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Abstract—Spatial series based on the histograms of interatomic distances are investigated by the detrended
fluctuation analysis and the rescaled range method. Model glycine and alanine peptides are used as the
objects of the study. The influence of the monomer type, chain length, and conformation on the values of the
Hurst coefficients is analyzed. Most of the spatial series studied are shown to exhibit persistent behavior, that
is, to possess long-term memory.
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The methods of fractal geometry and nonlinear
dynamics are widely used nowadays for research in
diverse fields, including physics [1, 2], chemistry [3, 4],
biology [5, 6], ecology [7], economics [8, 9], and tech-
nology [10, 11]. There are studies that employ bioin-
formatic approaches to analyze the relationship
between the primary and spatial structure of proteins
[12–15]. Procedures based on the analysis of spatial
series, including spectral power analysis, detrended
fluctuation analysis (DFA), and the normalized range
method (R/S), are widely used in these studies [16, 17].
The Hurst coefficient is a key characteristic of spatial
and temporal series, which enables the assessment of
the degree of randomness/non-randomness and
detection of long-term memory in the functions ana-
lyzed [18]. It should be noted that large protein mole-
cules were analyzed in most of the published works,
while little attention was paid to peptides. The aim of
this work was to study the spatial series based on gly-
cine and alanine peptides with the DFA and R/S
methods.

Model Peptides
The model peptides studied consisted of glycine

(Gly, G), alanine (Ala, A), and random combinations
of these residues (Table 1); the peptide’s length ranged
from 5 to 50 amino acid residues. Three-dimensional
structure of model peptides was simulated in the
HyperChem program software [19] with data from the
amino acid database. Two conformations of the pep-
tides—the α-helix (L; φ = –58°; ψ = –47°; ω = 180°)
and the single-stranded β-structure (L; φ = 180°; ψ =

180°; ω = 180°)—were used for the analysis. Histo-
grams of the interatomic distances calculated with a
step size of 0.01 Å (Figs. 1, 2) were considered as spa-
tial series.

METHODS
The DFA and R/S methods were used to study the

model peptides. The DFA algorithm can be repre-
sented as a series of steps [20, 21]:

(1) the discrete series X of N samples was trans-
formed by subtracting the mean (μ) and summing:

yk = ;

(2) the resulting series was divided into non-over-
lapping blocks of the same length n;

(3) the local trend yk, n was estimated by the least
squares method in each block of size n;

(4) the f luctuation function F(n) =

 was determined for each
block of size n; and

(5) the coefficient γ was calculated by taking the
double logarithm of the equation F(n) = constnγ. In
the present work, a linear function was used to assess
the local trend. The minimum and maximum block
sizes were 4 and N/4, respectively. Calculation of the
Hurst coefficient (H) was based on the ratios between
different fractal measures [21].

In the case of the normalized range method, the
following algorithm was used [18, 22]:
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Table 1. Primary structure of the peptides and the number of glycine (mG) and alanine (mA) residues

Peptide mG mA Structure

G5 5 0 (–G–)5

G10 10 0 (–G–)10

G15 15 0 (–G–)15

G20 20 0 (–G–)20

G30 30 0 (–G–)30

G40 40 0 (–G–)40

G50 50 0 (–G–)50

A5 0 5 (–A–)5

A10 0 10 (–A–)10

A15 0 15 (–A–)15

A20 0 20 (–A–)20

A30 0 30 (–A–)30

A40 0 40 (–A–)40

A50 0 50 (–A–)50

P1 4 6 AAGGAGGAAA
P2 6 4 GAGGAGGAAG
P3 5 5 AAAAGGAGGG
P4 3 7 GAGAAAAAAG
P5 4 6 GAGAAGGAAA
P6 12 8 GAAGGGGGAAGAAGGAAGGG
P7 9 11 AGGGAGGGAAAGAGGAAAAA
P8 14 16 AAAGAGGGGGGAAGGAAGGAGAGAAGAAAA
P9 14 16 AAAGGGGAGAGGGAAAGAAAAGGAGAAGAG
P10 24 16 AGGAGGGGGAGGAGAGAGGGGAGGAAAGAAGGA AAGGGAG
P11 21 19 GGAAGAGAGAAAGAGGAGAGGGAGGGGGAAGAA AGAAGAG
P12 20 20 AGAAAGAGGGGAGGGGAAGGAGGAAAGAGGAGG AAGAAAA
P13 21 19 GGAGGGGAGAAAAAAGGAGAAGGAAAAGGAGAG GAGAGGG
P14 20 20 AGAAAGGGGGGAGAAGAGAAGAGGAGGAAGGAA AGAGAGA
(1) the original data block of the length N was
transformed by subtracting the average and summing;

