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Abstract—The longitudinal motion at a constant speed of a thin continuous elastic web through a sys-
tem of roller bearings under the action of a given constant tension is considered. One span between
adjacent supports is considered. The web is modeled by a thin layered plate hinged on two opposite
edges, the remaining two sides of the plate are free. It is assumed that the plate in the process of lon-
gitudinal movement can perform small transverse vibrations. The layers of the plate from a given set of
materials are arranged symmetrically to the middle surface and fit tightly to each other. The total thick-
ness of all layers is given and is small compared to the span length and plate width. Analytical expres-
sions are derived for the effective characteristics of the plate, as a result of which the initial composite
structure can be considered as an isotropic homogeneous plate, for which the known equations for cal-
culating the critical velocity are applied. Within the framework of multi-criteria Pareto optimization,
using a numerical method of non-local optimization, the order of the layers and their thickness are
determined in order to satisfy a number of selected criteria: the maximum critical divergence rate, the
maximum flexural stiffness, and the minimum unit weight of the layered web. An example of the
found optimal structure of the plate and the constructed Pareto front for a given set of defining param-
eters of the problem are given.
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1. INTRODUCTION
Moving elastic strings, beams, membranes and plates are the most popular models in the study of mov-

ing materials. The scientific literature presents a large number of works where these models are used, lead-
ing to the solution of differential equations with partial derivatives of the second and fourth orders.
Detailed reviews of works on moving materials are contained, for example, in monographs [1–3]. A num-
ber of studies have been devoted to the issues of free oscillations, including the nature of wave propagation
in a moving medium and the effects of axial motion of the frequency spectrum and eigenvalues. It was
shown that the natural frequency of each mode decreases with increasing transport speed and that a mov-
ing string, beam, panel, and plate will experience divergence instability at a sufficiently high speed (see,
for example, [4, 5]). The task of increasing the critical value of the transport speed, at which the phenom-
enon of static instability (divergence) of the web (panels, plates) occurs, is relevant for many technological
processes associated with the longitudinal movement of materials (production of paper and films, rotation
of disks and rods, movement of conveyor belts, drive belts, etc.). As a result of the theoretical studies car-
ried out, the dependences of critical velocities on a number of determining parameters were analytically
obtained earlier [1, 2, 6, 7]. One possible way to increase the critical speed is to change the internal struc-
ture of the web itself. Layered structures and their optimization can play an important role here [8].

In practice, it may be necessary to satisfy not one, but several quality criteria when designing struc-
tures. The issues of multiobjective and multiobjective optimization in mechanics based on the Pareto and
Nash approaches are also the subject of a large number of studies. The first works devoted to the applica-
tion of multiobjective optimization in mechanics were published by Stadler [10, 11], Eschenauer [12, 13]
and others. Let us also note Stadler’s review [14] on multiobjective optimization in mechanics, the collec-
tive monograph edited by Stadler [15], and Mittenen’s monograph [16] devoted to nonlinear problems of
multiobjective optimization. Multicriteria approaches to the problems of optimal design of structures were
discussed in [17, 18]. The issues of multi-purpose optimization of structures were also considered in rela-
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STRUCTURAL OPTIMIZATION OF A LONGITUDINALLY MOVING LAYERED 1185
tion to the problems of contact interaction and high-speed penetration of bodies into deformable media
in the monograph [19].

In this article, within the framework of multicriteria Pareto optimization, using the numerical method
of nonlocal optimization (genetic algorithm [20–22]), the order of the layers of a moving web (layered
plate) and their thickness are determined in order to satisfy a number of selected criteria: the maximum
critical divergence rate, the maximum flexural stiffness and minimum linear weight of the layered web.

2. BASIC RATIOS OF THE MECHANICAL MODEL

An elastic continuous layered web moving longitudinally at a constant transport velocity , which per-
forms transverse oscillations of small amplitude and is under the action of a given longitudinal tension, is
considered. The web moves through a system of roller bearings (rolls), and in the Euler coordinate system
one span is considered between two adjacent bearings. The canvas is modeled by an elastic layered plate
moving at a constant longitudinal speed in the direction of the  axis, pivotally supported on rolls at the
beginning and end of the span. Let us assume that the plate is effectively isotropic and homogeneous and
occupies the region  in the rectangular coordinate
system . In this case, the plate is hinged at x = 0 and x = l and has free edges at  and .
The span length l, plate width , total plate thickness  and its velocity  are given constants.

The dynamic behavior of a moving homogeneous isotropic web (plate) in the Euler coordinate system
is described by the following partial differential equation and boundary conditions (Δ2 is a biharmonic
operator) [1, 2]:

(2.1)

(2.2)

(2.3)

Here,  are the lateral movements of the web, m is the mass per unit area, D is the f lexural
stiffness,  is the Poisson’s ratio, and T0 is the constant mechanical tension applied to the ends of the web
at . For the considered case of a layered effectively homogeneous and isotropic web, relations
(2.1)–(2.3) can be used if we assume , ,  in them, where  is the effective mass of the
plate per unit area,  is the effective bending stiffness of the plate,  is the effective Poisson’s ratio.

