]F . The following relations are valid:

[L0 ∪ {0, 1}] = [L1 ∪ {0, 1}] = [L01 ∪ {0, 1}] = [SL ∪ {0, 1}] = L.

Lemma 2 implies that for the completeness of A over F it is sufficient to show that A is complete over
L. By the hypothesis, the system A is complete over the class L, therefore, it is complete over F too. The
theorem is proved.
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