(2) the range R (the difference between the maxi-
mum and minimum value of the series) and the stan-
dard deviation S were calculated;

(3) the normalized range R/S was calculated;
(4) the series analyzed was divided into two identi-

cal blocks;
(5) steps 1–4 were repeated for each block until the

block length was more than 8; and
(6) the coefficients of the linear equation

were calculated to determine the Hurst coefficient.
The coefficients and statistical characteristics of

the regression models were estimated using the SVD

( ) ( )= +log const lo .gR S H n
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software [23]. The following parameters were used as
the statistical characteristics: N, the number of points;
R2, the linear correlation coefficient; SD, the standard
deviation; and Δ, the standard error of the equation
coefficient.

RESULTS AND DISCUSSION

The interatomic distance histograms shown in
Figs. 1 and 2 are typical for the peptides studied. For
instance, it can be noted that the conformational tran-
sition from the α-helix to the β-structure is accompa-
nied by the maximum linear size and intensity values
approximately doubling. Therefore, we should expect
the behavior of the spatial series studied to largely
depend on their conformational state.
 74  No. 5  2019
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Fig. 2. Histogram of interatomic distances (r, Å) in the
Gly10 peptide with β-structure.
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Fig. 3. Dependence of the fluctuation function (F(n)) on the
block size (n) for the Ala50 peptide (α-helical structure).
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Fig. 1. Histogram of interatomic distances (r, Å) in the
Gly10 peptide with an α-helix structure.
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As is known [24], the existence of power functions
of the type

where x and f(x) are variables and c and k are constant
coefficients, is one of the indications that a temporal
(spatial) series possesses fractal properties. Exponent k
is a characteristic of scale invariance of the series
under investigation in this case. In a spectral power
analysis study, for example, the square of the ampli-
tude serves as the f(x); the frequency, as x; and the
spectral index (–β), as k. In the case of DFA, these
parameters are represented by F(n), n, and γ, respec-
tively.

Since there are different methods for studying data
series, it is important to know how the coefficients in
the power relationships are connected to each other,
and a dichotomous model [21] can be used to assess
this connection. The fundamental concept of this
model consists in the possibility of classifying the
series under investigation as stationary fractional
Gaussian noise (fGn) or as non-stationary fractional
Brownian motion (fBm) according to the results of the
analysis of the k values. If the DFA method is used,
processes with k(γ) <1 are assigned to the former type
and those with 1 < k(γ) <2, to the latter type. Given
that the Hurst coefficient (H) is widely used to charac-
terize the fractal properties of temporal (spatial) series,
we will consider the following relationships:

Examples of the calculation of fractal parameters
for the Ala50 molecule by the DFA and R/S methods
are shown in Figs. 3 and 4. The linear models obtained
have good statistical characteristics, and the slope
coefficients provide information on the degree of
invariance in the spatial series analyzed.

The results of the calculations of the fractal charac-
teristics for peptides composed of Gly and Ala are
shown in Table 2. The mean values (Hα and Hβ) were
calculated to elevate the statistical significance of the
data obtained. As evident from the data presented, the
replacement of glycine by alanine does not lead to sig-
nificant changes in the H value. At the same time, the
dependence of the Hurst coefficient on the number of
monomers in the chain is quite weak. The Hα value
ranges from 0.50 to 0.55 for (Gly)m and from 0.49 to
0.58 for (Ala)m α-helical peptides. Variation in this
range shows that the correlation between the members
of the series is either non-existent (white noise, H = 0.5)
or positive (H > 0.5); i.e., the growth/decline or
decline/growth trend observed is likely to continue in
the future [18, 24]. The transition from the α-helix to
the β-structure is accompanied by an increase in the
Hurst coefficient. The Hβ values for the spatial series
based on β-structures vary in the range of 0.60 to 0.70
for (Gly)m and 0.66 to 0.78 for (Ala)m. Such values are
characteristic of persistent processes (that is, the series

