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In this paper we consider the optimal stopping problem for target functions dependent on the absolute
maximum of homogeneous diffusion Similar problems were considered in many papers The problem of
maximization of the ratio of the value of the process to the value of its absolute maximum was considered in
[1] in the model of geometrical Brownian motion In this case the answer to that problem was not obtained for
certain values of parameters The missing case was considered in [2] In addition, the problem for the inverse
relation was also solved in that paper Another generalization was proposed in [3], the cases of searching
for the minimal value and the formulation for the absolute minimum of the process were considered The
problems of minimization of the square and arbitrary power of the difference of the current value and the
maximum in the case of Brownian motion were solved in [4, 5] and [6], respectively Note that in all papers
mentioned above the principal part of the solution consisted in the reduction of the problem to the case of a
one dimensional Markov process and the function in the form of Maier, or Lagrange An alternative approach
was proposed in [7] to the optimal stopping problem in the case of an arbitrary functions in the LS form
on an infinite time horizon and for arbitrary homogeneous diffusion A differential equation was obtained
in this formulation so that the boundary of the optimal stopping domain must satisfy this equation It was
shown that the “maximum principle” holds, namely, one should take the maximal solution to the equation
not crossing the diagonal, i e, the set of points where the value of the process coincides with its current
maximum In this paper we apply a similar approach and extend it to the case of finite horizon, which allows
us to generalize the results of [1 6]

Consider the case of an arbitrary homogeneous diffusion

dXt = b(Xt)dt+U(Xt)dBt, (1)

where By is the standard Brownian motion coordinated with the filtration (F3)¢>0 and the functions b and

o are Lipschitzian, ie,
b(z) = b(y)| + lo(z) —o(y)| < Clz—y|

for some constant C', which ensures the existence and P a's uniqueness of the strong solution to (1) We
also suppose the diffusion X; is regular, this does not restrict the generality because any diffusion can be
represented as a composition of regular ones

As is known, the characteristic operator for diffusion (1) has the form

of o*(x) O f
ox (=) + 2 Ox? (z).

By J we denote the set of values which the process (X;, M;) can take and consider the optimal stopping
problem

L x f(x) = b(z)

‘/Y*(J?,S) = sup E.’ESf(XT7MT)7 (2)
TEMx (f)

where we assume that the function f(z,s) € C%1(J) estimating the “closeness” of the value of the process
at the stopping moment to the value of the current maximum satisfies the condition f}(z,s)|,_, = 0, and
M (f) is the set of all stopping moments 7 satisfying the condition Eys sup, <, [ f(X¢, M¢)| < oo, V(x s)eJ
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At last, suppose that if P(tl_i>m X; =17) > 0, then Vs € I limsup f(z,s) < oo The violation of this
oo

a:~>l1
condition for certain s means that Vi(x,s) = oo for z < s
Problem (2) is a particular case of the problem Vi (z,s) = sup E,sh(X,, M,4¢), where ¢ > 0 is some
7>0

constant (probably equal to infinity) for the function f(X,, M;) = E(h(X,, Mri| X-, M,))
Recall that the scale function for a homogeneous diffusion satisfying stochastic equation (1) is given by

the formula, @ Y 2b(2)
s [l (- [ 20).

Denote u(x) = ') = —L(nL'(2)) = =} 1.\

If 7, is the moment when the diffusion reaches the level a and 7, = min(7,, 7), then for a <z < b we
have
L(b) — L(x) L(z) — L(a)
L(b) — L(a)’ L(b) - L(a)

Note that the second coordinate of the Markov process (X, M;) changes only on the diagonal, ie, at
points where X; = M,

Due to the superharmonic characterization of the function V. (z, s), the stop is not optimal at the points
not lying on the diagonal (i e, x < s) where we have

Fia(@,s) + 2p(2) fr(2, 5) > 0. (3)