To determine the effective characteristics, we assume that the plate is symmetrically composed of an
odd number  of elastic layers relative to the midplane, which are characterized by mass per unit area

, Young’s modulus , Poisson’s ratio , and distance  from the midplane. In this case, the outer lay-
ers are numbered 1 and  (see Fig. 1).

Taking into account the symmetrical arrangement of the layers relative to the median plane ( ) and
the fact that they are closely adjacent to each other, we obtain expressions for the effective bending stiff-
ness of the plate , the effective Poisson ratio  and the effective mass of the plate  per unit area.
To do this, we apply the equations for stresses and strains and use the expression for the bending moment

Taking into account the symmetry of the laying of the layers of the web structure, i.e.

we find an expression for the effective bending stiffness in the form
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Fig. 1. Layered plate.
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Using the mechanical and geometric characteristics of the web layers , , , we obtain the following
expression:

(2.4)

The equation for effective Poisson ratio of an inhomogeneous isotropic layered web is derived similarly.
We have

(2.5)

The equation for the effective mass  per unit area of the laminated web is obtained by direct sum-
mation of the respective masses  of the layers. We get

(2.6)

One of the most important parameters characterizing the mechanical behavior of the considered mov-
ing system is the critical speed of the static form of plate buckling (critical divergence rate). In the station-
ary case, when all time derivatives vanish, we arrive at an eigenvalue boundary value problem for a homo-
geneous and isotropic plate with the equation

(2.7)

and boundary conditions (2.2), (2.3). In the case of a homogeneous isotropic moving canvas, an explicit
expression for the critical divergence rate  (static instability) was obtained [1, 2]. This expression can
also be written for the considered case of a layered, effectively homogeneous and isotropic web. We have

(2.8)

where  is the root of the following transcendental equation [1]:
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Thus, for any layered web with a symmetrical internal structure and given parameters mi, Ei, 

( ), we can determine the values , ,  and, therefore, determine the value of the crit-
ical divergence rate  using expression (2.8).

3. MULTIOBJECTIVE OPTIMIZATION PROBLEM
Having the ability to form the internal structure of the web, that is, to change the filling and arrange-

ment of layers, we can influence the effective characteristics and basic properties of the system, satisfying
the selected optimality criteria. For this, it is convenient to use natural parametrization. We assume that
the number r of acceptable materials for the manufacture of web layers is given. Considering that each of
these materials can be numbered using one parameter, we apply natural parameterization using the scalar
variable k, which can take the values , , …, , …, , i.e.  Since the layers are
characterized by Young’s modulus E, Poisson’s ratio , mass per unit area m, then ,

. Thus, the layered web under consideration consists of a discrete set of layers
(materials) distributed along the z axis and is characterized by a set of parameters , .
The distributions of parameters ( , , ) over the web thickness are given by piecewise constant
functions defined on the interval . For each point , these functions take values
from a given finite set, i.e. , , , .

Let us apply the parametrization described above, using a piecewise constant function 
 that takes values  from a given set, i.e. . The following relations are

valid:

(3.1)

We will consider the function  as the desired design variable, which determines the structure
of the layered web under consideration. As optimization criteria (objective functionals), we choose the
critical divergence rate of the web, the reciprocal of the total effective mass, and the effective bending stiff-
ness. Let us define the vector functional  in the form

(3.2)

and formulate the following vector (multi-objective) optimization problem:

(3.3)

The maximum in (3.3) is understood in the Pareto sense [17, 18]. This means that the expression

(3.4)
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able  satisfying the condition  such that
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(3.5)
and at least one of the components (j-th) of the vector functional satisfies the strict inequality

(3.6)
To solve the multiobjective optimization problem (3.3), we use the target weighting method. Let us

construct the weighting functional JC (preference functional) as a sum

(3.7)

with weight coefficients Ci, satisfying the following conditions:

(3.8)

By  in (3.7) we mean the dimensionless variables , , where  are some character-
istic quantities of velocity, reciprocal mass, and flexural rigidity (“the cap” for the considered variables in
relation (3.7) is omitted below).

In accordance with the target weighting method used, the solution of the multi-objective optimization
problem (3.3) and the search for the set of Pareto-optimal layered web structures reduces to solving the
following problem of determining the maximum of the scalar functional

(3.9)

under restrictions (3.8) imposed on the weight coefficients. Thus, for any given set of weight coefficients
that satisfy condition (3.8), the optimal structure of a layered plate (web) will be determined, which has
the maximum critical divergence rate and, at the same time, the maximum bending stiffness and mini-
mum mass per unit length.

4. NUMERICAL SOLUTION BASED ON THE GENETIC ALGORITHM
The problem of maximizing the functional JC (3.9), (3.8) for various values of the problem parameters

l, b, , , , , and the characteristics of the materials used was solved numerically using a genetic algo-
rithm [20, 8, 19]. This global optimization method was chosen due to the large number of parameters in
order to avoid the difficulties caused by the possible appearance of local extrema in the problem under
consideration.