( ) = ,kf x cx

= γ = γ −(fGn); 1(fBm).H H
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Fig. 4. Dependence of the normalized span (R/S) on the
block size (n) for the Ala50 peptide (α-helical structure)

N = 5; R2 = 0.995; SD = 0.02
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analyzed possess memory and the trends observed in
the series are likely to persist in the future).

A similar result was obtained in a study of 25 spatial
series derived from histograms of interatomic dis-
tances in four series of homologous organic com-
pounds [25]. A positive correlation (H > 0.5) between
the members of these series was established, and the
value of the Hurst coefficient did not depend on the
length of the homologous series.

The effect of the monomer type, chain length, and
conformation on the Hurst coefficient values in pep-
MOSCOW UNIVERSITY CHEMISTRY BULLETIN  Vol.

Table 2. Hurst coefficients (H) and standard errors (Δ) calcu
values (Hα, Hβ) and standard deviations (±s) for two conform
glycine or alanine residues

Peptide m
HDFA (±Δ)

α-helix β-structure α

Gly5 5 0.48 (0.02) 0.60 (0.02) 0.61
Gly10 10 0.49 (0.01) 0.66 (0.03) 0.56
Gly15 15 0.50 (0.01) 0.70 (0.03) 0.55
Gly20 20 0.50 (0.01) 0.69 (0.03) 0.54
Gly30 30 0.50 (0.01) 0.66 (0.03) 0.56
Gly40 40 0.49 (0.01) 0.64 (0.03) 0.53
Gly50 50 0.48 (0.01) 0.63 (0.04) 0.51
Ala5 5 0.52 (0.02) 0.58 (0.02) 0.64
Ala10 10 0.49 (0.02) 0.64 (0.01) 0.54
Ala15 15 0.51 (0.01) 0.68 (0.01) 0.59
Ala20 20 0.51 (0.01) 0.68 (0.02) 0.58
Ala30 30 0.51 (0.01) 0.66 (0.02) 0.54
Ala40 40 0.50 (0.01) 0.65 (0.03) 0.51
Ala50 50 0.48 (0.01) 0.63 (0.03) 0.50
tides composed of Gly and Ala was considered above.
Actually, peptides consist of different amino acids.
Therefore, we investigated the behavior of model pep-
tides with glycine and alanine residues combined in a
random manner (Table 3). Firstly, it can be noted that
a positive correlation—in other words, a tendency to
preserve the trend (H > 0.5)—was observed in all the
spatial series analyzed. Moreover, a tendency toward
an increase of the H value with an increase in the num-
ber of monomers was observed, in contrast to the
results for the (Gly)m and (Ala)m peptides. Thus, Hα
increased from 0.61 to 0.75 as the number of mono-
mers m in an α-helical peptide increased from 10 to
40, and the Hβ values in the case of β-structures
ranged from 0.80 to 0.95. The Hurst coefficients for
the (Gly)m and (Ala)m peptides ranged from 0.49 to
0.51 under these conditions (Table 2). Secondly, the
transition from the α-helix to the β-structure led to an
increase in the value of the Hurst coefficient, similarly
to that observed in the case of the (Gly)m and (Ala)m
peptides.