For the points lying on the diagonal, the infinitesimal generator has a more complex form Nevertheless,
condition (3) is sufficient for a point (x,x) to belong to the domain of continuation of observations

Lemma 1. It is not optimal to stop at points (x,x) such that either fl(z,z) > 0, or fl(z,z) =0 and (3)
holds

The proof is based on the fact that in conditions of the lemma and for sufficiently large k£ we have
;irrtl) Eupof(Xr 5. My ;) > 0, where 7,5 = inf{t : Xy = v+ 0 or X; = x — ké} The detailed proof of this
1 : :

inequality is relatively long and so we omit it

The method of solution of problem (2) is typical for optimal stopping problems We suppose that the
condition of smooth gluing is valid and then prove the verification theorem The Stefan problem has in this
case the following form:

Pw(X-,—a:a,): PI(XTa:b):

L xV(x,s) =0 for g(s) <z <s, W(z,s)| =0,

V(x, s)|gE:g(S)Jr = f(=,s), %‘; (z, s)|x:g(s)+ = fl(x,s).
Denote Vy(s) = V,(s,s) Using that X is a strictly Markov process, we can write
L(s) — L(x) L(z) — L(g(s))
L(s) — L(g(s) L(s) = L(g(s))
This inequality holds for all « € (g(s),s) Taking the limit for x | g(s), we get

o Vg(x,s) — H(s) o {Vg(x, s) — H(s)/L(m) — L(g(s))] _ OVy(x,s)
zlg(s) L(x) — L(g(s))  alg(s) x —g(s) x—g(s) Ox

Vy(s,x) = H(s) )+‘@(8)

Thus, inequality (4) implies
Vy(s) — H(s) F(s)

L(s) = L(g(s)) — L'(g(s))"
Expressing V;(s) from the latter equality, substituting it in into (4), and applying the principle of normal

reflection, we get
(s) . L(z) — L(g(s + H(s

Denote A(g(s),s) = “(-L9D At the point (g(s),s) we have

L/(g(s))
§(s) = _filg(s), s)ATH(g(s), s) + fii(g(s), s)
ve(9(5),8) +2u(s) frlg(s),s)

Vy(z,s) =
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By I we denote the interval where the diffusion takes its values and by I’ we denote the same interval
with its lower border I;

Definition 1. A semicontinuous from below boundary g : I — I°, g(s) < s, is called admissible if the
points (g(s), s) belong to the closure of the set {(x,s) : Lx f(x,s) < 0} and for i1 < g(s) < s the function
g(s) satisfies (6)

Differentiating (5) with respect to ¢g(s) (as an independent variable), we obtain the following

Lemma 2. If the inequality g1(s) < g2(s) holds for all s, then Vg, (x,s) > Vg, (x, s)

Further, since the solution to the differential equation continuously depends on the initial conditions,
there exists the maximal admissible boundary g.(s) We say that the function f satisfies the single crossing
condition if for any s there exists a boundary z(s) such that L x(z,s) < 0 for < z(s) and L x(z,s) > 0
for s >z > x(s)

Theorem 1. Let f satisfy the single crossing condition If the relation Ef (X, , M, ) < oo holds for the
stopping moment 7, = inf{t > 0: X; < g.(M)}, then this moment is optimal in problem (2)

Proof Let g(s) be an admissible boundary Apply Ito’s formula to the process V, (X, My) We get

t t t
V,(Xy, My) = —|—/a XT,M dBH—/U XT,M )dM, +/(]LXV,])(XT,MT)dr. (7)
0 0 0

The integral over M, equals zero because of the principle of normal reflection
t t
The process [ o(X;) 88‘;9 (X, M, )dB, is a continuous local martingale and the process [(LxV,)(X,, M, )dr
0 0

is not increasing due to the single crossing condition This implies that V, (X, M;) is a local supermartingale
Let 7 be an arbitrary stopping moment for X Consider 7/ = inf{t > 7 : L x(X;, M;) < 0} Applying
Ito’s formula to the process f(X;, M;), similar to (7) we get