According to the terminology adopted for this method, each allowable distribution of materials over
layers is taken as an “individual” belonging to a certain population (generation), and is characterized by a
set of values , where j is the number of the “individual” in the generation, and i is the layer number.
The number of “individuals” N in the population is given even and is unchanged in the process of further
updating of generations. The initialization of the algorithm consists in generating an initial generation
from randomly generated admissible distributions . Each “individual” corresponds to some value
of the functional JC being maximized. This is followed by an iterative process of successive formation of
new improved generations of “individuals”. This process is based on the formation of N/2 parental pairs
of “individuals” for each generation and obtaining N/2 pairs of offspring from them using the crossover
operation, which form the next generation. In this case, both probabilistic and deterministic selection
mechanisms are involved: each parent is selected from a randomly generated subgroup NT of “individuals”
so that the value of JC corresponding to was at maximum. The crossing operation for each generated pair
is performed with a given probability . As a result, the offspring either completely copy the parents, or
a partial exchange of their properties occurs as a result of crossing at an arbitrarily chosen point (i). For
the formed new generation of “individuals” the mutation operation is applied. With a very small given
value of probability, a change of the “individual” is carried out at an arbitrarily chosen point (i). The
mutation operation is important for overcoming a possible hit in a local maximum. For the finally formed
generation, the best “individual” is established, that is, the distribution of  materials over the layers
of the web, in the sense of fulfilling conditions (3.9), (3.8). This best solution is remembered, and the algo-
rithm proceeds to the next iteration to build a new improved generation. The constructed new optimal
solution is compared with the solution fixed at the previous iteration, and the best of them is saved. The
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Table 1. Material characteristics

Material, s E, kg/cm2 m, g/m2

1 14.0 × 106 0.460 450

2 1.7 × 106 0.038 400

3 9.36 × 106 0.017 410

ν

algorithm is executed with a given number of iterations or until a certain convergence condition is met.
Typically, multiple reinitializations are performed on the same source data.

Let us give an example of solving the problem of optimizing the web structure for the following values
of the parameters of the problem:  m,  m,  n/m,  m, n = 10, . Char-
acteristics of materials considered acceptable for the optimal design of an inhomogeneous isotropic lay-
ered web are presented in Table 1.

The dependence of  on the effective Poisson’s ratio  for the considered parameters of the problem
is shown in Fig. 2.

The computational process was performed for 500 generations (populations formed sequentially) with
the following algorithm parameters n = 10, , , ,  for 10 initializations.

For simplicity and clarity, let us give an example when the vector functional J has only two components
J1 and J2. In expressions (3.7), (3.8) we should assume . Figure 3 shows the Pareto front in the axes
J1, J2. Each point of the front corresponds to some value of the weight coefficient  (it follows from con-
dition (3.8) that ) and the corresponding maximum value of .

Points numbered 1–8 correspond to the values of the coefficient ; 0.3, 0.2; 0.15; 0.12; 0.1; 0.008
and , respectively.

Figure 4 shows the dependence of the maximum value  of the optimized functional on the coefficient C1.

For the case , Fig. 5 shows the optimal distribution of materials over the layers of the web: mate-
rials s = 1, 2, 3 are marked in white, pink and blue, respectively. It can be seen that in order to fulfill cri-
terion (3.9), it is efficient to place a harder material on the upper and lower layers of the web, and soft
materials closer to the middle surface.

The convergence of the genetic algorithm for this case is shown in Fig. 6.
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Fig. 2. Dependence of the parameter  on the effective Poisson’s ratio .
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Fig. 3. Pareto front.
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5. SOME CONCLUSIONS AND REMARKS

The article considers a multicriteria statement of the problem of optimizing the layered structure of a
moving elastic web, modeled by a thin layered plate. Using an approach based on the construction of
Pareto-optimal solutions for a problem with several objective functionals and the use of a numerical
method of non-local optimization (genetic algorithm), the optimal distributions of materials from a given
set over the layers of the canvas are found. Technologically important parameters of the moving canvas
were chosen as optimization criteria: critical divergence rate (static form of buckling), linear mass (or its
MECHANICS OF SOLIDS  Vol. 58  No. 4  2023

Fig. 5. Optimum distribution of materials over the layers of the web at C1 = 1.
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Fig. 6. Convergence of the genetic algorithm for C1 = 1.
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reciprocal) and bending stiffness. Multi-criteria Pareto optimization allows taking into account the
selected criteria with different weighting coefficients depending on their significance in certain conditions
of production or operation of the web. To perform the optimization algorithm, the effective characteristics
of the layered material were analytically determined, which made it possible to consider it as effectively
isotropic and homogeneous and apply the previously obtained analytical expressions for the critical diver-
gence rate of a moving elastic plate to it. An example of constructing an optimal solution is given, the
graphs show the results of calculations and data on the convergence of the genetic algorithm. It should be
noted that the found optimal distribution of materials over the layers of the canvas can serve as an answer
to several questions of the designer at once: how many layers should be used to make the optimal design,
what material to take for each layer, what thickness each layer will be and what will be the order of laying
these layers. Note that the described multicriteria approach to solving the problem of optimizing the lay-
ered structure of a moving web can also be applied in the case of thermal effects on it. In this case, the
thermoelastic properties of the selected materials will also be taken into account in the optimization pro-
cess.
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