Note that the data we obtained point to the per-
sistent behavior of the spatial series derived from the
analysis of model peptides and show good agreement
with the published data. For instance, the H value for
the data series based on the B factors of the main pro-
tein chain in 14 lysozyme complexes ranged from
0.637 to 1.000 [26]. The correlated and non-random
character of the amino acid sequences investigated was
demonstrated in a study of spatial series of 32 different
proteins [17].
 74  No. 5  2019

lated by DFA (HDFA) and R/S (HR/S) methods, their average
ations (α-helix and β-structure) of peptides composed of m

HR/S (±Δ)
Hα (±s) Hβ (±s)

-helix β-structure

 (0.02) 0.60 (0.04) 0.55 (0.07) 0.60 (0.00)
 (0.03) 0.70 (0.01) 0.53 (0.04) 0.68 (0.02)
 (0.01) 0.69 (0.02) 0.53 (0.03) 0.70 (0.01)
 (0.02) 0.67 (0.06) 0.52 (0.02) 0.68 (0.01)
 (0.02) 0.73 (0.05) 0.53 (0.03) 0.70 (0.04)
 (0.02) 0.69 (0.07) 0.51 (0.02) 0.67 (0.03)
 (0.02) 0.76 (0.03) 0.50 (0.02) 0.70 (0.07)
 (0.02) 0.74 (0.03) 0.58 (0.06) 0.66 (0.08)
 (0.02) 0.81 (0.03) 0.52 (0.03) 0.73 (0.09)
 (0.01) 0.83 (0.01) 0.55 (0.04) 0.76 (0.08)
 (0.02) 0.78 (0.06) 0.55 (0.04) 0.73 (0.05)
 (0.01) 0.87 (0.01) 0.53 (0.02) 0.77 (0.11)
 (0.02) 0.79 (0.07) 0.51 (0.01) 0.72 (0.07)
 (0.02) 0.92 (0.01) 0.49 (0.01) 0.78 (0.15)
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Table 3. Hurst coefficients (H) and standard errors (Δ) calculated by DFA (HDFA) and R/S (HR/S) methods, their average
values (Hα, Hβ) and standard deviations (±s) for two conformations (α-helix and β-structure) of peptides of m monomers
based on random glycine and alanine combinations.

Peptide m
HDFA (±Δ) HR/S (±Δ)

Hα (±s) Hβ (±s)
α-helix β-structure α-helix β-structure

P1 10 0.62 (0.02) 0.80 (0.01) 0.64 (0.04) 0.82 (0.05) 0.63 (0.01) 0.81 (0.01)
P2 10 0.70 (0.01) 0.81 (0.02) 0.69 (0.03) 0.87 (0.05) 0.70 (0.01) 0.84 (0.03)
P3 10 0.61 (0.02) 0.82 (0.02) 0.66 (0.02) 0.87 (0.05) 0.64 (0.03) 0.85 (0.03)
P4 10 0.58 (0.02) 0.75 (0.01) 0.63 (0.05) 0.85 (0.05) 0.61 (0.03) 0.80 (0.05)
P5 10 0.62 (0.02) 0.80 (0.01) 0.67 (0.05) 0.83 (0.05) 0.65 (0.03) 0.82 (0.02)
P6 20 0.69 (0.01) 0.90 (0.02) 0.69 (0.03) 0.84 (0.07) 0.69 (0.00) 0.87 (0.03)
P7 20 0.71 (0.01) 0.93 (0.01) 0.72 (0.02) 0.87 (0.07) 0.72 (0.01) 0.90 (0.03)
P8 30 0.76 (0.01) 0.93 (0.03) 0.74 (0.03) 0.96 (0.02) 0.75 (0.01) 0.95 (0.02)
P9 30 0.76 (0.01) 0.94 (0.03) 0.73 (0.04) 0.96 (0.01) 0.75 (0.02) 0.95 (0.01)
P10 40 0.78 (0.01) 0.95 (0.04) 0.70 (0.06) 0.87 (0.08) 0.74 (0.04) 0.91 (0.04)
P11 40 0.78 (0.01) 0.95 (0.04) 0.69 (0.06) 0.87 (0.08) 0.74 (0.05) 0.91 (0.04)
P12 40 0.78 (0.01) 0.92 (0.03) 0.68 (0.06) 0.85 (0.07) 0.73 (0.05) 0.89 (0.04)
P13 40 0.78 (0.01) 0.93 (0.03) 0.67 (0.06) 0.86 (0.08) 0.73 (0.06) 0.90 (0.04)
P14 40 0.78 (0.01) 0.92 (0.04) 0.67 (0.06) 0.85 (0.07) 0.73 (0.06) 0.89 (0.04)
Analysis of the relationship between the structure
and properties of a compound is one of the fundamen-
tal objectives of chemistry. Description of the struc-
ture of compounds by a set of quantitative values
(descriptors) that characterize the properties of a sub-
stance at different atomic and molecular levels
becomes necessary when the quantitative structure–
property (–activity) relationships (QSPR/QSAR) are
used to address the connections of the structure and
function. The values of the Hurst coefficient calcu-
lated in this work are indicative of the presence or
absence of memory in the spatial series of chemical
compounds, and we can regard these values as the
quantitative characteristics of a new molecular prop-
erty. The correlation coefficients (r) between the val-
ues of H and 3224 molecular descriptors calculated in
the DRAGON software [27] were determined to char-
acterize the significance of this parameter and reveal
its connections to the other parameters of the chemi-
cal compounds. These descriptors characterize the
compounds in sufficient detail, since they reflect var-
ious physicochemical, electronic, topological, spatial,
and other properties of molecules. Non-informative
descriptors, which were constant in over 95% of all
cases, were excluded from further analysis. As a result,
1307 descriptors were left. The histogram of correla-
tion coefficients calculated in increments of 0.05 is
shown in Fig. 5. The minimum, maximum, and mean
values of r were 0.002, 0.785, and 0.310, respectively.