F(Xe, My) = flz,s) + Q¢ + P,

N ot
where Q; is also a local martingale and P, = [(L x f)(X,, M, )dr increases for 7 <t < 7/
0

Take a sequence of stopping moment o, being localizing for ) and @ In this case,

Ea:sf(X‘r/\anv M‘r/\(rn) S Ea:sf(X‘r’/\anaM‘r’/\an) é EIS‘/t(](XT/\O'»,L? M‘r/\(rn) S Vg(xv 8) + EISQT'/\UH = Vg(xv 8)

Tending n to infinity and using Fatou’s lemma, we get E . f (X, M;) < Vy(x,s) Taking the supremum
over all possible 7 and the infimum over all possible g, we obtain

Vi(z,s) <inf Vy(z,s) = Vg, (2, 5),
g
and the equality holds because of Vg, (z,s) = By f (X, M;,)
Now proceed to the case of finite horizon Consider the problem

Vi(z,s,t) = sup E,qf(X;, M, ,7), where (fi(z,s,t))],_, =0 for any s and ¢ (8)
0<r<T

Its important particular case is
V;(l', S, t) = Sup Exsth(X‘rv MT)
0<r<T

for the function f(X,, M,,7) =E(h(X,, M7)| X, M;,T)

By the analogy With the previous case, for the Markov process (X, My, t) we have

Lemma 3. If f (z,s,t) + 2u(x)fi(x,s,t) + f{(z,s,t) > 0 then the stop at the point (x,x,t) is not
optimal

The proof utilizes the same idea as Lemma 1, and hence we omit it

In order to derive an equation for the boundary of optimal stopping, we need one more auxiliary fact

Lemma 4. The derivative V)(z,s+,t) exists and satisfies the following equation on the domain C of
continuation of observation:

<;+Lx) V!(z,s+,t) = 0. (9)
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Proof Consider an arbitrary point (xg, so,t0) and prove the required assertion for it Since the set C' is
open, we can take § > 0 so that {(x,s,t)} € C for s9 < s < sp+d For an arbitrary boundary g = g(¢)
consider the stopping moment 7, = inf{# > ¢ : Xy > s or Xy < g(0)} Define the payout function

W(a,s.t) = {V(so,s,t), for x = s¢ ;
flx,s,t), foraz < s
Finally, assume w(z, s,t,g) = E.W (X5,,s,7,) Note that since VS’(so,s—i—,t)|S:SO exists for any ¢, then W
is differentiable and hence w/ exists too Since the boundary g (and hence 7;) does not depend on s, the
following relation is valid:
wi(x,s,t,9) = By Wi(Xz,,5,7,).

Therefore, w satisfies the equation w’, + L xws =0

Further, for sg < s < so + 0 we have w(xo,s,t,9) < Vi(xo,s,t0), and the equality is attained for
9(0) = 9.(5,)

By X we denote the closure of the family of distributions (X7 , Mz ,7,) with all possible 7, It is dense
because for any ¢ > 0 and for sufficiently large number M the random variable belongs to the compact set
[xo—M, o+ M] X [s0, So+M] x [0, T] with the probability exceeding 1—¢ Therefore, according to Prokhorov’s
theorem, X is compact (in the weak convergence topology) Further, W, and hence w, are semicontinuous
from above This fact and the continuity of w’, allow us to apply the envelope theorem in the formulation of
Corollary 4 from [8] This gives that the function Vi (z,s,t) = w(z, s, t, g«) is differentiable with respect to s
from the right and the derivative satisfies (9) The lemma is proved

Note that if g(s, ) is smooth, then the condition of smooth gluing implies the equalities V/(g(s,t), s, t) =
F1(g(s,8),5,) and V/(g(s,1),5,8) = F(g(s,).5,1)

Derive the differential equation for the surface being the boundary of the optimal stopping domain for the
process (X, My, t) Define the stopping moments 7, = inf{t > 0: X; < g(My,t)}, 7o = inf{t > 0: X; = M},
and 790 = 7y A 70 Denote Vy(z,s,t) = Epo f(X7,, My,,7,) and V(s, 1) = Vy(s, s,t)

Applying Ito’s formula to the function V/(x, s, t), we get

Tg0 Tg0

VICsi0) = Vo) + [ (5 + L )Valosnar+ [ o(x) )" (s, rja,
t t

Taking a localizing sequence of stopping moments and using Fatou’s lemma again, we conclude that V!(x, s,t) =
EV/(X;,,,5,740), OF

S S

T T
(z,s,t) /V’ss@d‘bh(xse—k/‘/' (g(s,0),s,0)dd! (z, s, 0), (10)
t t

where ®"(z) = P(740 = 79 < x) and ®!(z) = P(740 = 7, < x) The first summand in (10) equals zero due to
the principle of normal reflection Use the smoothness of gluing in s and differentiate with respect to =, We
obtain

T
Vas(g(s,t),s,1) =/fs(g(Sﬁ)aSﬁ)d(@l);(g(sat%8,9)~ (11)
t
On the other hand, differentiating the original condition of smooth gluing with respect to s, we get
Vas(9(s,t),8,t) + gs(8,8)Vau (g(8, 1), 8, 1) = fas(9(s,1),5,1) + gs(8, ) fuu(9(s, 1), 8, 1),
Vol 0.0) = (g +x ) £(0(5.005.0) 50+ FL(0(5,0). 5.0

Combining this with (11), we obtain the following equation:

T
o2g(s,ty) | F2(0(5:0),5,0)d(s,1,6) = i (g(s:1),5,)

2 ' (fl+Lxf)(g(st),s,t) ’ (12)

g;(sat) =
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where (0, s,t) = (®!)! (g(s,t), s,0) can be calculated as solutions to the second king Volterra equation

T

W (g(s,t),9(s, 1), 1) = /‘11(9(879)79(8,7"),7" — 0)dy (s, t,0)

t

for the distribution function ¥(z,y,t) = P(Xtvr, <y | Xo =)

Proceed to the proof of the verification theorem

Definition 2. A semicontinuous from below boundary g : I x [0,T) — I°, g(s,t) < s, is called admissible
if at the points where I} < g(s,t) < s the function ¢(s,t) is the solution to equation (12) and the inequality
L x f(g(s,t),s,t) <0 holds for all (s,t), where g(s,t) > s

We say that a function f satisfies the single crossing condition if for each s there exists a boundary
(s, t) in the interval I such that (3, +Lx) f(z,s,t) > 0 for > z(s,t) and (S, +Lx) f(z,s,t) < 0 for
x < x(s,t)

Define Vj(x,s,t) for s > « > g(s,t) as the solution to Cauchy problem for the equation

0
<8t+LX) Vy(z,s,t) =0

with the instant stopping conditions and conditions of smooth gluing on the boundary g, and also with the
condition Vy(z,s,T) = f(z,s,T) In this case we can similarly prove that V, (X, My, t) is a local super
martingale
Lemma 5. If for all s and t the inequality g1(s,t) < ga(s,t) is valid, then Vy, (x,s,t) > Vg, (z, s,t)
Proof For V,, and V,, we write representations similar to (7) with the use of the local martingales Q}
and Q2 and the nonincreasing processes P!, P? Subtract one from the other and take a localizing sequence
of stopping moments for Q2 — QL We have

(ng - %1)(XT1VU7LaMT1VU7zaTl \ Jn) = quz ((E, Sat) - Vgl ((E, Sat) + (MQ - Ml)TIVUn + (P2 - Pl)‘rl\/tfnv (13)