A simple scheme for descriptor analysis proposed
earlier [28] is based on the study of pairwise correlation
coefficients [29]. According to this scheme, descriptors
with r ≥ 0.99; 0.99 > r ≥ 0.80; 0.80 > r ≥ 0.50 and
MOSCOW UNIVERS
0.50 > r are fundamental, important, probable, and
specific, respectively. Application of these criteria to
the data in Fig. 5 showed that 976 of 1307 descriptors
had r < 0.5, and the r value for descriptor 331 was in
the range of 0.80 > r ≥ 0.50. Thus, the share of speci-
ficity in the H values is 100 × 976/1307 = 74.7%, and the
remaining share of the probability is 100 – 74.7 = 25.3%;
in other words, the Hurst coefficient can be consid-
ered a very specific descriptor. It should be noted that
the highest correlation coefficients (r = 0.785–0.757)
correspond to the topological indices of the full infor-
mation content of the 5th, 3rd, and 4th orders (TIC5,
TIC3, and TIC4). The computation of these (and sim-
ilar) content indices is based on the well-known Shan-
non formula [30]:

where I is information, ni is the number of elements in
subset i, and n is the total number of all elements of the
system equal to n = Σni, where pi is the probability of
event i. This formula can be used to assess the hetero-
geneity of any system, including molecular systems.
Let us use it for the analysis of two types of polymers
(peptides). To be specific, let us fix the total number of
monomers (n) at 50. Let one of the polymers consist
of monomers of one type (i = 1, n1 = 50) and let the
other be an equal mixture of monomers of two types
(i = 2, n1 = 25, n2 = 25). A simple calculation shows
that I = 0 in the first case and I = 1 in the second case;
i.e., the amount of information is changing (increasing).
This result can explain, to some extent, why peptides
composed of random combinations of glycine and ala-

= −Σ =2( log ), ,i i i iI p p p n n
ITY CHEMISTRY BULLETIN  Vol. 74  No. 5  2019
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Fig. 5. Histogram of the distribution of correlation coefficients between the H values and the 1307 descriptors.
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nine residues have higher H values than the peptides
composed of glycine or alanine only.

CONCLUSIONS
The study demonstrated the similar behavior of

spatial series based on interatomic distance histograms
of glycine or alanine. The Hurst coefficient changed
only slightly when the number of monomers in the
model (Gly)m and (Ala)m peptides varied from 5 to 50.
The coefficient values (H > 0.5) point to the existence
of a positive correlation between the members of the
series. The transition from the α-helical conformation
to the β-structure leads to an increase in H. An
increase in the number of monomers in peptides pro-
duced by a random combination of Gly and Ala resi-
dues is generally accompanied by an increase in the
Hurst coefficient. The H values for the β-structure are
higher than those for the α-helix. Persistent behavior,
that is, the presence of long-term memory, can be pos-
tulated for the majority of spatial series studied.
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