T1VOn

where 71 is the moment when g, is attained The latter summand is equal to [ (gt + L X) Vo (X, M, 7)dr
T2Von

and is not less than zero,

For n — oo the expression in the right hand side of equality (13) tends to Vg, (X, , M, 71)—Vy, (X, M+,
) = f(Xr, Mr,71)— f(X5,M;,71) =0 Using Fatou’s lemma, we get V, (x, s,t) — Vj, (2, s,t) < 0, which
was required

Finally, prove the last auxiliary result

Lemma 6. There exists the mazimal admissible boundary g.(s,t)

Proof In contrast with the case of an infinite time horizon, the form of the equation for the boundary is
too complex here to prove the existence of the maximal solution directly Notice instead than it is sufficient
to prove the existence of an admissible solution having the minimal function (s,t) — V,(s, s,t)

In fact, suppose gi(s,t) and g2(s,t) are two admissible boundaries and let the inequality Vi, (s,s,t) <
Vg, (s, s,t) hold for all s € I and ¢ € [0,T] In this case, Vg, (91(s,1),s,t) = f(g1(s,t),s,t) < Vg, (g1(s,%), s, 1),
by Lemma 5 Denote C1 = {(x,s,t) : s > x > gi(s,t)}, on the boundary of this set we have V,,(z,s,t) —
Vg, (2, 8,t) > 0 Since in this case ({?t + L x) Vg, = 0 inside of Cy, then due to the single crossing condition,
inside of C1 we have the equality (5, +L x) (Vy, — Vy,) <0 Along with the inequality on the boundary of
C this means that V,, —V,, > 0in C; Outside of Cy we similarly get Vi, (z,s,t) = f(z,s,t) < Vg, (z,s,t)

Thus, if for a certain admissible function g. and for all (s,t) the equality V, (s, s,t) = 11615 Vy(s,8,t) is

g

valid (here we have denoted the set of all admissible boundaries by G), then for all (z, s,t) we have

\% t) = inf V, t).
g*(l‘,S, ) ;gg g(x757 )

Now suppose the inequality g(s,t) > g«(s,t) holds for some admissible function g and some s and ¢ In
this case, Vy(g(s,t),s,t) = f(g(s,1),s,t) <V, (9(s,t),s,t), but this contradicts the minimality of V (s, s, t)

It remains to show the existence of the function g, minimizing V, (s, s,t) Consider the function Vi(s,t) =
uelg Vy(s,s,t) The infimum is determined here because the values are bounded from below by the val
9

MOSCOW UNIVERSITY MATHEMATICS BULLETIN Vol 70 No 5 2015



OPTIMAL STOPPING FOR ABSOLUTE MAXIMUM 207

Finally, define V(m, s,t) as the solution to the Cauchy problem with conditions specified on the diagonal,
ie,
(5 +Lx)V(ws,t) =0, Viest)| =V(st), (st =9 (s

=S r=s

The surface V(z, s,t) crosses f(z,s,t) over some curve g, (s,t) which is admissible because the solution
to the Cauchy problem continuously depends on initial conditions

The final result is given by

Theorem 2. Let g.(s,t) be the mazimal admissible solution If the stopping moment 7, = inf{t > 0 :
Xi < go(My, t)} satisfies the inequality Ef (X, M., T) < oo, then it is optimal in problem (8)

Proof Let T be an arbitrary stopping moment for the process X In the representation of V, we take a
localizing sequence of stopping moments o,, for ¢ In this case,

EZ‘St,f(XT/\G'n y MT/\U77,7 TN Un) < Eacsth (XT/\G'»,,, y MT/\U77,7 TN Un) < Vg (337 S, t) + ExstQT/\an = Vg (337 5)

Tend n to infinity and use Fatou’s lemma We obtain E,, f(X;, M;) < V(x,s)
Taking supremum over all possible 7 and infimum over all admissible g, we get

Vi(z,s) <infVy(z,s) = Vg, (z, 9);
g

the equality takes place because of V,_(x,s) = Epo f (X, , M)
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